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Abstract

Approximate query processing (AQP) aims to provide an approximated answer close
to the exact answer efficiently for a complex query on large datasets, especially big data.
It brings enormous benefits into many data science fields when the efficiency of query
execution weighs more than the accuracy. However, assessing the accuracy of an approx-
imated answer from AQP deserves more study. Existing work usually relies on strong
dataset assumptions which may not work for real-world datasets. In this work, we employ
bootstrap sampling to assess the estimation errors of the AQP for selection queries (called
0-AQP). We implement a prototype system which can calculate confidence intervals for
the estimated query results. Experiment results demonstrated that the confidence intervals
generated by the prototype system can cover the ground truth of the query results with
high accuracy and low computing cost. In addition, we implement optimization strate-
gies for the bootstrap sampling which have significantly improved the overall computing
efficiency.

1 Introduction

Big data produces demanding challenges for modern data management systems to efficiently
process complex queries within a limited time. Much work has been developed towards promptly
executing data queries in both hardware and software platforms [8, 9, 14]. However, calculating
the exact query answer can be expensive and possibly unnecessary in every scenario. For
example, at the initial state of an exploratory data analysis (or EDA) project, one may only
need to know approximated answers of some testing queries in a relatively short time.
Approximate query processing (or AQP) is an alternative scheme to provide estimated query
answers with a satisfying accuracy and within a short time [2, 12, 13]. AQP doesn’t need to
run the original query but try to collect statistics to generate query estimations. Based on the
fashion of statistics collection, AQP can be categorized into two groups including the online
AQP and the offtine AQP [3]. The online AQP [4, 10, 11], by the name, starts collecting
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statistics only after the target query for approximation is given. The online AQP usually relies
on auxiliary data structures, such as indices and hash tables, in order to collect statistics quickly.
Another drawback of the online AQP is its collected statistics are not reusable and must be
re-collected for each different query. However, given enough time, the online AQP is able to
run multiple times to approach to the desired estimation accuracy.

The offline AQP [1, 16], on the other hand, collects statistics before a target query is
submitted. It usually needs the knowledge of the whole database schema in order to create a
holistic statistical synopsis. One advantage of the offline AQP is it doesn’t require auxiliary
data structures to collect statistics because the statistics collection happens before the query is
given and doesn’t affect the system performance. Another advantage is the collected statistics
by the offline AQP are usually reusable for future queries. This alleviates the data accessing
costs. However, one open question for the offline AQP research is how to efficiently assess the
estimation errors for an offline AQP system.

One of the most common AQP scheme is the o-AQP which estimates selection queries. The
challenge is that, for different conditions in a selection (o) query, the underlying distributions
of the result sets are different and difficult to predict. For the online AQP schemes, since the
statistics are collected on-the-fly for each query, the distribution of the result sets is known.
Therefore, an estimated variance of its statistic estimator can be derived. However, for offline
AQP schemes, only the distribution of the query result sets from the original dataset is unknown.
This creates an obstacle to the assess the estimation errors for offline AQP schemes.

Bootstrap sampling [15] is a special statistical method that can assess the errors of sample-
based estimators. One advantage of bootstrap sampling is that it doesn’t require the pre-
knowledge of the data distribution, but can “pull itself up by its bootstrap”. The bootstrap
sampling performs a special sampling method, called re-sampling, which can generate a large
number of replicated random samples (without replacement), called bootstrap replications,
based on the original samples. By applying a statistical estimator on bootstrap samples, a set
of estimations, called bootstrap replications, is obtained. Finally, the standard error of the
bootstrap replications is obtained to assess the query estimation error.

In this work, we will focus on using bootstrap sampling to assess estimation errors for offline
0-AQP schemes. We propose a framework to implement bootstrap sampling for selection queries
and perform estimation error assessments. A prototype system is implemented to simulate a
real-world database system. This system is integrated with a bootstrap engine capable of
generating confidence intervals for each estimated query answer. We test the performance of
the prototype system on multiple datasets with various combinations of hyper-parameters to
simulate real-world AQP scenarios. The experimental results show satisfying accuracy of the
confidence intervals for testing queries. With the findings of the computing bottlenecks of the
system, we propose optimization mechanisms for the bootstrap sampling pipeline in order to
increase the overall system performance.

The rest of this work is organized as follows. Section 2 introduces the background knowledge
of o-AQP and bootstrap sampling schemes. Section 3 describes how to use bootstrap sampling
to assess estimation errors from a sample-based o-AQP scheme. The implementation of the
prototype system incorporating the proposed bootstrap sampling functionality is described in
Section 4. Experimental results are presented in Section 5. The conclusion and future work are
included in Section 6.

2 Background
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Figure 1: Example: Bootstrap Sampling

2.1 0-AQP

One of the common applications of AQP is to estimate selection (or o) queries, named o-AQP.
Given a selection query ) on a table R, to get the ground truth query answer Yy, the traditional
manner of query answering is to execute query @ on R which may take a long waiting time
when R has a large volume. Instead of running query @ directly on R, 0-AQP takes a simple
random sample without replacement (SRSOR) from table R, denoted by S, and runs the query
@ on S to get a sample result Y. The ground truth, Yy, can then be estimated by Yy = YT

where f = % is the sampling ratio.

2.2 Bootstrap Sampling

The bootstrap sampling method was originally introduced by Bradley Efron in 1979 [7]. Tt is
a computer-assisted method designed to measure the quality of various statistical estimators.
Bootstrap sampling generates a collection of new distributions from the original distribution and
can derive their variance which can be used to quantify the accuracy of statistical estimators
based on the observed data. It works well when the target data is drawn from unknown
distributions, which is superior to deriving closed-form methods based on limited assumptions
on the data.

The unique statistical procedure in bootstrap sampling is resampling, which generates new
distributions, called bootstrap samples, from a given data using simple random sampling with
replacement (SRSWR). Each resampled new distribution can produce a scalar called a bootstrap
replication. Bootstrap sampling generates a large number of bootstrap replications and can
use them to estimate the statistic features of the original given data, even when the original
distribution is unknown.

Figure 1 depicts a simple example of how bootstrap sampling is performed. When
given a sample data ¥ = (y1,¥s2,...,yn) from an unknown distribution F', a bootstrap sam-
ple ¥* = (y7,v5,.--,y) is a resampled collection obtained by randomly sample n times with

replacement from the original sample y1, vy2, ..., y,. For instance, if n = 5, we might
obtain different bootstrap samples, such as 1 = (y5,¥3,Y1,Y2,¥1)s Y2 = (Y2, Y5, Y4, Y1, Y2)s
s = (Y3, Y3, Y2, Y3, Ya), etc. These resamples are shown in Figure la. After summarizing

the frequency of each sampled element, we obtain the distribution of a bootstrap sample,
(fl, fa, .. .), where fo = #{yr = yk}/n Figure 1b depicts a bootstrap sample example.
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It can be proved that F is a sufficient statistic to estimate the true distribution F since all
the information about F' contained in g is also contained in F.

A good application of bootstrap sampling is to estimate the standard error of a sample
estimator from an unknown distribution. Suppose we are interested in a parameter § = t(F)
calculated based on 3. Since usually we don’t have all the information of F', but can only
calculate an estimation of # from the given sample i/ denoted by 6 = s(%). For each bootstrap
sample §* we can generate a bootstrap replication of 6, as §* = s(7*). For example, when 6 is
the sample mean ¥, a bootstrap replication 6* is be the sample mean on a bootstrap sample 7*.

After generating a number of B independent bootstrap samples, we can obtain the standard
error of all é, ie. sAeB(é), called the bootstrap estimation of standard error. When B — oo,

sep(0) — seﬁ,(é). sep(é) is called the ideal bootstrap estimation of the ground truth standard

error sep(f). We say that seﬁ(é) is a plug-in estimate of ser(f) that uses the empirical
distribution F' in replacement of the unknown distribution F. sep(f) can be calculated as

sep(0) =

~—

sy o -e)] o

i=1

where §* = S22 6*(i)/B.

Both sep(f) and se;(0) are called non-parametric bootstrap estimates since they are gener-

ated from the distributions, F , which are non-parametric estimates of the ground truth popu-
lation F'.

3 Bootstrap for Selection Query Error Estimation

3.1 Selection Query Estimation

We consider the following query formulation in this research:
SELECT Aggregation(attribute collection) FROM table_name WHERE conditions

After a query @ is executed on the sample table S, each sample tuple u; € S will produce a
query result y; based on the aggregation function. For example, if the aggregation function is
COUNT and the primary key is included in the attribute collection, then y; will be either 1 if
u; satisfies the selection condition or 0 otherwise. The query result Yy on the sample table S is
calculated as Y, = D" | y;, where n = | S| is the sample size. Suppose the size of the original
table R is N, and the sample fraction f = %, then the estimation of the query result ground

truth Ygp is
s Y,
y==2 (2)
f
This estimation works well if the original table R has low skewness and the sample .S is uniformly
collected from R. Otherwise, the accuracy may be low when data is highly skewed or the sample

S is not uniformly distributed or even includes correlation.

3.2 Bootstrap Sampling from Query Results

After the sample query results Sg = {y;}7_, are obtained by executing @} on sample relation

S, then bootstrap samples {g; }le can be generated for error estimation, where B is the total
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times of bootstrap sampling to perform. Each ¢; = {y;;}7, a bootstrap sampling of Sg, where
each query result y;;, 1 <i <n, is randomly sampled with replacement from Sg.
To obtain the bootstrap replication, we use the same estimator in Eq (1) on each g, j =
1,...,B as
~ Y
Y., = Y
Tf
For example, if the aggregation is COUNT, then the estimator is

3)

~ 1 <
%=1 0
i=1

After repeating the bootstrap sampling for B times, a collection of bootstrap replications is
obtained, denoted by Yp = {Yj}szl. We can calculate the bootstrap standard deviation as

SA(SB = ﬁ Z(?j - ?3)2 (5)

Jj=1

where Y B is the sample mean of all bootstrap replications }/}B. By the theory of bootstrap
sampling, we claim that Eq (5) is the bootstrap estimation of the standard error of Y which
estimates the query result Ygr of query Q.

3.3 Confidence Interval for c-AQP

There are different methods using bootstrapping to generate the confidence interval (or CI),
such as the standard method and percentile method. There are also improved methods to
increase the accuracy such as BC, and ABC. In this work, we adopt the standard method
which is a commonly adopted method, and because we aim to investigate the overall system
performance on a large dataset.

Suppose the significance level is denoted as «, where « is a probabilistic value. Common
choices of a include 5% for 90% level of significance and 2.5% for 95% level of significance,
respectively. The standard method for bootstrap CI is calculated as

~

(Y — 2079 L gep, ¥V 4 2179 sAeB> (6)

where Y is the query estimation and (1= is the 100(1 — a)th percentile of a standard normal
distribution. For example, for 90% level of significance, 2(-29)=1.645, and for 95% level of
significance, z(-97%)=1.960.

4 Implementation

We propose a prototype AQP system with the ability to generate error estimations using boot-
strap sampling. The prototype system consists of the following parts: a simple query processor,
a query execution engine for selection, a 0-AQP engine using simple random sampling, and a
bootstrap engine for error estimation. The architecture of the query processor is depicted in
Figure 2.
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Figure 2: Prototype 0-AQP Framework with a Bootstrap Engine

The simple query processor will read the query structure from a plain text file and execute
the query accordingly. The query execution engine will read the tuples from the base table data
file and check if each tuple satisfies the selection condition.

The 0-AQP engine has two functions: generate a sample table using simple random sam-
pling (simple random sampler) and provide query estimations using the sample table (sample
estimator). The sample fraction f is pre-determined before the sampling is performed. When
sampling starts, a series of random row numbers will be generated in an array and the sam-
pler will access the base table file and retrieve only the tuples in the random number array.
Depending on the volume of sample tuples, if the sample tuples are too big to be fitted into
the memory, the sampler will output the sampled tuples into the sample table file in batches.
Otherwise, the sampled tuples will be read in one batch and saved into the sample table later
on.

After the sample tuples are drawn, the sample estimator of the c-AQP engine can produce
a query estimation by first execute the original query @ on the sample table S and get a sample
result set Y. The query execution engine will be called to run the query on the sample table S
and the sample query results Sg will be generated. The estimation of the query result ground
truth, Y5, will be calculated using Eq (2).

The bootstrap engine will perform bootstrap sampling on the sample query results Sg,
calculate the bootstrap standard error sp, and produce the bootstrap confidence interval (CI).

5 Experiment

5.1 Experiment Setup

The experiment server is equipped with an Intel Xeon E5-1620 v4 CPU and 8GB of RAM
and runs CentOS 7 Linux. The experiment code is written in the C and Python language *.
There are three data sets that have been used for the experiment. The datasets are generated
using the TPC-H benchmark [5] which is widely used for query processing experiments®. To
simulate the common data setting, we generated three TPC-H datasets with zero skewness and
in volumes of 100MB, 1GB, and 10GB, respectively. We randomly generated 10 test queries
with different selection ranges. The first 5 queries are large-range selection queries and last 5
queries are small-range selection queries.

lExperiment code available at https://github.com/YSU-Data-Lab/Semih_Cal_Thesis_Summer_2021
2We employed the TPC-H program available at https://github.com/YSU-Data-Lab/TPC-H-Skew
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Table 1: Test Queries

Z,
e

Query

select count

*

from lineitem where L. QUANTITY <20 and L.QUANTITY >0
select count from lineitem where L_LLINENUMBER <3 and L_LINENUMBER >0

(

(*

select count(*) from lineitem where L LINENUMBER <5 and L_LINENUMBER >2
(
(

— — —

select count(*) from lineitem where L. DISCOUNT <.07 and L_.DISCOUNT >.02
select count(*) from lineitem where L EXTENDEDPRICE <100000.00 and
L_.EXTENDEDPRICE >20000.00

select count(*) from lineitem where L_.DISCOUNT <.04 and L.DISCOUNT >0.0
select count(*) from lineitem where L_.QUANTITY <20 and L. QUANTITY >10
select count(*) from lineitem where L_DISCOUNT <.05 and L_.DISCOUNT >.02
select count(*) from lineitem where L EXTENDEDPRICE <15000.00 and
L_.EXTENDEDPRICE >0.0

select count(*) from lineitem where L_.LINENUMBER <2 and L_.LINENUMBER >0

© 00O Ut W=

—_
o

5.2 Bootstrap Accuracy Tests

Given the sizes of the datasets, 100MB, 1GB, and 10GB, we use simple random sampling to
estimate the query sizes and then use the proposed bootstrap method to estimate the estimation
error. The estimation error is expressed in confidence intervals, i.e. CI. The ground truth of
the query, Ygr is also calculated on the original dataset. If the Yo is contained in the CI, it’s
considered a “hit”; otherwise, it’s a “miss”. For each test query, we run the CI hit test 10 times
and calculate the hit ratio of Bootstrap Cls as following.

times(CT hits Ygr)

x 100 7
times(total experiment) % Q

hit ratio =

Figure 3 depicts the results of accuracy tests using Bootstrap sampling. To study how the
bootstrap iterations (B) affects the hit ratios, we choose B=2000 which is recommended in [6]
and B=200 for comparison. Comparing the first three figures with B=200 and the next three
figures with B=2000 in Figure 3, no significant differences of hit ratios are observed. However,
the variance of the group with B=200 is slightly larger than the group with B=2000. This
means using a less number of bootstrap iterations can save computing costs and achieve the
acceptable accuracy with a sacrifice of stability.

5.3 Speed Performance Tests

We present the speed performance results when estimating the test queries on the 1GB dataset
in Figure 4. The running time to answer each test query is composed of three parts including
file access time, simple random sampling time, and bootstrap sampling time. The file accessing,
random sampling, and bootstrap sampling procedures did not use any memory buffer in order
to simulate the worst performance scenario. The groups of the first three figures and last three
figures show that, when B stays the same and f increases, the bootstrap sampling time increases
and becomes a major bottleneck than the random sampling time. The same trend is observed
when f stays the same and B increases, for example comparing Figure 4a and 4d. Therefore,
the performance of bootstrap sampling is majorly affected by the sampling ratio (f) and the
total bootstrap iterations (B), especially when data resides out-of-core.
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Figure 3: Hit ratios of bootstrap confidence intervals (B: bootstrap iterations; sampling ratio:
0.1%, 0.5%, and 1%)
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5.4 Tests of Optimized Bootstrap Sampling

We implement an optimized scheme of the bootstrap sampling in the following aspects.
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Figure 5: Speedup Ratio using Optimized Bootstrap Sampling (f: sampling ratio (%))

1. The tuples for bootstrap sampling are not directly accessed. It’s only the query sample
results that are calculated and stored in a memory array and passed on the bootstrap
engine.

2. During the resampling procedure, the bootstrap random numbers are kept unsorted. After
that, a resample array of sample query results are extracted according to the bootstrap
random number array by in-memory array mapping.

We perform the experiments on the 1GB test data and compare the execution speeds The
results are shown in Figure 5. The speedup factor defined as time(original bootstrap sam-
pling) /time(optimized bootstrap sampling). As observed from the experiment results, the op-
timized bootstrap method reached approximately a speed-up factor of 5. And the file access
time reached approximately a speedup factor of 2. The speedup factor progressively increases
with the sampling ratio.

6 Conclusion

In this work, we present a prototype system implementation for o-AQP with the ability to
assess the estimation errors using bootstrap sampling. The contributions are two folds. First,
we implemented a prototype query processing framework along with a bootstrap sampling
component that can calculate the confidence intervals for selection (or o) query estimations.
The experiment results show high accuracy of the confidence intervals even when the sampling
ratios are small. The second is to study the bottlenecks of the prototype system on large
datasets. We proposed multiple strategies in the experimental study to further optimize the
bootstrap sampling speed. These strategies were shown effective in the additional experimental
results. In the future, we will generalize the current framework to assess the errors of AQP for
more complex queries, such as join and common aggregation queries, on large datasets.
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