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Abstract

We develop an algebraic modal logic that combines epistemic and dynamic modalities with a

view to modelling information acquisition (learning) by automated agents in a changing world. Un-

like most treatments of dynamic epistemic logic, we have transitions that “change the state” of the

underlying system and not just the state of knowledge of the agents. The key novel feature that

emerges is the need to have a way of “inverting transitions” and distinguishing between transitions

that “really happen” and transitions that are possible.

Our approach is algebraic, rather than being based on a Kripke-style semantics. The semantics are

given in terms of quantales. We introduce a class of quantales with the appropriate inverse operations

and use it to model toy robot-navigation problems, which illustrate how an agent learns information

by taking actions. We discuss how a sound and complete logic of the algebra may be obtained from

the positive fragment of PDL with converse.

1 Introduction

Epistemic logic has proved very important in the analysis of protocols in distributed systems (see, for

example, [FHMV95]) and, more generally in any situation where there is some notion of cooperation or

“agreement” between agents. The original work in distributed systems, by Halpern and Moses [HM84,

HM90] and several others modelled the knowledge of agents using Kripke-style [Kri63] models. In

these models there are a set of states (often called “possible worlds”) in which the agent could be and,

for each agent, an equivalence relation on the states. If two states are equivalent to an agent then that

agent cannot “tell them apart”. An agent “knows” a fact φ in the state s if, in all states t that the agent

“thinks” are equivalent to s, the fact φ holds. The quoted words in the preceding sentences are, of

course, unnecessary anthropomorphisms that are intended to give an intuition for the definitions.

A vital part of any analysis is how processes “learn” as they participate in protocols. The bulk of papers

in the distributed systems community treat this as a change in the Kripke equivalence relations and argue

about these changes only in the semantics. The logic itself does not have the “dynamic” modalities that

refer to updating of the state of knowledge. On the other hand, dynamic epistemic logic (DEL) has

indeed been studied; see, for example the recent book [vDvdHK08]. In the second author’s doctoral

dissertation an algebraic approach to dynamic epistemic logic was studied in depth [Sad06].

The advantage of working in the algebraic setting is that it abstracts over the details of the Kripke struc-

tures and showcases the high level structure of the actions and their updates. As a result, one can relate

the structure of epistemic actions and their updates to the other areas of computer science, e.g. rea-

soning about correctness of programs and observational logics, e.g. of Abramsky and Vickers [AV93].
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In particular, it turns out that the epistemic update is the action of the quantale of programs/actions on

the module of propositions (factual and epistemic), hence it is the left adjoint to the dynamic modality

which encodes the weakest precondition of Hoare Logic. Secondly (and in a novel attempt), epistemic

modalities (too) are encoded as an adjoint pair: the belief modality is the right adjoint of the appearance

map, which is the lifting (to subsets) of the accessibility relation of the Kripke structure. Apart from

the conceptual novelty and the charm of this adjoint-based approach, it offers a very simple method

of reasoning about knowledge acquisition after an action, i.e. by uniform unfolding of epistemic and

dynamic adjunctions. This method simplifies, to a great extent, the proofs of complex protocols and

puzzles, such as the muddy children, even the versions with dishonest children.

The bulk of the work in this area (algebraic and relational), concerns situations where the state of

knowledge is changed by broadcasts but not situations where the state of the system is changed. An

illuminating and concrete example of such situations arise in, but are not limited to, robot navigation

in AI. The general features of these scenarios is that an agent is given the description of a place, but

cannot determine where it is; however, it can move and as a result may acquire information that allows

it to infer where it is. Consider a robot is given the map of a small computing laboratory with 5 rooms

accessible via 3 actions, as follows:

s2
b //

a

��

s3
c // s5

s1 a
//

b

>>⑤⑤⑤⑤⑤⑤⑤⑤
s4

c

>>⑤⑤⑤⑤⑤⑤⑤⑤

Since the robot can do the same actions in the pairs s1, s2 and s3, s4, it cannot tell them apart. Once in

s1 (similarly for s2), it thinks that it could be in s1 or s2, and once in s3 (similarly for s4), it thinks that

it could be in s3 or s4. But if once in s1 it performs an a action, then it reaches s4 and learns where it is

and where it was before moving.

A deeper investigation of this example reveals that it is not a question of “patching up” the theory. There

are some interesting fundamental changes that need to be made. First of all, one has to distinguish

between transitions that exist in the agent’s “mental model” of the system and actions that actually

occur. Second, one has to introduce a converse dynamic modality in order to correctly formulate the

axioms for updating knowledge. To see why, let us reason as we think the robot should: when it reaches

s4, it checks with its map and reasons that the only way it could have reached s4 would be that it was

originally in s1. It rules out s3 from its uncertainty set about s4, because, according to the map, it

could not have reached s3 via an a action. We have two types of data here, the locations and actions

described on the map versus the ones in reality. The data on the map are hard-coded in the robot and

there is no uncertainty about it, the map fully describes the system. But the real locations and actions

are only partially known. The robot is uncertain about locations and the actions it takes change its

uncertainties. The other issue is that to be able to encode what actions could have led the robot to

where it is, it needs to look back, so we need a converse operation to reason about the past. Now by

moving from s1 to s4, the robot has changed its uncertainty, acquired information, and learned where

it is located. This is exactly the manner in which our new uncertainty reduction axiom formalizes the

elimination of past uncertainties: after performing a certain move in the real world, the robot consults

its description, considers its possibilities and eliminates the ones that could not have been reached as

a result of the action it just performed. Furthermore with this converse operation, we can also derive

information about past, that the robot was in s1 before doing action a.

This paper presents an algebraic theory with these features. The algebra of previous work, e.g. [BCS07]

fails for these scenarios. The reason is that its reduction axiom responsible for changing the uncertainty
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after an action, is only geared towards epistemic actions and is not powerful enough for fact-changing

actions. It requires that the uncertainty about (possible states of) a location after an action to be included

in the result of applying the action to the uncertainty about the location beforehand, a property similar

to perfect recall in protocol models of [HM84, HM90]. This fails here, since after performing an a at s1
one ends up in s4, hence uncertainty about s1 after an a is the same as uncertainty about s4, consisting

of s3 and s4. But performing a on the set of uncertainties about s1, consisting of s1 and s2, results in

both s4 and s1. However, {s4, s1} is not included in {s3, s4}. Moreover, after the robot moved to s4,

it can conclude that it was in s1 before moving; the language of [BCS07] simply cannot express these

past tense properties.

Finally, regarding related work, Dynamic Epistemic Logic has been extended with assignments and

post-conditions, e.g. see [vanDit05], to be able to reason about learning after fact-changing actions.

Although the scenarios we are interested in can be modeled in the relational models of [vanDit05] (these

being transition systems with uncertainty as well as action transitions), the reduction axiom thereof

cannot derive the knowledge properties we are interested in. This may be because their approach has

different kinds of fact-changing actions in mind, e.g. the ones that change the status of a child in

the muddy children puzzle from dirty to clean via washing (and not our location-changing actions).

Nevertheless, they do not discuss or specify what kind of actions their reduction axiom targets. So

there is indeed a gap in modeling and reasoning about the scenarios we deal with here. On a positive

note, since we use converse actions, there might be connections to a DEL with converse actions, e.g.

see [Auch07]. However, an elementary study seems to indicate that our reduction axiom is still very

different from the one developed there. A further exploration of these connections constitutes future

work.

In what follows, we briefly review the algebraic setting which formalizes information acquisition from

such navigation protocols and apply it to reason about learning from two toy examples. One of these

examples is the map-based navigation scenario discussed above, and the other one is navigation on the

grid, which is not based on a map. Further applications of our setting are to AI, mobile communica-

tion, security, and control theory. We show that our algebraic structure generalizes that of previous

work [BCS07], by proving that the latter faithfully embeds in ours. Hence our setting is also strong

enough to reason about learning as a result of communication actions. The slight contribution of this

paper over its AMAST version is the presentation of a logic for part of the algebra. The full version of

the paper is available from [PS10].

2 The Algebra of di-Systems

We need to model “actions” and “formulas”. The actions are modelled by a quantale while the proposi-

tions are a module over the quantale; i.e. actions modify propositions.

Definition 2.1. A quantale (Q,
∨

, •, 1) is a sup-lattice equipped with a unital monoid structure satis-

fying q •
∨

i qi =
∨

i(q • qi) and
∨

i qi • q =
∨

i(qi • q). Instead of an arbitrary sup-lattice we take it

to be a completely distributive prime-algebraic lattice.

Recall that a prime element, or simply “prime”, p in lattice has the property that for any x, y in the lattice,

p ≤ x ∨ y implies that p ≤ x or p ≤ y; “prime algebraic” means that every element is the supremum of

the primes below it. The restriction to prime algebraic lattices is not a serious restriction for the logical

applications that we are considering; it would be a restriction for extensions to probabilistic systems; we

will address such issues in future work. The use of algebraicity is to be able to use simple set-theoretic

arguments via the representation theorem for such lattices [Win09]. For finite distributive lattices it is

81



Dynamic Epistemic Algebra Panangaden and Sadrzadeh

not a restriction at all because of Birkhoff’s classical representation theorem. Henceforth, we will not

explicitly state that we are working with (completely) distributive prime-algebraic lattices.

Definition 2.2. A right-module over Q is a sup-lattice M with an action of Q on M , − · − : M × Q
−→ M satisfying

(m · q) · q′ = m · (q • q′) m ·
∨

i

qi =
∨

i

(m · qi)
∨

i

mi · q =
∨

i

(mi · q) m · 1 = m

We call the collection of actions and propositions a system. We do not have an explicit notion of

“state”.

Definition 2.3. A system is a pair consisting of a quantale Q and a right-module M over Q. We write

(M,Q, ·) for a system.

This is closely related to a definition of Abramsky and Vickers who also studied quantales of actions,

see [AV93].

Since the action preserves all the joins of its module, the map − · q : M −→ M , obtained by fixing the

module argument, has a Galois right adjoint that preserves all the meets. This is denoted by −· q ⊣ [q]−
and defined in the canonical way.

Proposition 2.4. The following inequalities hold in any system (M,Q, ·):

(1) ([q]m) · q ≤ m (2) m ≤ [q](m · q)
(3) (m ∧m′) · q ≤ m · q ∧ m′ · q (4) m · (q ∧ q′) ≤ m · q ∧ m · q′

(5) [q](m ∨m′) ≥ [q]m ∨ [q]m′

(6) q ≤ q′ =⇒ [q′]m ≤ [q]m (7) [⊥]m = ⊤
(8) [q ∨ q′]m = [q]m ∧ [q′]m (9) [q ∨ q′]m ≤ [q]m ∨ [q′]m

(10) [q ∧ q′]m ≥ [q]m ∨ [q′]m (11) [q ∧ q′]m ≥ [q]m ∧ [q′]m
(12) [

∨

i qi]m =
∧

i[qi]m

Proof. (1) and (2) are immediate consequnces of the definition of [q] as a right adjoint. (3), (4), (5)

follow from monotonicity. For (6), assume q ≤ q′ and we have to show

∨

{m′ | m′ · q′ ≤ m} ≤
∨

{m′′ | m′′ · q ≤ m}.

It suffices to show that an arbitrary element of the lhs set is in the rhs set. Take one such element m′,

we have m′ · q′ ≤ m, but since q ≤ q′, we also have that m′ · q ≤ m′ · q′, hence m′ · q ≤ m, i.e.

m′ is also in the rhs set. For (7), the direction [⊥]m ≤ ⊤ is trivial, the other direction ⊤ ≤ [⊥]m
is equivalent to ⊤ · ⊥ ≤ m, which holds since ⊤ · ⊥ = ⊥. For (8), the ≤ direction follows from

(6) and definition of meet, for the ≥ direction we have to show [q]m ∧ [q′]m ≤ [q ∨ q′]m, which

is by adjunction equivalent to ([q]m ∧ [q′]m) · (q ∨ q′) ≤ m. By join preservation of action, this is

equivalent to ([q]m ∧ [q′]m) · q ∨ ([q]m ∧ [q′]m) · q′ ≤ m. To show this, we have to show that both

disjuncts are less than or equal to m. Consider the first one, by (3) and transitivity, it suffices to show

[q]m · q ∧ [q′]m · q ≤ m, by the definition of meet and transitivity it suffices to show either of the

conjuncts satisfy the inequality, now [q]m · q ≤ m, is true by (1). The proofs of the remaining items

follow from these in a similar way, e.g. (12) follows from (7) and (8).

Definition 2.5. A sup lattice M is a right di-module of the quantale Q whenever there are two right

actions − · − : M × Q −→ M and − × − : M × Q −→ M . We call the pair of a quantale and its

di-module (M,Q, ·,×) a di-System.
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Definition 2.6. Whenever the two actions – written ·and·−1 for the purposes of this definition – of a

di-system are related by the following three axioms

(i) m · q ≤ m′ =⇒ m ≤ m′ ·−1 q whenever m · q 6= ⊥

(ii) m ·−1 q ≤ m′ =⇒ m ≤ m′ · q whenever m ·−1 q 6= ⊥

(iii) m ·−1 (q • q′) = (m ·−1 q′) ·−1 q

then we refer to the di-system as a converse di-System and denote it by (M,Q, ·, ·−1).
Proposition 2.7. A converse di-System satisfies m ≤ (m · q) ·−1 q, whenever m · q 6= ⊥, and m ≤
(m ·−1 q) · q, whenever m ·−1 q 6= ⊥.

Definition 2.8. A converse di-System is past-deterministic iff m ≤ m′ · q =⇒ m ·−1 q ≤ m′, for

m′ · q 6= ⊥. It is future-deterministic iff m ≤ m′ ·−1 q =⇒ m · q ≤ m′, for m′ ·−1 q 6= ⊥.

Proposition 2.9. In a past-deterministic converse di-System we have m ≤ m′ · q ⇐⇒ m ·−1 q ≤ m′

for m′ · q,m ·−1 q 6= ⊥ and in a future-deterministic converse di-System we have m ≤ m′ ·−1 q ⇐⇒
m · q ≤ m′ for m′ ·−1 q,m · q 6= ⊥.

Example 2.10. Consider the following transition system

x

a
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ a

  ❅
❅❅

❅❅
❅❅

❅ y

a
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

z1 z2

We model this as a di-System (M,Q, ·, ·−1) by assuming x, y, z1, z2 ∈ M,a ∈ Q, and x · a = z1 ∨
z2, y · a = z2, z1 ·−1 a = x, and z2 ·−1 a = x ∨ y. It is easy to check that these satisfy the inequalities

of definition 2.6, but not their converses: the transition system is neither past-deterministic nor future-

deterministic. A counterexample for the converse of part (i) is x ≤ z2 ·−1 a but x · a � z2. If we

eliminate the leftmost edge, then the system becomes future-deterministic and the converse of (i) holds.

A counterexample for the converse of part (ii) is z2 ≤ y · a but z2 ·−1 a � y. If we eliminate the

rightmost edge, then the system becomes past-deterministic and the converse of (i) holds.

Example 2.11. The powerset P(S) of a set S is the right di-module of the quantale of all the relations

thereon P(S×S). Relational composition is the monoid multiplication, the diagonal relation is its unit,

and the join is set union. The action and its converse are the point wise images of the relation and its

converse, i.e. for W ⊆ S and R ⊆ S × S

W ·R =
⋃

w∈W

R[w] W ·−1 R =
⋃

w∈W

R−1[w]

It is easy to see that W ·−1 R = W · R−1. If R−1 is a singleton then this di-system becomes a past-

deterministic one, if R is a singleton, it becomes future-deterministic.

The converse action preserves all the joins of the module, thus similar to the action, it has a Galois right

adjoint denoted by −·−1 q ⊣ [q]−1−, defined in the canonical way. It is worth observing that interaction

axioms of, e.g. [Dun05] follow from our adjunction and converse axioms, in the following incremental

order:

Proposition 2.12. In any converse di-System we have

[q](m ∨m′) ≤ [q]m ∨ m′ ·−1 q [q]−1(m ∨m′) ≤ [q]−1m ∨ m′ · q

Proposition 2.13. In a future-deterministic converse di-System we have

m ·−1 q ∧ [q]m′ ≤ (m ∧m′) ·−1 q
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Proposition 2.14. In a past-deterministic converse di-System we have

m · q ∧ [q]−1m′ ≤ (m ∧m′) · q

These four properties are meant to axiomatize de Morgan duality of − · q and [q]−1−, also of − ·−1 q
and [q]−, in the absence of negation. In a Boolean module, these de Morgan dualities become ex-

plicit.

Proposition 2.15. If the module of a past and future deterministic converse di-System is a Boolean

algebra with negation operator ¬− : M −→ M , we have m · q = ¬[q]−1¬m and m ·−1 q = ¬[q]¬m.

For details of this, we refer the reader to [PS10]. We have also defined a Kleene star for iteration and

shown that it preserves the adjunctions. In the Boolean setting of [vK98], these iteration operators have

been used to model modalities of temporal logic.

3 Second Order di-Systems

To distinguish the “potential” actions that happen in the mind of the agent, e.g. actions described by

a map, from the “real actions”, we go higher order. We make real actions act on the di-system that

describes potential actions. Real actions change the state of the system as described by the map.

Definition 3.1. A second order di-System (D, Q′,⊙,⊗) is a di-System whose module is a di-System,

D = (M,Q, ·,×), i.e. −⊙− : D ×Q′ −→ D and −⊗− : D ×Q′ −→ D.

Real actions have an extra significance, they also change the uncertainties of (some of) the states. To

encode the uncertainties, we use lax endomorphisms of the system. The reason these are called lax is

that we require them to satisfy axiomatic inequalities (rather than equalities), namely inequalities (1)

and (2) below . These axioms encode the change of uncertainty and the reason they are inequalities has

been motivated in [Sad06]. In a nutshell, they are so to be able to encode the process of learning as a

decrease in the uncertainty (hence an increase in information).

Definition 3.2. A lax endomorphism u of a second order di-System consists of a pair of endomorphisms

u = (uM : M −→ M,uQ : Q −→ Q), where uM preserves joins of M and uQ preserves joins of Q,

moreover we have

(1) uM (m⊙ q) ≤
∨

{

m′ ∈ M | m′ ≤ uM (m · q), m′ × uQ(q) 6= ⊥
}

(2) uQ(q • q′) ≤ uQ(q) • uQ(q′), (3) 1 ≤ uQ(1)

Since each projection of u is join preserving, it has a Galois right adjoint, we denote it by ✷ =
(✷M ,✷Q). These are canonically defined as follows

✷
Mm :=

∨

{m′ ∈ M | uM (m′) ≤ m} ✷
Qq :=

∨

{q′ ∈ Q | uQ(q′) ≤ q}

Definition 3.3. A second order informative di-System ((M,Q,− · −,×), Q′,⊙,⊗, u) is a second order

di-System endowed with a di-System lax endomorphism.

The second order Informative di-System that we need for applications are second order converse di-

systems. As we shall see in more details later, these will be a generalization of Epistemic Systems

of [BCS07] to also include actions that are not necessarily epistemic. We refer to them as Navigation

di-Systems, defined as follows
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Definition 3.4. A Navigation di-System (Nav-diSys) is a second order informative di-System, where

(M,Q, ·, ·−1) is a converse di-System, u is a second order lax di-System endormorphism, and − ⊙ −
and −⊙−1 are given by

−⊙− : (M,Q, ·, ·−1)×Q −→ (M,Q, ·, ·−1)

−⊙−1 − : (M,Q, ·, ·−1)×Q −→ (M,Q, ·, ·−1)

The second order action −⊙− does not change the base di-System, but changes the lax endomorpshisms

via inequality (1) of definition 3.2. It can be read in an operational way as restricting uM (m ⊙ q) to

elements in the uncertainty of its corresponding lower action, i.e. uM (m · q), to the ones that can be

reached via a uQ(q) action.

3.1 Interpretation

Given a Navigation di-System
(

M,Q, ·, ·−1), Q,⊙,⊙−1, u
)

we interpret elements of the module as

propositions and the order as entailment, thus m ∨ m′ is the logical disjunction and ⊥ is the falsum.

The elements of the quantale are interpreted as actions and the order is the order of non-determinism,

thus q ∨ q′ is the non-deterministic choice and ⊥ is crash, monoid multiplication q • q′ is sequential

composition, and its unit 1 is the action that does nothing. The actions of the base converse di-System

are to be thought of as potential, e.g. descriptions of actions on a map, the actions of the second order

di-System are their real counterparts. For simplicity, we make the two di-Systems share the same action

labels that live in the quantale Q and the higher order action to mimic their base counterparts.

As is usual, the real world comes with some uncertainties and the effect of performing the real actions

is to remove some of these uncertainties. The uncertainties are modeled by the endomorphisms of the

module and quantale. We read them as follows

• uM (m) is the uncertainty about proposition m, the join of all propositions that are possibly true

when in reality m is true. For example uM (m) = m∨m′, says that in reality m is true, but agent

considers it possible that either m or m′ might be true.

• uQ(q) is the uncertainty about action q, the join of all actions that are possibly happening when

in reality action q is happening. E.g. uQ(q) = q ∨ q′ says that in reality action q is happening but

the agent considers it possible that either q or q′ is.

We interpret the right adjoints to uncertainty in an operational manner as follows

• ✷
M m reads as ‘according to the information available m holds in reality’. Alternatively, one can

use the belief modality of doxastic logic and read it as ‘it is believed that m holds in reality’.

• ✷
Q q reads ‘according to the information available q is happening in reality’, or using the belief

modality as ‘it is believed that action q is happening in reality’.

We refer to axiom (1) of definition 3.2 as the uncertainty reduction axiom. The intuition behind it is

as follows: when one does actions in reality, they change our uncertainty. In navigation systems this

change is as follows: the uncertainty after performing an action in reality uM (m⊙ q) is the uncertainty

of performing a potential action according to the description of the system, i.e. uM (m · q) minus the

choices to which one could not have reached via a q action (according to the description). For example,

uM (m ·q) can be a choice of m′∨m′′ and it is not possible to reach m′ via a q action, i.e. m′ ·−1 q = ⊥.

Hence m′ is removed from the choices in uM (m ⊙ q), hence uM (m ⊙ q) = m′′. The other two
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inequalities are for coherence of uncertainty with regard to composition, the motivations for these are

as in [BCS07].

4 Applications to Navigation

Navigation systems are described by a set of locations S, a set of atomic actions Ac, and a set of possible

movements Ac ⊆ S × S.

Definition 4.1. On a set of locations S and a set of action labels Ac ⊆ S × S, a concrete Nav-diSys is

N =
(

(P(S),P(S × S),− · −,− ·−1 −),P(S × S),−⊙−,−⊙−1 −, (uM , idQ)
)

where the actions − · − and − ·−1 − are as defined as in example 2.11, and uncertainty maps are build

from the image of indistinguishability of states under actions.

Finally, we abide to the convention of impossibility of lack of uncertainty, that if the agent can do an

action at a location then it should be the case the he has some uncertainty at that location. This is

because, agents move to be able to find out where they are, if they already know where they are, then

there is no problem to be modeled.

4.1 Map-based Navigation

We encode the navigation protocol of introduction in a concrete Nav-diSys with set of locations S =
{s1, s2, s3, s4, s5}, set of actions Ac = {a, b, c}, and applicability of actions and uncertainty of states as

described there, similar to example 2.10. We quotient this over the impossibility of lack of uncertainty

and show that after doing an a action on s1, the robot knows where it is and was before.

Proposition 4.2. The following hold in a concrete N/Θ based on the above data.

s1 ≤ [a]✷Ms4 s1 ≤ [a]✷M [a]−1s1

Proof. Consider the first one: by the adjunction − ⊙ a ⊣ [a]−, it is equivalent to s1 ⊙ a ≤ ✷
Ms4. By

the adjunction uM ⊣ ✷
M , this is equivalent to uM (s1 ⊙ a) ≤ s4. Now by the uncertainty reduction

inequality, it is enough to show that

∨

{si ∈ S | si ≤ uM (s1 · a), si ·
−1 a 6= ⊥} ≤ s4

Since s1 · a = s4, and uM (s4) = s3 ∨ s4, but s3 ·−1 a = ⊥ where as s4 ·−1 a 6= ⊥, hence the

lhs of the above is equal to s4, which is ≤ s4. Consider the second inequality, it becomes equivalent to

uM (s1⊙a)⊙−1a ≤ s1, by a series of 3 unfoldings of adjunctions. We have shown that uM (s1⊙a) ≤ s4,

so it suffices to show s4 ⊙−1 a ≤ s1, which is true since s4 ⊙−1 a = s4 ·−1 a = s1 ≤ s1.

4.2 Grid Navigation

A typical robot navigation protocol is as follows, a robot is in a grid with n rows and m columns, it can

go up, down, left, and right and is supposed to move about and find out where it is. The grid cells look

alike to it as long as it can do the same movements in them, hence it knows where it is iff it ends up in

one of the four corner cells. We model this protocol in a concrete Nav-diSys and show that no matter
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where the robot is, there is always some sequences of movements that it can do to get it to one of the

corners. After doing either of these it learns where it is and where it was beforehand.

Each grid cell is modeled by a state sij in the i’th row and j’th column. Uncertainty of corner states

s11, s1m, sn1, snm is identity, i.e.

uM (s11) = s11 uM (s1m) = s1m uM (sn1) = sn1 uM (snm) = snm

For the rest of the cells we have

uM (sij) =
∨

1<x<n 1<y<m

sxy uM (s1j) =
∨

1<y<m

s1y uM (si1) =
∨

1<x<n

sx1

The set of actions is Ac = {u, d, l, r}, their non-applicability is as follows

s1j · u = s1j ·
−1 d = si1 · l = si1 ·

−1 r = snj · d = snj ·
−1 u = sim · r = sim ·−1 l = ⊥

All the other actions are applicable in all the other states.

Proposition 4.3. The following hold in a concrete N based on the above data.

sij ≤ [α]✷(s11 ∨ s1m ∨ sn1 ∨ snm) sij ≤ [α]✷[α]−1sij

for 1 < i < n, 1 < j < m and α the following choices of sequences of movements

(ui−1 ∨ dn−i) • (lj−1 ∨ rm−j) ∨ (lj−1 ∨ rm−j) • (ui−1 ∨ dn−i)

Proof. Consider the first property, by the adjunctions −⊙ q ⊣ [q]− and uM ⊣ ✷
M , it is equivalent to

uM (sij ⊙ α) ≤ s11 ∨ s1m ∨ sn1 ∨ snm

By join preservation of ⊙ and uM , the above becomes equivalent to showing a join of 8 terms on the

left to be less than or equal to the a join of 4 locations on the right. So by definition of join, we must

show that all of the following 8 cases hold

uM (sij ⊙ (ui−1 • lj−1)) ≤ s11 uM (sij ⊙ (ui−1 • rm−j)) ≤ s1m
uM (sij ⊙ (dn−i • lj−1)) ≤ sn1 uM (sij ⊙ (dn−i • rm−j)) ≤ snm
uM (sij ⊙ (lj−1 • ui−1)) ≤ s11 uM (sij ⊙ (lj−1 • dn−i)) ≤ sn1
uM (sij ⊙ (rm−j • ui−1)) ≤ s1m uM (sij ⊙ (rm−j • dn−i)) ≤ snm

Consider the first one, by uncertainty reduction it suffices to show that

∨

{m′ | m′ ≤ uM (sij · (u
i−1 • lj−1)),m′ ·−1 (ui−1 • lj−1) 6= ⊥} ≤ s11

By associativity of ⊙ over • and the grid assumptions we have that sij · (ui−1 • lj−1) = s11 and that

uM (s11) = s11, also that s11 ·−1 (ui−1 • lj−1) 6= ⊥, hence the left hand side is equal to s11, and trivially

we have that s11 ≤ s11. Proofs of the other 7 inequalities are similar.

Now consider the second property sij ≤ [α]✷M [α]−1sij , which is equivalent to the following by ad-

junction

uM (sij ⊙ α)⊙−1 α ≤ sij
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Like above uM (sij ⊙α) breaks down to 8 terms and since ⊙−1 is also join preserving, one has to show

8 × 8 inequalities similar to those in the above, but updated with the ⊙−1 of the 8 combinations of

composition of actions on the left and sij on the right. That is, we have 8 inequalities of the form

uM (sij ⊙ (ui−1 • lj−1))⊙−1 ((ui−1 ∨ dn−i) • (lj−1 ∨ rm−j)∨ (lj−1 ∨ rm−j) • (ui−1 ∨ dn−i)) ≤ sij

We have shown that uM (sij ⊙ (ui−1 • lj−1)) = s11, so the above is equivalent to

s11 ⊙
−1 ((ui−1 ∨ dn−i) • (lj−1 ∨ rm−j) ∨ (lj−1 ∨ rm−j) • (ui−1 ∨ dn−i)) ≤ sij

To show the above, one must show all of the following 8 inequalities

s11 ⊙−1 (ui−1 • lj−1) ≤ sij s11 ⊙−1 (ui−1 • rm−j) ≤ sij
s11 ⊙−1 (dn−i • lj−1) ≤ sij s11 ⊙−1 (dn−i • rm−j) ≤ sij
s11 ⊙−1 (lj−1 • ui−1) ≤ sij s11 ⊙−1 (lj−1 • dn−i) ≤ sij
s11 ⊙

−1 (rm−j • ui−1) ≤ sij s11 ⊙
−1 (rm−j • dn−i) ≤ sij

For two of these we have s11 ⊙−1 (dn−i • rm−j) = s11 ⊙−1 (rm−j • dn−i) = sij , and the rest are

equal to ⊥ (by the inapplicability assumptions of the grid), which is fine since ⊥ is less than or equal

anything, in particular sij .

5 Embedding Epistemic Systems

An algebraic semantics for information learning from communication has been presented in previous

work [BCS07], referred to as Epistemic Systems. In this section we make the connection between

Epistemic Systems and Nav-diSys formal.

Definition 5.1. A (mono-modal) Epistemic System (M,Q,−⊗−, f) as defined in [BCS07] is a quan-

tale Q acting on its right module M via the action − ⊗ − : M × Q −→ M , where f = (fM : M
−→ M, fQ : Q −→ Q) is a lax system endomorsphism of the setting satisfying the following three in-

equalities

fM (m⊗ q) ≤ fM (m)⊗ fQ(q) (1)

fQ(q • q′) ≤ fQ(q) • fQ(q′) (2)

1 ≤ fQ(1) (3)

Moreover every element of the quantale q ∈ Q has a kernel, ker(q) =
∨

{m ∈ M | m ⊗ q = ⊥} and

the module has a special subset Fact ⊆ M , defined as Φ = {p ∈ M | ∀q ∈ Q, p⊗ q ≤ p}. The module

and quantale have a set of atoms At(M) and At(Q) and we have that At(M) ⊆ Φ.

Inequality number (1) is referred to as the appearance-update inequality. The kernel of each action

encodes the propositions to which the action cannot apply, i.e. if you update those propositions with this

action, you will get the ⊥. Kernels are the opposite of the preconditions of actions, as used in the DEL

literature, as propositions to which the action can be applied. The facts represent states, and the reason

they are stable under updates here is that epistemic actions do not change the state of the world, but only

the state of information of agents.

Definition 5.2. An atomic Nav-diSys, similarly atomic Epistemic System, is one that has an atomic

module with set of atoms At(M) and an atomic quantale with a set of atoms At(Q).
Definition 5.3. A weak reflexive Nav-diSys is an atomic one in which for s ∈ At(M), π ∈ At(Q) we

have s ≤ uM (s) and π ≤ uQ(π)1.

1Concrete systems that arise from applications have this property.
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Theorem 5.4. Given a weak reflexive atomic Nav-diSys N , the structure

N σ = (Mσ, Qσ,−⊗−, f)Φ

obtained by setting Mσ to M , Qσ to Q, f to u, Φ to At(M), and m⊗q to m⊙q, is an atomic Epistemic

System.

Weak reflexive and transitive Nav-diSys’s and Epistemic Systems form a pair of categories with mor-

phisms of each being its corresponding lax endomorphisms. In this setting, the above construction

becomes a forgetful functor from the latter to the former, most likely having a right adjoint.

6 First Steps Towards a Logic

In order to develop a logic for the algebraic semantics of Nav-diSys, one way would be to start with

a logic for converse di-Systems, then add epistemic modalities, and their corresponding interaction

axioms to it. The main axiom here would be the uncertainty reduction axiom. The logic of a converse

di-System is the positive fragment of Propositional Dynamic Logic with Converse (CPDL) [Par78].

CPDL consists of a propositional and an action logic. To obtain its positive fragment, we must develop

positive fragments of each of these logics.

Consider first the propositional part with non-indexed modalities. The syntax of a logic for this part is

generated over a set of atomic propositions p ∈ P via the following grammar:

m ::= ⊥ | ⊤ | p | m ∧m | m ∨m | ✷m | ✸m | ✷−1m | ✸−1m

We suggest the following set of axioms and rules as the positive fragment of the propositional part:

Axioms.

m ⊢ m, ⊥ ⊢ m, m ⊢ ⊤

m ∧ (m′ ∨m′′) ⊢ (m ∧m′) ∨ (m ∧m′′)

m ⊢ m ∨m′, m′ ⊢ m ∨m′, m ∧m′ ⊢ m, m ∧m′ ⊢ m′

✸(m ∨m′) ⊢ ✸m ∨✸m′, ✸
−1(m ∨m′) ⊢ ✸

−1m ∨✸
−1m′

✷m ∧ ✷m′ ⊢ ✷(m ∧m′), ✷
−1m ∧ ✷

−1m′ ⊢ ✷
−1(m ∧m′)

⊤ ⊢ ✷
−1⊤, ⊤ ⊢ ✷⊤, ✸⊥ ⊢ ⊥, ✸

−1⊥ ⊢ ⊥

Adjunction ✸
−1

✷m ⊢ m, m ⊢ ✷✸
−1m, ✸✷

−1m ⊢ m, m ⊢ ✷
−1

✸m

Converse m ⊢ ✸✸
−1m, m ⊢ ✸

−1
✸m

Rules.
m ⊢ m′ m′ ⊢ m′′

m ⊢ m′′
cut

m ⊢ m′′ m′ ⊢ m′′

m ∨m′ ⊢ m′′
∨ m ⊢ m′ m ⊢ m′′

m ⊢ m′ ∧m′′
∧

m ⊢ m′

✸m ⊢ ✸m′
✸

m ⊢ m′

✸
−1m ⊢ ✸

−1m′
✸

−1 m ⊢ m′

✷m ⊢ ✷m′
✷

m ⊢ m′

✷
−1m ⊢ ✷

−1m′
✷

−1
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Because of the lack of negation, the axioms and rules are expressed using the notion of a “modal se-

quent” m ⊢ m′, introduced to deal with positive modal logics, e.g. in [Dun05, GNV05]. The axioms

and rules for conjunction and disjunction and normal properties of modalities are obtained from those

of a distributive modal lattice from [GNV05]. We have added to this 6 more axioms to capture the

adjunction and converse properties of the modalities. In [Par78], only two of our four adjunction ax-

ioms are added to the axiomatics of PDL, these are m ⊢ ✷✸
−1m and m ⊢ ✷

−1
✸m. In a setting with

negation, these suffice, but in our positive setting, it seems that we need all of these to be able to prove

completeness.

It is routine to check that the above logical system is sound and complete with regard to the finite non-

indexed versions of the axioms of the module of a converse di-System. This follows by taking m · q to

be ✸m, and its right adjoint [q]m to be ✷
−1m, also taking m ·−1 q to be ✸

−1m and its right adjoint

[q]−1m to be ✷m. The apparent swapping of the inverses is because in the logic ✸−1 is the left adjoint

to ✷, whereas in the algebra the right adjoint to m · q is [q]m, since adjoints are unique the two have to

represent the same formulae2.

The syntax of a logic for both the propositional and the action parts is generated over a set of atomic

propositions p ∈ P and a set σ ∈ Σ of atomic actions via the following grammar:

m ::= ⊥ | ⊤ | p | m ∧m | m ∨m | [q]m |< q > m | [q]−1m |< q >−1 m

q ::= ⊤ | ⊥ | σ | 1 | q • q | q ∨ q | q∗

Axioms for the positive fragment of the logic (actions as well as propositions) are the q-indexed ver-

sions of the previous propositional-only logic, together with the following axioms and rules for action

connectives:

Axioms.

q ⊢ q ⊥ ⊢ q q ⊢ ⊤

m ⊢< 1 > m m ⊢ [1]m m ⊢< 1 >−1 m m ⊢ [1]−1m

[q • q′]m ⊢⊣ [q][q′]m < q • q′ > m ⊢⊣< q >< q′ > m

[q • q′]−1m ⊢⊣ [q′]−1[q]−1m < q • q′ >−1 m ⊢⊣< q′ >−1< q >−1 m

< q ∨ q′ > m ⊢< q > m ∨ < q′ > m < q ∨ q′ >−1 m ⊢< q >−1 m ∨ < q′ >−1 m

1 ∨ q • q∗ ⊢⊣ q∗ 1 ∨ q∗ • q ⊢⊣ q∗ 1 ∨ q •−1 q∗ ⊢⊣ q∗ 1 ∨ q∗ •−1 q ⊢⊣ q∗

Rules.
q ⊢ q′

[q′]m ⊢ [q]m
anti

q ⊢ q′

< q > m ⊢< q′ > m
mono

q ⊢ q′

[q′]−1m ⊢ [q]−1m
anti−1

q ⊢ q′

< q >−1 m ⊢< q′ >−1 m
mono−1

q • q′ ⊢ q′

q∗ • q′ ⊢ q′
∗l

q′ • q ⊢ q′

q′ • q∗ ⊢ q′
∗r

q •−1 q′ ⊢ q′

q∗ •−1 q′ ⊢ q′
∗−1l

q′ •−1 q ⊢ q′

q′ •−1 q∗ ⊢ q′
∗−1r

We refer to this logic as PDL+−. It is routine to check that it is sound and complete with regard to

finite versions of the axioms of a converse di-System, when the actions and their converses are always

applicable and once the standard axioms of a Kleene * operator have been added to it. For instance the

2This is not so surprising, since [q]m stands for the “weakest precondition” of program logics, which has a past tense nature.

It represents ”all the propositions that must be true before running program q, such that proposition m holds after it”.
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anti rule follows from property (4) of definition 2.4. It is a nice exercise to try and derive the positive

versions of axioms of CPDL in our logical system. For example, the proof tree for one direction of

axiom (iv) (from p. 173) of [HKT00], i.e. [q ∨ q′]m ⊢ [q]m ∧ [q′]m is as follows:

q ⊢ q ∨ q′
Ax.

[q ∨ q′]m ⊢ [q]m
anti

q′ ⊢ q ∨ q′
Ax.

[q ∨ q′]m ⊢ [q′]m
anti

[q ∨ q′]m ⊢ [q]m ∧ [q′]m
∧

The other direction, i.e. [q]m ∧ [q′]m ⊢ [q ∨ q′]m is also derivable, but the proof tree is so big that we

could not fit it in the page.

The above proof can be generalized to one with regard to converse di-Systems (i.e. with arbitrary joins).

This is by showing that the completion of the Lindednbaum-Tarski algebra of PDL+− is a converse

di-System (with the right assumptions about applicability of actions and axioms for *), and that the

embedding of a finite such converse di-system into a converse di-system is a homomorphism. The

details mimic the details of the proof of a similar completeness theorem, but for Epistemic Systems,

which has been worked out in [Sad06, BCS07].

7 Conclusions and future work

We have developed an algebraic framework for dynamic epistemic logic in which the dynamic and epis-

temic modalities appear as right adjoints. The key new feature in the present work relative to previous

work [Sad06, BCS07] is the presence of converse actions and the algebraic laws that govern uncertainty

reduction. Robot navigation protocols, as well as the three-player game in Phillips’s thesis [Phi09], give

examples in which the old learning inequality was violated, showing that there were new subtleties that

arise when there are actions that really change the state of the world.

A number of directions for future work naturally suggest themselves. Developing a logic for the full

algebra is the main one, establishing closer connections with other DEL’s is another. We are also partic-

ularly interested in extending this work to apply security protocols where “knowledge” and “learning”

play evident roles. A fundamental extension, and one in which we have begun preliminary investiga-

tions, is the extension to the probabilistic case. Here knowledge and information theory may well merge

in an interesting and not obvious way.
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