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Abstract 

Accurately predicting the photovoltaic (PV) potential of urban building facades 

plays a crucial role in the development of photovoltaics. This study proposes an 

innovative building facade PV potential prediction method based on the Geospatial 

Graph Attention Neural Network (GGAT). Compared to traditional methods, this 

approach considers the differences in solar radiation intensity at various heights of the 

building facade, enabling more precise identification of areas with higher PV potential 

on the facade. The study focuses on buildings in the Manhattan area of New York City 

and employs Rhino software and the Ladybug Tools plugin to conduct building solar 

radiation simulations, obtaining high-quality training data. During the modeling 

process, the concept of building height stratification is introduced, dividing the building 

facade vertically into 10 equal-height layers, with each prediction point representing the 

average solar radiation intensity within that height range. Experimental results indicate 

that GNN-based algorithms (especially GGAT) outperform traditional machine learning 

algorithms in predicting solar radiation on building facades. GGAT integrates 

geospatial features and graph attention mechanisms, enabling more accurate prediction 

of solar radiation on building facades. Solar radiation intensity exhibits significant 

differences both in the vertical direction of the building facade and in the horizontal 

direction (between census tracts). The stratified modeling method can reveal these 

differences, providing more comprehensive and detailed information for analyzing the 

PV potential of building facades. 

1 Introduction 

The world is facing increasingly severe energy crises and global warming issues, necessitating 

effective measures to address these challenges (Ahmed et al. 2022). As a major consumer of urban 

energy and a primary source of greenhouse gas emissions, buildings play a crucial role in achieving 

Kalpa Publications in Computing

Volume 22, 2025, Pages 647–655

Proceedings of The Sixth International Confer-
ence on Civil and Building Engineering Informatics

I. Hkust, J. Cheng and Y. Yantao (eds.), ICCBEI 2025 (Kalpa Publications in Computing, vol. 22),
pp. 647–655



sustainable urban development and low-carbon transition. By installing solar photovoltaic (PV) 

systems on buildings, we can fully utilize clean and renewable solar energy resources for power 

generation, reducing buildings' reliance on fossil fuels and effectively lowering carbon emissions 

during building operations (Brown et al. 2024). This not only helps mitigate global warming but also 

makes significant contributions to achieving low-carbon transition and climate change goals in cities. 

Building PV systems can be generally classified into two main categories based on their 

installation locations: rooftop PV systems and facade PV systems (Petter Jelle, Breivik, and Drolsum 

Røkenes 2012). The former involves installing solar panels on the rooftops of buildings, utilizing the 

roof space for power generation. This approach is relatively simple to install, does not occupy 

additional land resources, and does not affect the main structure and appearance of the building. 

Rooftop PV systems are suitable for various types of buildings, such as residential, commercial, and 

industrial buildings. On the other hand, facade PV systems integrate solar panels into the exterior 

walls of buildings, forming a building-integrated photovoltaic (BIPV) curtain wall. This approach not 

only generates electricity but also serves as a decorative material for the building's exterior, enhancing 

its aesthetic value. 

Accurately predicting the installable area for PV systems on buildings is of great significance for 

the promotion and application of PV systems (Tian, Ooka, and Lee 2023). The size of the installable 

area directly determines the capacity of PV systems that can be installed on buildings, which in turn 

affects the power generation potential and economic benefits of the PV systems. By accurately 

assessing the installable area of buildings, we can determine the PV power generation potential of 

buildings and provide a basis for formulating PV system promotion policies and targets. Therefore, 

developing efficient and accurate methods for predicting the installable area of PV systems is of 

crucial practical significance for promoting the large-scale application of PV systems in urban 

buildings. 

2 Related works 

To gain a comprehensive understanding of the current research status and progress in building PV 

potential prediction, this study conducts a literature review and analysis based on two categories: 

rooftop PV potential and facade PV potential (Gassar and Cha 2021). 

2.1 Rooftop PV Potential Prediction 

Rooftops are ideal locations for installing PV systems, making rooftop PV potential prediction a 

research hotspot. Due to the relatively easy accessibility of building rooftop data and the simplicity of 

rooftop PV system installation, this area has received widespread attention, and research methods and 

techniques have become increasingly mature (Fakhraian et al. 2021). 

For example, Singh et al. (Singh and Banerjee 2015) proposed a method for estimating the rooftop 

PV potential of a region, using Mumbai as a case study. Utilizing publicly available data, GIS analysis, 

and PVSyst simulation, they estimated the building footprint area ratio and available rooftop area ratio 

while considering factors such as irradiance, temperature, and tilt angle. The results showed that 

Mumbai's PV potential was 2190 MW with a capacity factor of 14.8%, capable of meeting 12.8-20% 

of the daily average demand and 31-60% of the early peak demand. With the development of big data 

and artificial intelligence technologies, some researchers have begun to explore the use of advanced 

algorithms for assessing rooftop PV potential. Zhong et al. (Zhong et al. 2021) proposed a general 

framework for estimating urban-scale rooftop solar PV potential using publicly available high-

resolution satellite imagery. They developed a deep learning-based method for automatic extraction of 

rooftop areas. To address the labor-intensive issue of training rooftop extraction models, they 

developed a spatial optimization sampling strategy. In a case study in Nanjing, China, the manual cost 
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of preparing the training dataset was reduced by approximately 80%, and the robustness of the 

extraction model was improved. The total rooftop area in Nanjing was 330.36 square kilometers, with 

an estimated potential installed capacity of 66 GW and an annual power generation of approximately 

49,897 GWh in 2019. 

In summary, rooftop PV potential prediction has been widely studied, with research methods and 

techniques continuously evolving and improving. From early GIS and remote sensing technologies to 

recent machine learning and deep learning methods, researchers have been exploring new approaches 

to enhance the accuracy and efficiency of rooftop PV potential prediction. These research findings 

provide important theoretical foundations and technical support for the planning, design, and 

promotion of rooftop PV systems. 

2.2 Facade PV Potential Prediction 

Compared to rooftop PV systems, the potential prediction of facade PV systems has received 

relatively less attention (Catita et al. 2014). However, with the development of BIPV technology, the 

application prospects of facade PV systems are becoming increasingly broad. In recent years, more 

and more studies have begun to focus on facade PV potential prediction and have proposed various 

novel methods and techniques. 

Some studies utilize three-dimensional building models for simulation to assess the power 

generation potential of facade PV systems. For example, Brito et al. (Brito et al. 2017) used a digital 

surface model obtained from LiDAR measurements and typical meteorological year data to calculate 

the PV potential of two typical case studies in Lisbon, Portugal, and compared it with the estimated 

local electricity demand. The results showed that the rooftop and facade PV potential exceeded the 

local non-base load demand and could meet 50-75% of the total electricity demand. Considering the 

solar potential of facades, PV generation could meet the electricity demand during winter noons. 

Economic analysis revealed that installing PV only on rooftops could result in a payback period of 

less than 10 years, while a 50-50 split between rooftops and facades would yield a payback period of 

15 years. Additionally, Liu et al. (Liu et al. 2023) proposed an innovative method that, for the first 

time, utilized publicly available satellite imagery and vector maps to construct 3D building models for 

rural areas and precisely assessed the solar PV potential of rural rooftops and facades. The method 

was validated using two real 3D village models and on-site solar radiation measurements. The case 

study showed that south-facing and north-facing rural rooftops, as well as south-facing and west-

facing facades, had the highest PV potential grades. North-facing rooftops with a slope of 30° 

accounted for 32.7% of the total rooftop solar PV potential and should not be neglected in future 

assessments. The method is cost-effective and can accurately assess rural solar PV potential at both 

micro and macro scales, contributing to the promotion of rural renewable energy penetration. 

From the above review, it is evident that the existing assessment methods for facade PV potential 

still have some shortcomings. First, they often treat the entire facade as a whole, ignoring the 

differences in solar radiation intensity at different positions on the facade due to shading from 

surrounding buildings. This simplified approach may lead to biased assessment results and 

underestimate the actual PV potential of facades. When the facade is treated as a whole, the 

contribution of local high-radiation intensity areas may be averaged out, resulting in the entire facade 

exhibiting a lower average radiation level, masking the PV potential at specific positions on the 

facade. Second, most high-precision studies have a small spatial scale, and their assessment methods 

and conclusions may be difficult to generalize to the urban scale. These studies are often based on a 

limited sample of buildings and may not fully consider the complexity and diversity of the urban 

environment. Therefore, the existing research results may have limitations in guiding the formulation 

of facade PV policies at the urban level. 
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2.3 Objective 

To address the aforementioned shortcomings, this study proposes a more refined urban-scale 

building facade PV potential assessment method that can evaluate the solar radiation intensity at 

different heights of each building's facade. Compared to traditional methods, this novel approach 

takes into account the differences in radiation intensity at various heights on the facade, enabling 

more accurate identification of facade areas with higher PV potential. This method can optimize the 

economic viability of PV systems by avoiding unnecessary costs associated with installing PV 

systems in low radiation intensity areas. 

3 Methodology 

In urban environments, predicting the PV potential of building facades is a complex and 

challenging task. Building facades are often subject to shading from surrounding buildings, resulting 

in significant differences in solar radiation intensity at various positions on the facade. Therefore, 

considering the influence of surrounding buildings on the target building is crucial when predicting 

PV potential. Traditional methods often struggle to effectively capture the complex spatial 

relationships between buildings, but Graph Neural Networks (GNNs) (Scarselli et al. 2008) provide a 

new perspective for addressing this issue. 

GNNs can abstract buildings as nodes in a graph structure and represent the spatial relationships 

between buildings through edges. By propagating and aggregating information on the graph, GNNs 

can aggregate the features of surrounding buildings onto the target building, thereby more 

comprehensively considering the impact of the surrounding environment on the target building's PV 

potential. However, in real urban scenarios, the influence of surrounding buildings on the target 

building is often imbalanced. For instance, buildings that are closer in proximity, larger in volume, or 

taller in height may have a more significant shading effect on the target building, while the influence 

of buildings that are farther away or smaller in volume is relatively weaker. 

To address this issue, we introduce the Graph Attention Network (GAT) model (Veličković et al. 

2018). Unlike conventional GNNs, the GAT model can adaptively adjust the influence weights 

between different buildings through an attention mechanism. Specifically, the GAT model calculates 

an attention coefficient based on the features of buildings (such as height, volume, etc.) to measure the 

relevance between different buildings. Surrounding buildings that have a greater impact on the target 

building will be assigned higher attention weights, while those with lesser influence will be 

correspondingly weakened. In this way, the GAT model can more accurately capture the complex 

spatial relationships between buildings, thereby improving the accuracy of PV potential prediction. 

Furthermore, considering the uniqueness of the building facade PV potential prediction problem, 

we have innovated and extended upon the GAT model. We observed that, in addition to the features 

of the buildings themselves, many other geospatial features have a significant impact on PV potential, 

such as distance and azimuth angle. To fully utilize this geospatial information, we propose a novel 

model called the Geospatial Graph Attention Neural Network (GGAT). In the GGAT model, we 

incorporate more geospatial features into the calculation of attention coefficients, enabling the model 

to simultaneously consider building features and geospatial features, thereby more comprehensively 

characterizing the PV potential of building facades. 

3.1 Building Solar Radiation Simulation 

Acquiring high-quality training data is a crucial step in the study of building facade PV potential 

prediction. To train our proposed GGAT model, we require solar radiation intensity data for building 

facades. However, directly measuring the solar radiation intensity of every building facade in real-
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world scenarios is extremely difficult and expensive. To address this issue, we employ building solar 

radiation simulation methods to generate training data. First, we create three-dimensional models of 

the buildings in the study area using Rhino software. Next, we perform building solar radiation 

simulations in Rhino using the Ladybug Tools plugin. During the simulation process, we divide the 

building facades into multiple grids and calculate the solar radiation intensity received by each grid at 

different time points. After the simulation is complete, we export the solar radiation intensity data for 

each grid and associate it with the corresponding building. Through this approach, we obtain a dataset 

containing building IDs, grid IDs, timestamps, and solar radiation intensities. 

3.2 Building Height Stratification 

Accurately estimating the solar radiation intensity at different positions on building facades is 

crucial in predicting PV potential. Traditional methods often treat the building facade as a whole and 

only calculate the average solar radiation intensity. However, in reality, due to factors such as shading 

from surrounding buildings and differences in sky view factors, the solar radiation intensity at 

different heights of the building facade may vary significantly. To more precisely predict the PV 

potential on facades, we propose a stratified modeling approach. 

Our method is based on the following assumption: positions at the same height on the building 

facade receive the same solar radiation intensity. This assumption simplifies the lighting conditions of 

the building facade, ignoring horizontal differences and focusing on vertical variations. Although this 

simplification may introduce some errors, it greatly reduces computational complexity, enabling us to 

perform building facade PV potential prediction more efficiently. Specifically, we divide the facade of 

each building vertically into 10 equal layers, with each layer approximately 10% of the total building 

height. Through this stratification approach, we obtain 10 facade prediction points for each building, 

with each prediction point representing the average solar radiation intensity within that height range 

(Figure 1). Compared to traditional holistic modeling methods, our stratified approach can more finely 

characterize the vertical lighting differences on building facades, thereby improving the accuracy of 

PV potential prediction. 

 
Figure 1. A brief diagram of the traditional method and our stratification method. 

4 Results and Discussion 

To validate the effectiveness of the GGAT model, we selected buildings in the Manhattan district 

of New York City (NYC) as the research object. It includes approximately 45,000 buildings in total. 

To further enrich the dataset, we also introduced other common features of Manhattan buildings, such 

as building density, building shape coefficient, average height of surrounding buildings, etc. These 

features were obtained from the NYC open data website or can be derived by analyzing the three-

dimensional building models. By combining these geospatial features with the solar radiation intensity 

data, we obtained a more comprehensive and rich training dataset. 
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4.1 Model performance comparison 

Table 1 presents a performance comparison of six different algorithms in predicting solar radiation 

intensity and total radiation on building facades. These six algorithms are divided into two main 

categories: traditional machine learning algorithms and GNNs based algorithms. In the traditional 

machine learning algorithms, this study selected gradient boosting decision trees (GBDT), random 

forest, and deep neural networks (DNN). These three algorithms have been widely applied in many 

fields and can serve as benchmarks for comparison. In the GNNs algorithms, we selected graph 

convolutional networks (GCN), GAT, and GGAT. GCN and GAT are two models that have received 

extensive attention in the field of graph learning in recent years, while GGAT is a model specifically 

designed for the task of predicting solar radiation on building facades based on GAT. 

From the experimental results, the three GNNs algorithms generally outperform the traditional 

machine learning algorithms. Whether in the task of predicting radiation intensity (RMSE and R-

Squared metrics) or total radiation, the performance of GCN, GAT, and GGAT is better than GBDT, 

random forest, and DNN. This indicates that by introducing graph structures and attention 

mechanisms, GNNs algorithms can better model the spatial relationships between buildings, thereby 

improving prediction performance. Among the three GNNs algorithms, the GGAT model proposed in 

this study achieves the best performance. Compared with GCN and GAT, GGAT has significant 

advantages in both RMSE and R-Squared metrics for predicting radiation intensity and total radiation. 

This demonstrates that GGAT can more accurately predict the solar radiation on building facades by 

integrating geospatial features and graph attention mechanisms. 

Table 1. The model performance on building facade solar irradiation predictions. 

 

Facade 

Irradiation intensity Total radiation 

RMSE R-Squared RMSE 
R-

Squared 

Machine 

learning 

GBDT 0.7539  0.5181  1.0456  0.6912  

Random forest 0.6653  0.6063  0.9407  0.7500  

DNN 0.7347  0.5199  1.1035  0.6561  

GNNs 

Graph Convolutional Network (GCN) 0.6451  0.6340  0.8803  0.7932  

Graph attention network (GAT) 0.5945  0.6837  0.8213  0.8425  

GGAT (our work) 0.5774  0.7067  0.8005  0.8635  

4.2 The distribution of solar irradiation intensity 

Figure 2 and Figure 3 illustrate the spatial distribution of solar radiation intensity on building 

facades in the Manhattan area at the census tract level, comparing the differences between two 

modeling approaches: treating the building facade as a whole (traditional method) and stratifying by 

height (the method proposed in this study). 

In Figure 2, the color of each census tract represents the average solar radiation intensity of all 

building facades within that tract. It can be observed that the solar radiation intensity exhibits 

significant spatial heterogeneity across the Manhattan area, with tracts in the southern and northern 

parts generally having higher radiation intensity compared to those in the central part. This may be 

related to factors such as building height, density, and street orientation. Figure 3 shows the 

distribution of solar radiation intensity under 10% building height stratification. Each row represents a 

height layer, from bottom to top: 0-10%, 10-20%, ..., 90-100%. It can be seen that as the height 

increases, the solar radiation intensity of each tract gradually increases, with colors transitioning from 
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yellow to red. This indicates that the difference in radiation intensity along the vertical direction of the 

building facade is very significant. 

By comparing Figure 2 and Figure 3, we can conclude that the traditional holistic modeling 

approach ignores the difference in radiation intensity along the vertical direction of the building 

facade, while the stratified modeling approach can reveal this difference. The solar radiation intensity 

of building facades not only varies significantly in the horizontal direction (between census tracts) but 

also in the vertical direction (building height). Therefore, it is necessary to comprehensively consider 

these two dimensions. The stratified modeling approach provides more comprehensive and fine-

grained information for analyzing the PV potential of building facades, which helps to formulate more 

precise PV deployment strategies. 

Overall, these two figures intuitively showcase the spatial distribution characteristics of solar 

radiation intensity on building facades in the Manhattan area and highlight the advantages of the 

stratified modeling approach compared to traditional methods. This provides important references for 

subsequent building PV potential assessment and planning. 

 
Figure 2. The distribution of facade irradiation intensity at the census tract-level (facade 

considered as a whole). 

 
Figure 3. The census tract-level distribution of irradiation intensity when the facade is stratified. 
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5 Conclusions 

The study proposes an innovative building facade PV potential prediction method based on the 

GGAT model. By incorporating geospatial features into the graph attention network, the GGAT 

model can more comprehensively characterize the complex spatial relationships between buildings, 

thereby improving the accuracy of PV potential prediction. Experimental results demonstrate that the 

GGAT model outperforms traditional machine learning algorithms and other GNN algorithms in 

predicting solar radiation intensity and total radiation on building facades. This provides a new 

perspective for utilizing graph learning techniques to address problems related to urban building PV 

potential prediction. 

Furthermore, this study introduces the concept of stratified modeling for building facades. By 

dividing the building facade vertically into multiple equal-height layers and predicting the average 

solar radiation intensity of each layer, we can more precisely depict the vertical lighting differences on 

building facades and reveal information overlooked by traditional holistic modeling methods. 

Experimental results show that the solar radiation intensity on building facades exhibits significant 

differences not only horizontally (between census tracts) but also vertically (building height). The 

stratified modeling approach can provide more comprehensive and detailed information from these 

two dimensions, offering important references for subsequent building PV potential assessment and 

planning. 

In summary, the stratified modeling method based on the GGAT model proposed in this study 

provides a new solution for predicting building facade PV potential at the urban scale. This not only 

helps improve prediction accuracy and optimize the economic viability of PV systems but also 

provides an important basis for formulating more precise PV deployment strategies. Future research 

can further expand the GGAT model by incorporating more geospatial factors and exploring more 

efficient and intelligent building PV potential assessment methods. Meanwhile, applying this method 

to different cities and climatic conditions can verify its universality and robustness. 
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