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Abstract

First-order interpolation properties are notoriously hard to determine, even for logics
where propositional interpolation is more or less obvious. One of the most prominent exam-
ples is first-order Gödel logic. Lyndon interpolation is a strengthening of the interpolation
property in the sense that propositional variables or predicate symbols are only allowed
to occur positively (negatively) in the interpolant if they occur positively (negatively) on
both sides of the implication. Note that Lyndon interpolation is difficult to establish for
first-order logics as most proof-theoretic methods fail. In this paper we provide general
derivability conditions for a first-order logic to admit Lyndon interpolation for the prenex
⊃ prenex fragment and apply the arguments to the prenex ⊃ prenex fragment of first-order
Gödel logic.

1 Introduction

The Craig interpolation property is one of the most fundamental properties of logics. It states
that whenever A ⊃ B is valid in a logic, one can find a formula I in the common language of
A and B, such that A ⊃ I and I ⊃ B are valid. The formula I is called the interpolant of
A ⊃ B. Interpolation was proved for classical first-order logic by Craig [8] and for intuitionistic
first-order logic by Schütte [17].

Lyndon interpolation is a strengthening of the interpolation property in the sense that
propositional variables or predicate symbols are only allowed to occur positively (negatively) in
the interpolant if they occur positively (negatively) on both sides of the implication. Lyndon
interpolation for classical logic has been established by Lyndon [13].

Little was known about interpolation properties of intermediate logics until Maksimova
solved the propositional interpolation problem showing that exactly 7 of these logics have the
propositional interpolation property [14]. Her work is based on the algebraic analysis of the logic
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in question. On first-order level, algebraic semantics are not as well understood and therefore
first-order interpolation properties are notoriously hard to determine, even for logics where
propositional interpolation is more of less obvious. Hence, it remained an open question which
of these 7 logics admit first-order interpolation, among them first-order Gödel logic. Moreover,
except of classical and intuitionistic logic, most logics do not seem to admit a Maehara style
lemma w.r.t. their established calculi. This applies to e.g. all hypersequent calculi.

In [5] it has been shown that first-order finitely valued logics admit first-order interpolation
if they admit propositional interpolation. In this paper we extend these results to the prenex ⊃
prenex fragment of Gödel logic making use of the proof of Lyndon interpolation for propositional
Gödel logic from [12]. Note that Lyndon interpolation is difficult to establish for first-order logics
as most proof-theoretic methods fail.

2 Abstract Conditions for Lyndon Interpolation

In this section we provide general conditions for a first-order logic to admit Lyndon interpolation
for the prenex ⊃ prenex fragment.

Definition 1 (propositional and first-order language). A propositional language L0 is given
by countably many variables x1, x2, . . . and a set of connectives including ∧,∨,⊃ and is closed
under application of the connectives.

A first-order language L1 extending L0 is given by countably many free variables, count-
ably many bound variables, countably many function symbols of all finite arities, countably
many predicate symbols of all finite arities and quantifiers ∀ and ∃. First-order expressions are
predicates applied to terms (atomic expressions) and expressions obtained by closure under the
connectives and the quantifiers ∀ and ∃ such that ∀xA(x) (∃xA(x)) is an expression whenever
A(a) is an expression for a free variable a.

In our context we presuppose notions of derivation `0 (`1) for propositional (first-order)
logic.

Definition 2 (propositional and first-order logic). Propositional and first-order logics are iden-
tified with {A | `0 A} and {A | `1 A} respectively. A1, . . . , An `0 B and A1, . . . , An `1 B
denote `0 B whenever `0 A1, . . . ,`0 An and `1 B whenever `1 A1, . . . ,`1 An. ` A denotes
`0 A and `1 A.

The following definition represents the first ε-theorem in classical logic [11].

Definition 3 (extension and reduct). A first-order logic is called an extension of a propositional
logic with the same connectives iff

1. `0 A implies `1 A′ for a substitution instance A′ of A by atomic expressions,

2. for quantifier-free A, `1 A implies that for some propositional A′, `0 A′ and A is a
substitution instance of A′ by atomic expressions.

The propositional logic is called the reduct of the first-order logic.

Interpolation is defined as usual and Lyndon interpolation as a refinement of usual interpo-
lation.

Definition 4 (interpolation). A propositional or first-order logic admits interpolation if when-
ever ` A ⊃ B there exists an interpolant I such that ` A ⊃ I and ` I ⊃ B and I is in the
common language of A and B.
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Definition 5 (Lyndon interpolation). A propositional interpolant I of ` A ⊃ B is called
propositional Lyndon interpolant if every propositional variable occurring positively (negatively)
in I occurs positively (negatively) in both A and B. A first-order interpolant I of ` A ⊃ B is
called first-order Lyndon interpolant if every predicate symbol occurring positively (negatively)
in I occurs positively (negatively) in both A and B.

The main arguments of this paper are based on the existence of suitable Skolemizations and
Herbrand expansions. In our context universal quantifier occurrences left and existential quan-
tifier occurrences right to the main implication of prenex ⊃ prenex are called weak quantifier
occurrences. Universal quantifier occurrences right and existential quantifier occurrences left
to the main implication of prenex ⊃ prenex are called strong quantifier occurrences.

Definition 6 (Skolemization). Let F be a formula in prenex form. Its Skolemization is defined
inductively via the function sk:

• If F does not contain strong quantifiers, then sk(F ) = F .

• If F = Q1x1 . . . Qnxn Qx F
′, where Q1, . . . , Qn are weak quantifiers, Q is the first occur-

rence of a strong quantifier and F ′ is a formula in prenex form, then sk(F ′) =

sk(Q1x1 . . . Qnxn F
′{x← f(x1, . . . , xn)}),

where f is a fresh function symbol (a Skolem function).

We will Skolemize formulas A ⊃ B, A,B prenex, thus obtaining a so-called Skolem form
(A ⊃ B)s.

Skolemized formulas contain at most weak quantifiers. These quantifiers can be eliminated
by constructing so-called expansions. Expansions, first introduced in [15], are natural structures
representing the instantiated variables for quantified formulas and record the substitutions
for quantifiers in an effort to recover a sound proof of the original formulation of Herbrand’s
theorem. As we work with Skolemized formulas, we consider only expansions for formulas with
weak quantifiers and consequently, the arguments are simplified.

Definition 7 (∧/∨-compatible logic). A logic is ∧/∨-compatible iff

1. A ` A∗ and A∗ ` A if A and A∗ are variants by applying commutativity, associativity
and idempotence to ∧,∨,

2. A ⊃ B ` A ∧ C ⊃ B

3. A ⊃ B ` A ⊃ B ∨ C

Definition 8 (expansion). Let an ∧/∨-compatible logic be given and let ∀~xA(~x) ⊃ ∃~yB(~y)
be a formula, where A and B are quantifier free. An expansion of ∀~xA(~x) ⊃ ∃~yB(~y) is a
quantifier-free formula

n∧
i=1

A(~si) ⊃
m∨
j=1

B(~tj)

which is obtained from ∀~xA(~x) ⊃ ∃~yB(~y) by constructing instances A(~si), B(~tj) for the quan-
tified formulas by substituting quantified variables by suitable closed terms of the language of
∀~xA(~x) ⊃ ∃~yB(~y) (a constant is added if there is none). If an expansion is derivable, it is called
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a Herbrand expansion. Without loss of generality we may assume that Herbrand expansions are
of the form

n∧
i=1

A(~si) ⊃
n∨
j=1

B(~tj),

(i.e. m = n in the definition of expansions). A Herbrand expansion is a minimal Herbrand ex-
pansion of a formula ∀~xA(~x) ⊃ ∃~yB(~y) if n is minimal. A logic admitting Herbrand expansions
for formulas ∀~xA(~x) ⊃ ∃~yB(~y) is called weakly-expansive.

The following abstract conditions on logics w.r.t. derivability ensure a transfer of the propo-
sitional interpolation property to first-order.

Definition 9 (admissible logic). A weakly-expansive first-order logic `1 extending a proposi-
tional logic `0 is called admissible iff the following conditions hold:

1. `0 A ⊃ A for all propositional formulas A,

2.
(
∧
Ai ⊃

∨
(Bj ∨ C(a))) `1 (

∧
Ai ⊃

∨
(Bj ∨ ∀xC(x)))

(
∧
Ai ⊃

∨
(Bj ∨ C(t))) `1 (

∧
Ai ⊃

∨
(Bj ∨ ∃xC(x)))

(
∧

(Ai ∨ C(a)) ⊃
∨
Bj) `1 (

∧
(Ai ∨ ∃xC(x)) ⊃

∨
Bj)

(
∧

(Ai ∨ C(t)) ⊃
∨
Bj) `1 (

∧
(Ai ∨ ∀xC(x)) ⊃

∨
Bj)

where a is an eigenvariable,

3. A ⊃ B,B ⊃ C ` A ⊃ C.

Henceforth, we will only consider admissible logics, i.e. the use of `1 (`0) will indicate that
the logic is admissible.

It can be shown that the Skolem form of a formula can always be derived from the formula
itself, i.e. that the Skolem form is a logical consequence of the original formula.

Proposition 1. Let A,B prenex and (A ⊃ B)s the Skolem form of A ⊃ B. Then `1 (A ⊃ B)s
if `1 A ⊃ B.

Proof. Derive stepwise

Q1x1 . . . Qnxn ∀x ∃y1 . . . ∃ymF ⊃ Q1x1 . . . Qnxn ∃y1 . . . ∃ymF{x← f(x1, . . . , xn)}

from suitable instances of A ⊃ A and replace strong quantifiers on the right side step by step
using application of transitivity. (The analogous argument holds for the left side.)

Remark 1. Note that in usual logics such as classical logic, intuitionistic logic, Gödel logic
etc. the Skolem functions can be directly introduced by substitutions without additional cuts.

The following theorem is a variant of the second ε-theorem [11]. Note that the property of
weak-expandability is essential.

Theorem 1. Let A,B prenex and (A ⊃ B)s ≡ ∀~xA(~x) ⊃ ∃~yB(~y) the Skolem form of A ⊃ B.
Then `1 A ⊃ B if `1 (A ⊃ B)s.
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Proof. Construct Herbrand expansions At1 ∧ . . . ∧ Atn ⊃ Bs1 ∨ . . . ∨ Bsn from the derivable
Skolem form ∀~xA(~x) ⊃ ∃~yB(~y). Replace all Skolem terms f(t1, . . . , tn) not occurring in the
scope of other Skolem functions by variables af(t1,...,tn). (A Skolem term is a term whose
outermost symbol is a Skolem function symbol.) This replacement is sound as the first-order
logic extends a propositional logic, cf. Definition 3. We use the following algorithm:

1. Introduce weak quantifiers according to ∀~xA(~x) ⊃ ∃~yB(~y) as often as possible and con-
tract identical copies in the left or right side of the main implication

2. If 1. is not possible and the original implication has not been obtained introduce a strong
quantifier to the variable with the largest index still available. Go back to 1

Note that the inference in 2. fulfills the eigenvariable condition because otherwise either a
variable with a larger Skolem term as index would be available or two identical copies would
not have been contracted.

Example 1. Consider

`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ ∃x∀y(C(x) ⊃ C(y))

in classical logic. (`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ ∃x∀y(C(x) ⊃ C(y)))s ≡ ∀x(C(x) ⊃ C(f(x))) ⊃
∃x(C(x) ⊃ C(g(x))). As classical logic is weakly-expansive we obtain e.g. the Herbrand expan-
sion

`1 (C(d) ⊃ C(f(d))) ∧ (C(d) ⊃ C(f(d))) ⊃ (C(d) ⊃ C(g(d)) ∨ (C(g(d)) ⊃ C(g(g(d)))).

Replace Skolem terms f(d), g(d), g(g(d)) by variables af(d), ag(d), ag(g(d))

`1 (C(d) ⊃ C(af(d))) ∧ (C(d) ⊃ C(af(d))) ⊃ (C(d) ⊃ C(ag(d)) ∨ (C(ag(d)) ⊃ C(ag(g(d)))).

Use the algorithm

1.
`1 (C(d) ⊃ C(af(d))) ⊃ (C(d) ⊃ C(ag(d)) ∨ (C(ag(d)) ⊃ C(ag(g(d))))

by 1 : ∧-contraction

2.
`1 (C(d) ⊃ C(af(d))) ⊃ (C(d) ⊃ C(ag(d)) ∨ ∀y(C(ag(d)) ⊃ C(y))

by 2 : ∀-introduction (alternatively ∃ could have been introduced on af(d)). g(d) is subterm
of g(g(d)).

3.
`1 (C(d) ⊃ C(af(d))) ⊃ (C(d) ⊃ C(ag(d)) ∨ ∃x∀y(C(x) ⊃ C(y))

by 1 : ∃-introduction

4.
`1 ∃y(C(d) ⊃ C(y)) ⊃ (C(d) ⊃ C(ag(d)) ∨ ∃x∀y(C(x) ⊃ C(y))

by 2 : ∃-introduction (alternatively ∀ could have been introduced in ag(d))

5.
`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ (C(d) ⊃ C(ag(d)) ∨ ∃x∀y(C(x) ⊃ C(y))

by 1 : ∀-introduction
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6.
`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ ∀y(C(d) ⊃ C(y) ∨ ∃x∀y(C(x) ⊃ C(y))

by 2 : properties of ∨, ∀-introduction

7.
`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ ∃x∀y(C(x) ⊃ C(y) ∨ ∃x∀y(C(x) ⊃ C(y))

by 1 : properties of ∨, ∃-introduction

8.
`1 ∀x∃y(C(x) ⊃ C(y)) ⊃ ∃x∀y(C(x) ⊃ C(y))

by 1 : ∨-contraction

Now we can prove that for admissible logics the propositional Lyndon interpolation property
transfers to first-order.

Theorem 2. An admissible first-order logic admits Lyndon interpolation iff its propositional
reduct does.

Proof. ⇒: obvious.
⇐:

1. First Skolemize A ⊃ B. Let ∀~xA(~x) ⊃ ∃~yB(~y) be the result.

2. Derive a Herbrand expansion A(~t1) ∧ . . . ∧A(~tn) ⊃ B(~s1) ∨ . . . ∨B( ~sn).

3. Calculate a quantifier-free Lyndon interpolant I such that

`0 A(~t1) ∧ . . . ∧A(~tn)) ⊃ I and `0 I ⊃ B(~s1) ∨ . . . ∨B( ~sn).

Note that this construction is obtained in the following way: A(~t1) ∧ . . . ∧ A(~tn) ⊃
B(~s1) ∨ . . . ∨ B( ~sn) is a substitution instance of some derivable propositional formula
A′1 ∧ . . .∧A′n ⊃ B′1 ∨ . . .∨B′n by replacing propositional variables by atomic expressions.
We derive A′1 ∧ . . . ∧ A′n ⊃ I ′ and I ′ ⊃ B′1 ∨ . . . ∨ B′n for a propositional Lyndon inter-
polant I ′. Substitute the corresponding atomic expressions. The occurrence restrictions
of propositional variables obviously transfer to the predicate symbols.

4. Partition the functions not in the common language of ∀~xA(~x) and ∃~yB(~y) (note that this
includes the Skolem functions). Let g1, . . . , gp be the function symbols not occurring in
the language of ∀~xA(~x) and f1, . . . , fq the function symbols not occurring in the language
of ∃~yB(~y). Replace all terms fi(~tj) not in the scope of other function symbols fl in

I ⊃ B(~s1) ∨ . . . ∨B( ~sn)

by afi(tj) and all terms gi(tj) not in the scope of other function symbols gk in

A(~t1) ∧ . . . ∧A(~tn) ⊃ I

by agi(tj). We obtain derivable formulas (same argument as in 3.)

A(~t′1) ∧ . . . ∧A(~t′n) ⊃ I1 and I2 ⊃ B(~s′1) ∨ . . . ∨B( ~s′n).

5. Reintroduce ∀-left and ∃-right to obtain ∀~xA(~x) ⊃ I1 and I2 ⊃ ∃~yB(~y).
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6. Order the indices of the introduced variables by inclusion. Introduce a strong quantifier
for the variable with maximal index still available and dual a weak quantifier for the term
at the same place of the free variable in the other occurrence of the potential interpolant.
We obtain ∀~xA(~x) ⊃ I ′ and I ′ ⊃ ∃~yB(~y).

7. Skolemize I to obtain ∀~xA(~x) ⊃ ∃xI∗1 and ∀xI∗2 ⊃ ∃~yB(~y).

8. Calculate Herbrand expansions and deskolemize according to Theorem 1 to obtain deriv-
able formulas A ⊃ I and I ⊃ B.

(7. can be avoided if instead of quantifiers suitable Skolem terms are substituted for the free
variables in 6.).

Corollary 1. If an admissible first-order logic admits Lyndon interpolation for the prenex ⊃
prenex fragment, then the interpolant is prenex.

Proof. By construction in the proof of Theorem 2.

The following example illustrated the procedure in the proof of Theorem 2.

Example 2. Consider ∀xA(x, f(x)) ⊃ ∃yA(c, y) in classical logic, with a Herbrand expansion
A(c, f(c)) ⊃ A(c, f(c)) (classical logic is obviously an admissible logic). A(c, f(c)) is a Lyndon
interpolant of the Herbrand expansion, as

`1 A(c, f(c)) ⊃ A(c, f(c)) and `1 A(c, f(c)) ⊃ A(c, f(c)).

We introduce variables ac and bf(c) for function terms not in the common language of
∀xA(x, f(x)) and ∃yA(c, y). As c occurs on the right side of ∀xA(x, f(x)) ⊃ ∃yA(c, y) only, ac
replaces c everywhere in the left implication, `1 A(c, f(c)) ⊃ A(c, f(c)). As f occurs on the left
side of ∀xA(x, f(x)) ⊃ ∃yA(c, y) only, bf(c) replaces f(c) everywhere in the right implication,
`1 A(c, f(c)) ⊃ A(c, f(c)). We obtain

`1 A(ac, f(ac)) ⊃ A(ac, f(ac)) and `1 A(c, bf(c)) ⊃ A(c, bf(c)).

We introduce weak quantifiers and obtain

`1 ∀xA(x, f(x)) ⊃ A(ac, f(ac)) and `1 A(c, bf(c)) ⊃ ∃yA(c, y).

First we eliminate the variable with maximal index bf(c) and obtain

`1 ∀xA(x, f(x)) ⊃ ∃yA(ac, y) and `1 ∃yA(c, y) ⊃ ∃yA(c, y).

Then we eliminate ac and obtain

`1 ∀xA(x, f(x)) ⊃ ∀x∃yA(x, y) and `1 ∀x∃yA(x, y) ⊃ ∃yA(c, y).

∀x∃yA(x, y) is the Lyndon interpolant. Note that the introduction of the first strong quantifier
for ac instead for f(ac) would render f not eliminable.
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3 Complexity of the First-Order Lyndon Interpolant

We will use symbolic and logical complexity as complexity measures.

Definition 10 (symbolic complexity). The symbolic complexity ||E|| of an expression E is
inductively defined as

1. ||E|| = 1 if E is a free or bound variable,

2. ||f(E1, . . . , En)|| = ||E1||+ . . .+ ||En||+ 1, where f is a function symbol,

3. ||P (E1, . . . , En)|| = ||E1||+ . . .+ ||En||+ 1, where P is a predicate symbol,

4. ||E1 ◦ E2|| = ||E1||+ ||E2||+ 1, where ◦ ∈ {∧,∨,⊃},

5. ||∀xE|| = ||∃xE|| = ||E||+ 1.

Definition 11 (logical complexity). The logical complexity |A| of a formula A is inductively
defined as

1. |A| = 1 if A is atomic,

2. |A ◦B| = |A|+ |B|+ 1, where ◦ ∈ {∧,∨,⊃},

3. |∀xA(x)| = |∃xA(x)| = |A|+ 1.

Definition 12 (expansion degree). Let ∀~xA(~x) ⊃ ∃~yB(~y), where A and B are quantifier-free
and let

n∧
i=1

A(~si) ⊃
n∨
j=1

B(~tj)

be a corresponding Herbrand expansion minimal in n. Then the expansion degree is defined as

ED(∀~xA(~x) ⊃ ∃~yB(~y)) = n.

In the proof of the main theorem of this section we will use unification.

Definition 13 (unification problem). A unification problem is defined as a set of equations
U = {hi ≡ hi′ | 1 ≤ i ≤ n}. U is solvable if there exists a substitution σ such that {hiσ ≡
hi′σ | 1 ≤ i ≤ n} = {fi ≡ fi | 1 ≤ i ≤ n}. σ is called a unifier of U . A unifier σ is called
a most general unifier, if for any other unifier σ′ of U there exists a substitution µ such that
σ′ = σµ.

The symbolic complexity ||Uσ|| of Uσ = {hiσ ≡ h′iσ | 1 ≤ i ≤ n} is defined as Σni=1(||hiσ||+
||h′iσ||). ||U|| = ||UE || for the identity E.

Proposition 2. Let σ a most general unifier of a solvable unification problem U . Then ||Uσ|| ≤
||U||2||U|| .

Proof. Note that by substituting a variable during the unification process the symbolic com-
plexity gets at most squared. (The number of variable occurrences is bounded by the symbolic
complexity).
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Theorem 3. Let ED(∀~xA(~x) ⊃ ∃~yB(~y)) = n. There is a Herbrand expansion

n∧
i=1

A(~s′i) ⊃
n∨
j=1

B(~t′j)

such that the symbolic complexity of
∧n
i=1A(~s′i) ⊃

∨n
j=1B(~t′j) is bounded by

(||∀~xA(~x) ⊃ ∃~yB(~y)||+ 2) ∗ ED(∀~xA(~x) ⊃ ∃~yB(~y))2
(||∀~xA(~x)⊃∃~yB(~y)||+2)∗ED(∀~xA(~x)⊃∃~yB(~y))

.

Proof. We consider the following abstraction: new different free variables ~ai, ~bj are associated
with variables occurring in ∀~xA(~x) ⊃ ∃~yB(~y) and an expansion (not necessarily a Herbrand
expansion)

n∧
i=1

A(~ai) ⊃
n∨
j=1

B(~bj)

is obtained. By assumption, a Herbrand expansion

n∧
i=1

A(~si) ⊃
n∨
j=1

B(~tj)

exists. We consider the unification problem U = {b ≡ b′}, where b and b′ are atomic expressions

in the abstract expansion
∧n
i=1A(~ai) ⊃

∨n
j=1B(~bj) which correspond to identical atoms in∧n

i=1A(~si) ⊃
∨n
j=1B(~tj). Let σ be a most general unifier of U . Then

n∧
i=1

A(~ai)σ ⊃
n∨
j=1

B(~bj)σ

is a Herbrand expansion and its symbolic complexity is bounded by

(||∀~xA(~x) ⊃ ∃~yB(~y)||+ 2) ∗ ED(∀~xA(~x) ⊃ ∃~yB(~y))2
(||∀~xA(~x)⊃∃~yB(~y)||+2)∗ED(∀~xA(~x)⊃∃~yB(~y))

.

Corollary 2. The ED for derivable ∀~xA(~x) ⊃ ∃~yB(~y) can be calculated if the propositional
reduct is decidable.

Proof. The procedure in the proof of Theorem 3 can be applied in all possible ways to∧n
i=1A(~si) ⊃

∨n
j=1B(~tj) to determine whether there is a Herbrand expansion of this length.

The following example illustrates the procedure in the proof of Theorem 3.

Example 3. In all admissible logics `1 ∀xA(f(x)) ⊃ ∃yA(f(y)). Note that ||∀xA(f(x)) ⊃
∃yA(f(y))|| = 9 and ED(∀xA(f(x)) ⊃ ∃yA(f(y))) = 1. Possible Herbrand expansions of
∀xA(f(x)) ⊃ ∃yA(f(y)) are

A(fn(c))) ⊃ A(fn(c)), n ≥ 1.

To generate an expansion with limited symbolic complexity we obtain, by associating a for x
and b for y in ∀xA(f(x)) ⊃ ∃yA(f(y)), the abstraction A(f(a)) ⊃ A(f(b)). As we know that
A(fn(c))) ⊃ A(fn(c)) is a Herbrand expansion we obtain A(f(a)) ⊃ A(f(a)) by unification.
Note that ||A(f(a)) ⊃ A(f(a))|| = 7.
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The complexity of a Lyndon interpolant is bounded by the complexity of the Herbrand
expansion and the propositional interpolant.

Definition 14 (minimal logical complexity of a propositional Lyndon interpolant). r(n) is the
minimal logical complexity of a propositional Lyndon interpolant I of `0 A ⊃ B, whenever
|A| ≤ n and |B| ≤ n.

Theorem 4. For `1 A ⊃ B, A,B prenex, there is a Lyndon interpolant I with ||I|| ≤

2 ∗ (||(A ⊃ B)s||+ 2) ∗ ED((A ⊃ B)s)
2(||(A⊃B)s||+2)∗ED((A⊃B)s)

∗ r((||(A ⊃ B)s||+ 2) ∗ ED((A ⊃ B)s)
2(||(A⊃B)s||+2)∗ED((A⊃B)s)

),

where (A ⊃ B)s is the Skolem form of A ⊃ B.

Proof. Note that the logical complexity is bounded by the symbolic complexity. Therefore there
is a propositional interpolant bounded by

r((||(A ⊃ B)s||+ 2) ∗ ED((A ⊃ B)s)
2(||(A⊃B)s||+2)∗ED((A⊃B)s)

).

To obtain the symbolic complexity before introducing quantifiers in the interpolant we have to
multiply wit

2 ∗ (||(A ⊃ B)s||+ 2) ∗ ED((A ⊃ B)s)
2(||(A⊃B)s||+2)∗ED((A⊃B)s)

.

Furthermore, the symbolic complexity is doubled to cover the introduction of quantifiers in the
interpolant.

4 Lyndon Interpolation for Prenex ⊃ Prenex in Gödel
Logic

Propositional finite-valued Gödel logics have been introduced by Gödel in 1933 [10] and later
generalized by Dummett [9] to an infinite set of truth-values. The language of Gödel logics is
identical to that of classical logic. We use the binary connectives ∧, ∨ and ⊃ and the truth
constant ⊥. ¬A is defined as A ⊃ ⊥.

Gödel logics can be identified with a countable family of many-valued logics where the set
of truth values V are closed sets {0, 1} ⊆ V ⊆ [0, 1]. Their connectives can be interpreted as
functions over either {0, 1k , . . . ,

k−1
k , 1} (for Gk+1) or the real interval [0, 1] for G[0,1]. We will

consider the first-order Gödel logic G[0,1]. An interpretation I in G[0,1] consists of a non-empty
domain D and a valuation function νI that maps constants and object variables to elements
of D and n-ary function symbols to functions from Dn to D. νI extends to functions mapping
all terms of the language to an element of the domain in the usual way. νI maps every n-
ary predicate symbol P to a function from Dn to V . The truth-value of an atomic formula
A = P (t1, . . . , tn) is defined as

νI(A) = νI(P )(νI(t1), . . . , νI(tn)).

We define νI(⊥) = 0.
The semantics of propositional connectives is given by

νI(A ∧B) = min(νI(A), νI(B)), νI(A ∨B) = max(νI(A), νI(B)),

νI(A ⊃ B) =

{
1 if νI(A) ≤ νI(B),

νI(B) otherwise.

104



Lyndon Interpolation holds for the Prenex ⊃ Prenex Fragment of Gödel Logic Baaz and Lolic

In order to obtain a concise formulation of the semantics of quantifiers we define the distribution
of a formula A and a free variable x with respect to an interpretation I as DistrI(A(x)) =
{valI′(A(x)) | I ′ ∼x I}, where I ′ ∼x I means that I ′ is exactly as I with the possible
exception of the domain element assigned to x. The semantics of quantifiers is then defined as

νI(∀xA(x)) = inf(DistrI(A(x))), νI(∃xA(x)) = sup(DistrI(A(x))).

A formula A is tautological iff for all νI , νI(A) = 1. A is a logical consequence of a set of
formulas Γ, Γ |= A, iff, for all νI , min{νI(γ) | γ ∈ Γ} ≤ νI(A).

An analytic calculus for G[0,1] has been introduced in [7] and uses hypersequents, a natural
generalization of Gentzen sequents (see [1]). Recall that a sequent is an expression of the form
Γ→ A, where Γ is a set of formulas and A may be empty. A hypersequent is then defined as a
set of components, where each component is a sequent.

Definition 15 (hypersequent). A hypersequent is a set

Γ1 → A1 | . . . | Γn → An

where for every i = 1, . . . , n, Γi → Ai is a sequent, called component of the hypersequent.

We define a hypersequent calculus HIFset, see Table 1, where the interpretation of the sym-
bol | is ∪. Henceforth, we will denote with {S1}∪ . . .∪{Sn} a hypersequent whose components
are S1, . . . , Sn. The hypersequents-as-sets approach allows for more explicit bounds of cut-free
proofs using a Schütte Tait style elimination procedure. For the relation to more conventional
notions for hypersequents cf. [2, 3].

Theorem 5. HIFset is sound and complete. Note that in HIFset non-atomic axioms can be
derived from atomic axioms.

Proof. See e.g. [3].

`1 A in G[0,1] is represented by an end-hypersequent {→ A} in HIFset.

Definition 16 (derivation length). The length |d| of a derivation d in HIFset is the maximal
number of inference rules (but weakenings) +1 occurring on any branch of d.

The right (left) rank of a cut is the number of consecutive hypersequents containing the cut
formula, counting upwards from the right (left) upper sequent of the cut.

Definition 17 (cut-rank). Let di, where i < k, be the direct subderivations of d. The cut-rank
ρ(d) of d is defined as

1. ρ(d) = 0 if d is cut-free,

2. ρ(d) = maxi<kρ(di) if the last inference of d is not a cut,

3. ρ(d) = max(|A|+ 1, maxi<kρ(di)), where A is the cut formula.

We will write d ` H if d is a derivation in HIFset of H.

Theorem 6 (cut-elimination). If d ` H and ρ(d) > 0 then we can find a derivation d′ ` H
with ρ(d′) < ρ(d) and |d′| ≤ 4|d|.

Proof. See proof of Theorem 1 in [2].
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Axioms Cut Rule

A→ A ⊥ →

A is atomic

G | Γ′ → A G′ | A,Γ→ C

G | G′ | Γ,Γ′ → C
(cut)

External Structural Rules

G
G | Γ→ A

(ew)

Internal Structural Rules

G | Γ→ C

G | Γ, A→ C
(w, l)

G | Γ→
G | Γ→ C

(w, r)

Logical Rules

G | Γ, A→ B

G | Γ→ A ⊃ B
(⊃, r)

G | Γ→ A G′ | B,Γ→ C

G | G′ | Γ, A ⊃ B → C
(⊃, l)

G | Γ→ A G′ | Γ→ B

G | G′ | Γ→ A ∧B
(∧, r)

G | Γ, Ai → C

G | Γ, A1 ∧A2 → C
(∧i, l)i=1,2

G | Γ→ Ai

G | Γ→ A1 ∨A2
(∨i, r)i=1,2

G | Γ, A→ C G′ | Γ, B → C

G | G′ | Γ, A ∨B → C
(∨, l)

G | Γ,Γ′ → A G′ | Γ1,Γ
′
1 → A′

G | G′ | Γ,Γ′1 → A | Γ′,Γ1 → A′
(com)

Table 1: Hypersequent calculus HIFset

Corollary 3. If d ` H, one can find a cut-free proof d′ ` H with |d′| ≤ 4
|d|
ρ(d).

Proof. Follows directly from Theorem 6.

Theorem 7. The prenex ⊃ prenex fragment of G[0,1] admits Lyndon interpolation.

Proof. All conditions for admissibility except the weak-expandability are obviously fulfilled by
G[0,1]. Weak-expandability follows by first eliminating cuts of a proof of → ∀~xA(~x) ⊃ ∃~yB(~y)
and then deleting the inferences of ∀ and ∃ and avoiding contractions and the final (⊃, r)
introduction. The only problematic step is the adaption of (∨, l). Transform such inferences to

G | Γ, A→
∨
C(t) G′ | Γ, B →

∨
C(t′)

G | Γ, A→
∨
C(t) ∨

∨
C(t′) | G′ | Γ, B →

∨
C(t) ∨

∨
C(t′)

G | G′ | Γ, A ∨B →
∨
C(t) ∨

∨
C(t′)

106



Lyndon Interpolation holds for the Prenex ⊃ Prenex Fragment of Gödel Logic Baaz and Lolic

The result is a hypersequent

A(t11), . . . , A(t1n1
)→ B(s1)∨ . . .∨B(s1m1

) | . . . | A(tr1), . . . , A(trnr
)→ B(sr)∨ . . .∨B(srmr

).

From this hypersequent we can easily derive

→
∧
A(~ti) ⊃

∨
B(~sj).

ED(∀~xA(~x) ⊃ ∃~yB(~y)) is elementary in the maximal logical complexity of a cut, which follows
by the bound of cut-elimination in Corollary 3. Note that propositional Gödel logic admits
elementary Lyndon interpolation by Kuznets and Lellmann [12].

Corollary 4. The symbolic complexity of a first-order Lyndon interpolant of A ⊃ B valid in
G[0,1] can be bounded elementarily in the symbolic complexity of the end-formula and the logical
complexity of the maximal cut.

Proof. r is elementary by the construction in [12]. The cut rank of a proof is bounded by |c|+1
for a maximal cut c. ED((A ⊃ B)s), where (A ⊃ B)s is the Skolem form of A ⊃ B, is obviously
elementarily bounded in the length of the cut-free proof. (Skolemization in Gödel logics does
not introduce new cuts.)

Example 4. Consider `1 ∀x(A(x)∧R(x)) ⊃ ∀y∀z∃u(B(u)∨ (B(z) ⊃ A(y))∨¬R(y)) in G[0,1]

by the following derivation in HIFset.

A(a)→ A(a) B(b)→ B(b)

A(a)→ B(b) | B(b)→ A(a)

A(a)→ B(b) | → B(b) ⊃ A(a)

A(a)→ B(b) | → B(b) ∨ (B(b) ⊃ A(a))

A(a)→ B(b) | → B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

A(a)→ B(b) | A(a)→ B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

A(a)→ B(b) ∨ (B(b) ⊃ A(a)) | A(a)→ B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

A(a)→ B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

A(a) ∧R(a)→ B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

∀x(A(x) ∧R(x))→ B(b) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a)

∀x(A(x) ∧R(x))→ ∃u(B(u) ∨ (B(b) ⊃ A(a)) ∨ ¬R(a))

∀x(A(x) ∧R(x))→ ∀z∃u(B(u) ∨ (B(z) ⊃ A(a)) ∨ ¬R(a))

∀x(A(x) ∧R(x))→ ∀y∀z∃u(B(u) ∨ (B(z) ⊃ A(y)) ∨ ¬R(y))

→ ∀x(A(x) ∧R(x)) ⊃ ∀y∀z∃u(B(u) ∨ (B(z) ⊃ A(y)) ∨ ¬R(y))

(∀x(A(x)∧R(x)) ⊃ ∀y∀z∃u(B(u)∨ (B(z) ⊃ A(y))∨¬R(y)))s ≡ ∀x(A(x)∧R(x)) ⊃ ∃u(B(u)∨
(B(g) ⊃ A(f)) ∨ ¬R(f)), where f and g are Skolem constants.

To obtain a derivation of the Skolemized formula we replace a everywhere by a Skolem term
f , b everywhere by a Skolem term g:
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A(f)→ A(f) B(g)→ B(g)

A(f)→ B(g) | B(g)→ A(f)

A(f)→ B(g) | → B(g) ⊃ A(f)

A(f)→ B(g) | → B(g) ∨ (B(g) ⊃ A(f))

A(f)→ B(g) | → B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

A(f)→ B(g) | A(f)→ B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

A(f)→ B(g) ∨ (B(g) ⊃ A(f)) | A(f)→ B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

A(f)→ B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

A(f) ∧R(f)→ B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

∀x(A(x) ∧R(x))→ B(g) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f)

∀x(A(x) ∧R(x))→ ∃u(B(u) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f))

→ ∀x(A(x) ∧R(x)) ⊃ ∃u(B(u) ∨ (B(g) ⊃ A(f)) ∨ ¬R(f))

(A(f)∧R(f)) ⊃ (B(g)∨ (B(g) ⊃ A(f))∨¬R(f)) is the Herbrand expansion obtained and A(f)
is the corresponding Lyndon interpolant (R(f) does not occur).

Replace f and g in A(f) ∧R(f) ⊃ A(f) everywhere by new variables cf and cg to obtain

A(cf ) ∧R(cf ) ⊃ A(cf ) A(f) ⊃ B(g) ∨ (B(f) ⊃ A(f)) ∨ ¬R(f).

Introduce weak quantifiers to obtain

∀x(A(x) ∧R(x)) ⊃ A(cf ) A(f) ⊃ ∃u(B(u) ∨ (B(f) ⊃ A(f)) ∨ ¬R(f)).

Introduce a strong quantifier ∀ and dual a weak quantifier ∀ on the potential interpolant

∀x(A(x) ∧R(x)) ⊃ ∀xA(x) ∀xA(x) ⊃ ∃u(B(u) ∨ (B(f) ⊃ A(f)) ∨ ¬R(f))

and deskolemize. ∀xA(x) is the constructed Lyndon interpolant.

The next example is a prenex variant of the counterexample A ⊃ B to interpolation for
constant domain intuitionistic logic by Mints, Olkhovikov and Urquhart [16].

Example 5. Let

A ≡ ∀x∃y(P (y) ∧ (Q(y) ⊃ R(x))) ∧ ¬∀xR(x) and

B ≡ ∀x(P (x) ⊃ (Q(x) ∨ S)) ⊃ S.

A ⊃ B is valid in G[0,1] but does not provide a counterexample to interpolation and admits e.g.
interpolants

I1 = ¬∀x¬¬Q(x) ∧ ∀x∃y(P (y) ∧ (Q(y)→ (Q(x) ∨ ¬Q(x))) ∧ ¬∀x(Q(x) ∨ ¬Q(x)))∨

¬¬∀x¬¬Q(x) ∧ ∀x∃y(P (y) ∧ (Q(y)→ Q(x))) ∧ ¬∀xQ(x)

or I2 = ∀x(¬P (x) ∨ ∃y(P (y) ∧ (Q(y) ⊃ P (x)))) ∧ ¬∀x(¬P (x) ∨Q(x)) [4].
Now consider A′ ⊃ B′ with

A′ ≡ ∃u∀x∃y(P (y) ∧ (Q(y) ⊃ R(x)) ∧ ¬R(u)) and

B′ ≡ ∃x((P (x) ⊃ (Q(x) ∨ S)) ⊃ X ∨X ⊃ S).
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Then obviously A′ ⊃ A as A′ is equivalent to ∀x∃y(P (y) ∧ (Q(y) ⊃ R(x)) ∧ ∃x¬R(x)) and
B ⊃ B′ as (∀xE(x) ⊃ G) ⊃ ∃x(E(x) ⊃ H ∨H ⊃ G) is valid in G[0,1].

(A′ ⊃ B′)s ≡ ∀x(P (f(x)) ∧ (Q(f(x)) ⊃ R(x)) ∧ ¬R(y) ⊃ B′.

We guess a Herbrand expansion

(P (f(g)) ∧ (Q(f(g)) ⊃ R(g)) ∧ ¬R(g)) ⊃ ((P (f(g)) ⊃ (Q(f(g)) ∨ S)) ⊃ X ∨X ⊃ S).

P (f(g))∧¬Q(f(g)) is a Lyndon interpolant for propositional logic, as the following implications
are valid

(P (f(g)) ∧ (Q(f(g)) ⊃ R(g)) ∧ ¬R(g)) ⊃ (P (f(g)) ∧ ¬Q(f(g))),

(P (f(g)) ∧ ¬Q(f(g))) ⊃ ((P (f(g)) ⊃ (Q(f(g)) ∨ S)) ⊃ X ∨X ⊃ S).

Replace the only Skolem term f(g) in the second implication everywhere by af(g) to obtain

(P (f(g)) ∧ (Q(f(g)) ⊃ R(g)) ∧ ¬R(g)) ⊃ (P (f(g)) ∧ ¬Q(f(g))),

(P (af(g)) ∧ ¬Q(af(g))) ⊃ ((P (af(g)) ⊃ (Q(af(g)) ∨ S)) ⊃ X ∨X ⊃ S).

Introduce weak quantifiers to obtain

∀x(P (f(x)) ∧ (Q(f(x)) ⊃ R(x)) ∧ ¬R(g)) ⊃ (P (f(g)) ∧ ¬Q(f(g))),

(P (af(g)) ∧ ¬Q(af(g))) ⊃ ∃x((P (x) ⊃ (Q(x) ∨ S)) ⊃ X ∨X ⊃ S).

Introduce a strong ∃ quantifier and a dual weak ∃ quantifier to the potential interpolant and
deskolemize. The first-order Lyndon interpolant obtained is ∃x(P (x) ∧ ¬Q(x)).

By the Takeuti-Titani rule [18] this is also a first-order Lyndon interpolant for A′ ⊃ B:

∃x((P (x) ⊃ Q(x) ∨ S) ⊃ X ∨X ⊃ S) ⊃ ∀x(P (x) ⊃ Q(x) ∨ S) ⊃ X ∨X ⊃ S

is valid as a counterexample to E ⊃ (F ⊃ S) implies the existence of a counterexample for
E ⊃ (F ⊃ X ∨X ⊃ S) if X does not occur in E,F, S.

5 Limits of the Method

The results of this paper can be extended to other suitable refinements of propositional in-
terpolation and provide first-order interpolants with the same refinements. It is however not
the case that the constructions can be used to prove Lyndon interpolation or other forms of
interpolation for full first-order Gödel logic as the interpolants constructed by our method are
always prenex, see Corollary 1, and full first-order Gödel logic does not always admit prenex
interpolants. Consider

(C ∧ ¬∀xP (x) ∧ ∀x¬¬P (x)) ⊃ (D ∨ ¬∀xP (x) ∧ ∀x¬¬P (x)).

Assume there is a prenex interpolant I. Then G[0,1] |= ¬∀xP (x)∧∀x¬¬P (x)↔ I (replace C,D
by ¬∀xP (x) ∧ ∀x¬¬P (x)). Consequently GE |= ¬∀xP (x) ∧ ∀x¬¬P (x) ↔ I for all E closed
{0, 1} ⊆ E ⊆ [0, 1]. ¬∀xP (x) ∧ ∀x¬¬P (x) is 1-satisfiable in G[0,1] and so is I. ¬∀xP (x) ∧
∀x¬¬P (x) is not 1-satisfiable in G{0}∪[ 12 ,1]. To obtain a contradiction we use the following
proposition.

Proposition 3. A prenex formula is 1-satisfiable in any GD D closed {0, 1} ⊆ D ⊆ [0, 1] iff it
is 1-satisfiable in classical logic.

Proof. Cf. proof of Corollary 41 in [6].
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[2] Matthias Baaz and Agata Ciabattoni. A Schütte-Tait style cut-elimination proof for first-order
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