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Abstract

State-of-the-art SAT solvers are highly tuned systematic-search procedures augmented with formula

simplification techniques. They emit unsatisfiability proofs in the DRAT format to guarantee correct-

ness of their answers. However, the DRAT format is inadequate to model some parallel SAT solvers

such as the award-winning system Plingeling . In Plingeling , each solver in the portfolio applies clause

addition and elimination techniques. Clause sharing is restricted to clauses that do not contain melted

literals. In this paper, we develop a transition system that models the computation of such parallel

portfolio solvers. The transition system allows us to formally reason about portfolio solvers, and we

show that the formalism is sound and complete. Based on the formalism, we derive a new proof format,

called parallel DRAT, which can be used to certify UNSAT answers.

1 Introduction

The satisfiability problem is one of the most prominent problems in computer science and
artificial intelligence. It has many applications such as in hardware and software verification [7],
planning [27, 42], and bioinformatics [30]. Today, SAT solvers are highly tuned [3, 15, 23, 38]
systematic search procedure augmented with clause learning [37], clause removal [2,3,12], and
formula simplification techniques [26]. The portfolio approach [16] is a simple but successful
approach for the parallelization of SAT solvers. It exploits different search strategies by running
different SAT solvers on the same input formula. Clause sharing is an important improvement
in parallel portfolios that allows to share clauses among the solver incarnations in the portfolio.
In fact, this improvement allows to solve a formula faster than every sequential SAT solver
on its own. The solver Plingeling [6] is based on the portfolio approach and received the gold
medal in the application track of the SAT competition 2014 and 2013, and obtained the second
prize in the SAT race 2015. Plingeling ’s portfolio consists of several instances of Lingeling , that
apply clause elimination techniques such as blocked clause elimination, and clause addition
techniques that change the semantics of their working formula. Whenever one instance applies
such a technique w.r.t. some literal, it marks the literal as melted. Intuitively, this means that
the meaning of the formula with respect to this literal is changed. Then, clause sharing between
two solver incarnations is restricted to clauses that do not contain melted literals. If we do not
restrict clause sharing in this setting, one can share clauses that are not logical consequences of
the initial formula, which may turn a satisfiable formula into an unsatisfiable one. Consequently,
a SAT solver may incorrectly report that a formula is unsatisfiable.
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Figure 1: The certifying computations approach, where F0 is the input formula, I is an inter-
pretation, and D is a certificate of unsatisfiability.

On the other hand, the source code of SAT solvers became highly complex which results in
wrong answers given by intensively-tested SAT solvers: three solvers that participated in the
SAT competition 2009, and five solvers that participated in the SAT competition 2007 were
buggy, and returned incorrect results [9]. The critical case is when formulas are incorrectly
reported to be unsatisfiable, since the answer is hard to verify. Subtle bugs in different com-
ponents of SAT solvers were reported in [26, 34]. Moreover, some bugs only occur in some
configurations of SAT solvers, as demonstrated recently with SpyBug [33].

One approach for improving the reliability of SAT solvers is to mechanically verify them, as
done in [35]. However, mechanically-verified SAT solvers are currently significantly slower than
state-of-the-art solvers, written in C and C++, such as CryptoMiniSAT , Lingeling , Glucose,
and Riss. Therefore, several proof formats were proposed to certify UNSAT from SAT solvers.
The idea is that SAT solvers produce a certificate that can easily be checked by an independent
program (see Fig. 1). In the case the checker accepts the certificate together with the input
formula, we know that the input formula is unsatisfiable assuming that the small checker works
correctly.

Today, the DRAT format (Deletion Resolution Asymmetric Tautology) is the de facto stan-
dard, and emitting proofs in the DRAT format is a requirement in the main track of the SAT
competition 2016. A proof in the DRAT format is a sequence of clauses, which have been
learned or deleted during the run in a sequential SAT solver, and includes all known formula
simplification techniques. Recently, the DRAT format received media attention because SAT
solvers solved the Pythagorean Triples Problem and its 200 Terabytes proof was expressed in
the format [22]. However, parallel SAT solvers such as Plingeling cannot express their proofs
in the DRAT format, since the proofs constructed from the sequential incarnations cannot be
merged into a single DRAT proof.

We propose to formalize the computation of SAT solvers which allows us to formally reason
about these systems. In particular, one can construct certificates from it. For parallel SAT
solvers based on the instance decomposition approach, formal models and proof formats exist
such as [21, 40], and also formalisms that model some portfolios with arbritrary clause shar-
ing but limited formula simplifications [20, 34]. However, they do not include the setting by
Plingeling .

Our contributions

1. We develop a formal model P1 that describes parallel SAT solvers where each solver
can apply arbritrary formula simplification techniques, and clause sharing is restricted to
clauses that do not contain melted literals. We show soundness and completeness of P1.
It models the computations performed by Plingeling .
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2. We derive a new proof format from P1, called PDRAT (Parallel DRAT), which can be used
to verify UNSAT answers from such parallel SAT solvers. It is a conservative generalization
of the DRAT format in the sense that it is equivalent to DRAT for portfolio solvers
consisting of a single solver. We show that a formula is unsatisfiable if and only if a
PDRAT refutation of F exists.

3. We present an efficient method to check such parallel DRAT proofs and show correctness
of the method.

The paper is structured as follows: in Section 2 we present propositional logic and redundancy
criteria, Sect. 3 presents the formal model, showing soundness and completeness of the model.
Afterwards, the proof format is derived in Sect. 4. Section 5 concludes the paper.

2 Background

2.1 Propositional Logic

We consider an infinite set of propositional variables V. A literal L is either a propositional
variable A or its negation ¬A. The complement of a literal L is denoted by L, i.e. A = ¬A and
¬A = A. Clauses are sets of literals, and formulas are finite sets of clauses, where

The semantics of formulas is built on interpretations. An interpretation I is a mapping
from the set V of all Boolean variables to the set {>,⊥} of truth values, represented by the set
of variables mapped to > under I. The interpretation I satisfies the variable A, in symbols,
I |= A, if and only if A ∈ I. It satisfies the negated variable ¬A, in symbols, I |= ¬A, if and
only if A 6∈ I. It satisfies the clause C, in symbols I |= C, if and only if there is a literal L ∈ C
such that I |= L. For a formula F , the interpretation I satisfies the formula F , in symbols
I |= F , if and only if for every clause C ∈ F we find that the interpretation I satisfies the
clause C. A model I of a formula F is an interpretation I that satisfies the formula F . If such
a model I of F exists, the formula F is satisfiable. Otherwise, the formula F is unsatisfiable.

Two formulas F and F ′ are equisatisfiable, in symbols F ≡sat F
′, if and only if either both

are satisfiable or both are unsatisfiable. The formula F entails the formula F ′ if and only
if every model of the formula F is a model of the formula F ′. Two formulas F and F ′ are
semantically equivalent, in symbols F ≡ F ′, if and only if the formula F entails the formula F ′

and vice versa.
Let C and D be two clauses and L be a literal such that L ∈ C and L ∈ D. Then, the

resolvent of C and D upon L is (C \{L})∪(D\{L}). A tautological clause is a clause containing
A and ¬A for some variable A, and a clause C subsumes D, if C ⊆ D.

2.2 Redundancy Properties

The Resolution Asymmetric Tautology (RAT) property is based on the notion of asymmetric
literal addition (ALA) [26]:

ALAF (C) = C ∪ {L | {L1, . . . , Ln, L} ∈ F and {L1, . . . , Ln} ⊆ C}

We consider the recursive application of asymmetric literal addition:

ALAF (C) ↑ 0 = C
ALAF (C) ↑ n + 1 = ALAF (ALAF (C) ↑ n)

A clause C is an asymmetric tautology (AT) w.r.t. the formula F , if there is n ∈ N such that
the clause ALAF (C) ↑ n is a tautology. Notice that there is a small technical differences to
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the original version of ALA and asymmetric tautology: We phrase ALA as a deterministic
mathematical function, and asymmetric tautologies now precisely correspond to clauses that
can be inferred by reverse unit propagation.

Example 1. Consider the following formula F = {{p, q}, {p,¬q, r}, {¬q,¬r}}. Then the fol-
lowing holds

ALAF ({p}) ↑ 0 = {p}
ALAF ({p}) ↑ 1 = {p,¬q}
ALAF ({p}) ↑ 2 = {p,¬q,¬r, r}
ALAF ({p}) ↑ 3 = {p,¬q,¬r, r, q}
ALAF ({p}) ↑ 4 = ALAF ({p}) ↑ 3

ALAF ({q}) ↑ 0 = {q}
ALAF ({q}) ↑ 1 = {q,¬p}
ALAF ({q}) ↑ 2 = ALAF ({q}) ↑ 1

Therefore, {p} is an AT w.r.t. F because {r,¬r} ⊆ ALAF ({p}) ↑ 4, whereas {q} is not an AT
w.r.t. F because ALAF ({q}) ↑ n is not a tautology for all n ≥ 0.

Note that ALA is monotone in F and C. Replacing a clause C in F by ALAF (C) pre-
serves semantical equivalence. Learned conflict clauses are asymmetric tautologies [4] as well
as subsumed clauses, tautologies, and resolvents [26].

Järvisalo et al. introduced the following redundancy criteria based on an asymmetric tau-
tologies in [26]: The clause C is a resolution asymmetric tautology (RAT) upon L w.r.t. F , if
(1) the clause C is an asymmetric tautology w.r.t. the formula F , or (2) there is a literal L ∈ C
such that the resolvent of C and D upon L is an asymmetric tautology w.r.t. the formula F for
every D ∈ F with L ∈ D.

Example 2. The clauses {p}, {¬q}, {¬r}, {q, r} are the minimal resolution asymmetric tau-
tologies in the formula F from Example 1. Then 1. {p} is a RAT upon p w.r.t. F because
there is no clause D ∈ F with ¬p ∈ D. 2. {¬q} is a RAT upon ¬q, because there is only
one resolvent {p} which is an AT w.r.t. F . 3. {¬r} is a RAT upon ¬r, because there is only
one resolvent {p,¬q}, which is an AT because it is subsumed by the clause {p} which is an AT
w.r.t. F . 4. {q, r} is a RAT upon q because the resolvent {p, r} is an AT and the resolvent
{r,¬r} is a trivial AT.

Several formula simplification techniques were proposed, including the following ones, that
can be characterized in terms of RAT: bounded variable elimination and addition [11,32,41,45],
blocked clause elimination [25], blocked clause addition [26,28], equivalent literal elimination [13],
probing [31], extended resolution and reencoding [32,46], symmetry breaking [10,17], and BDD-
based reasoning [44].

3 A Formal Model for Parallel SAT Portfolios

For sequential SAT solvers, several formalizations exist, which model different parts of SAT
solvers [1, 8, 24, 26, 35, 39]. Here, we model a sequential SAT solver as a pair (M,F ), where
M is a finite set of melted literals, and F is the working formula. The solver can modify the
working formula, by adding learned clauses to it. Note that this operation preserves semantical
equivalence. In the case that the solver removes a clause C from F , we require that the resulting
formula is equivalent w.r.t. satisfiability to the original formula. Furthermore, the solver can
add a clause C to the formula F , whenever there is a literal L such that C is a RAT w.r.t. L
in F . In this case, the solver adds L to the set of melted literals.
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A portfolio consists of a finite number of sequential SAT solvers. Initially, they all
work on copies of the input formula, and process them independently. Therefore, a state
of a portfolio system of m solvers is simply a snapshot of all sequential SAT solvers, i.e.
((M1, F1), . . . , (Mm, Fm)). Clause sharing is a technique that allows to share clauses between
the sequential SAT solvers. In Plingeling , solver j can send a clause C to a distinct solver i,
if C ∈ Fj and C does not contain melted literals of solver i and j. In this case, we can add C
to Fk. In the case that one of the solvers in the portfolio found a model, or the empty clause
appear in one of the working formulas, the complete procedure terminate with this answer.

We model the portfolio approach as a transition system: A state transition system is a
tuple (∆,;) where ∆ is the set of states and ;⊆ ∆×∆ is the state transition relation. Given

a state transition system (∆,;), we define
0; = {(x, x) | x ∈ ∆}, n; = {(x, z) | (x, y) ∈ n−1;

and (y, z) ∈ ;} for all n ∈ N>0 and
∗; = ∪i∈N

i;. We write x ; y instead of (x, y) ∈ ;.
Formally, a portfolio system with multiplicity n is a state transition system whose set of states
is {SAT,UNSAT} together with all n-tuples of the form ((M1, F1), . . . , (Mn, Fn)). The initial
state for the input formula F0, denoted by init(F0), is the n-tuple ((∅, F0), . . . , (∅, F0)). The
transition relation of P1 is composed of the relations presented in Fig. 2, except the UDEL-rule,
which will be used later.

;P1
:= {SAT,UNSAT,AT,RAT,DEL,SHARE}.

Figure 2 contain on the right column corresponding proof elements, which will be explained in
Sect. 4. We have two termination rules: The SAT-rule terminates the computation in the final
state SAT if Solveri found that its working formula Fi is satisfiable. Likewise, the UNSAT-
rule terminates the computation in the final state UNSAT if the formula Fi contains the empty
clause. The AT-rule models clause learning, i.e. if a clause C is an AT w.r.t. Fi, then we add the
clause C to the formula Fi. The AT-rule subsumes in particular the first UIP learning employed
by many state-of-the-art SAT solvers. The RAT-rule models clause addition techniques that
preserve satisfiability, i.e. blocked clause addition and extended resolution: if a clause C is a
RAT upon L w.r.t. Fi, then we add the clause C to the formula Fi, and add L to Mi. The
DEL-rule models clause deletion and allows to remove a clause form a formula, if this operation
preserves satisfiability of the formula. The SHARE-rule models restricted clause sharing: We
add the clause C from the formula Fj to the formula Fi, if C ∩Mi = ∅ and C ∩Mj = ∅, i.e. no
literal is C occurs in one of the literal sets Mi and Mj .

Clause sharing among the solver incarnations has to be restricted, as otherwise sharing a
clause can make a formula unsatisfiable:

3.1 The Portfolio Model is Sound and Complete

We consider the following properties of the introduced portfolio system: Termination: the
execution starting from an initial state eventually reaches a final state, i.e.,there is no infinite
chain S1 ; S2 ; . . . Soundness: the transition system computes correct answers, i.e. for all
formulas F0 and m > 0 we have that init(F0,m)

∗; SAT implies that the formula F0 is satisfiable

and init(F0,m)
∗; UNSAT implies that the formula F0 is unsatisfiable. Intuitively, soundness

means that every answer in the system is correct. Completeness: the transition system is able to
infer the correct answer, i.e. for all formulas F0 and m > 0 we have that init(F0,m)

∗; UNSAT,

if the formula is unsatisfiable, and init(F0,m)
∗; SAT, if the formula is satisfiable.

It is straightforward from the definition of AT-rule that P1 is not terminating, since we can add
and remove a clause infinitely many often.
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SAT ((M1, F1), . . . , (Mn, Fn)) ; SAT
if Fi is satisfiable for some i ∈ {1, . . . , n}.

UNSAT ((M1, F1), . . . , (Mn, Fn)) ; UNSAT
if ∅ ∈ Fi for some i ∈ {1, . . . , n}.

AT ((M1, F1), . . . , (Mn, Fn)) ; (a, i, C)
((M1, F1), . . . , (Mi−1, Fi−1), (Mi, Fi ∪ {C}), (Mi+1, Fi+1), . . . , (Mn, Fn))
if C is an AT w.r.t. Fi.

RAT ((M1, F1), . . . , (Mn, Fn)) ; (a, i, C)
((M1, F1), . . . , (Mi−1, Fi−1), (Mi ∪ {L}, Fi ∪ {C}), (Mi+1, Fi+1), . . . , (Mn, Fn))
if C is a RAT upon L w.r.t. Fi.

DEL ((M1, F1), . . . , (Mn, Fn)) ; (d, i, C)
((M1, F1), . . . , (Mi−1, Fi−1), (Mi, Fi \ {C}), (Mi+1, Fi+1), . . . , (Mn, Fn))
if Fi ≡sat Fi \ {C}.

SHARE ((M1, F1), . . . , (Mn, Fn)) ; (a, i, C)
((M1, F1), . . . , (Mi−1, Fi−1), (Mi, Fi ∪ {C}), (Mi+1, Fi+1), . . . , (Mn, Fn))
if C ∈ Fj , C ∩Mi = ∅, C ∩Mj = ∅ and i 6= j.

UDEL ((M1, F1), . . . , (Mn, Fn)) ;
((M1, F1), . . . , (Mi−1, Fi−1), (Mi, Fi \ {C}), (Mi+1, Fi+1), . . . , (Mn, Fn))

Figure 2: The rules of the the portfolio model. These definitions apply to all formulas Fi, F
′
i ,

and Mi, and clauses C, where i ∈ {1, . . . , n}, and the corresponding proof steps are explained
in Sect. 4.

Proposition 1. P1 does not terminate.

However, P1 is sound and complete. We express the invariants of the portfolio model in terms
of literal forgetting. Intuitively, the forgetting in a formula F about a literal set S expresses
the same over (V ∪ {¬A | A ∈ V}) \ S of the formula F , but nothing about the literals in S
(see [29,47]).

Definition 1. Let S be a set of literals. Then I |= forget (S, F ), iff there is a model J of F
such that J |= L implies I |= L for all literals L with L 6∈ S [47].

Example 3. Consider the formula F from Example 1. Then forget ({p}, F ) ≡ {{¬r,¬q}}. We
know that {p} is a RAT w.r.t. F . Moreover forget ({¬p}, F ∪ {{p}}) ≡ {{¬r,¬q}}.

We can give a semantically equivalent propositional formula for the expression forget ({p}, F ),
i.e. the forgetting operator can be expanded into propositional logic:

forget ({p}, F ) ≡ (F ∧ ¬p) ∨ (F [p/>]),

where F [p/>] is the formula obtained by F by replacing each occurrence of the variable p
with the truth symbol >. The forgetting operator can also be expressed in terms of quantified
Boolean formulas, e.g.

forget ({¬p}, F ) ≡ ∃q.F [p/q] ∧ (q → p),

where q is a fresh variable. Likewise, forgetting of a variable p and its negation ¬p is the same
as variable elimination if we consider formulas in conjunctive normal form: we replace clauses
in a formula F containing p or ¬p with the all possible resolvents over p.
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Proposition 2. Let F, F ′ be formulas, C be a clause and S be a literal set. Then, the following
holds:

1. F is satisfiable iff forget (S, F ) is satisfiable.
2. F |= forget (S, F ).
3. If F ≡ F ′, then forget (S, F ) ≡ forget (S, F ′).
4. forget (M2, forget (M1, F )) ≡ forget (M1 ∪M2, F ).
5. If F |= C, then forget (S, F ) ≡ forget (S, F ∪ {C}).
6. Let C ∩ S = ∅. Then F |= C iff forget (S, F ) |= C.
7. If C is a RAT upon L w.r.t. F , then forget ({L}, F ) ≡ forget ({L}, F ∪ {C}).
8. If forget (M1, F1) |= forget (M2, F2), then forget (M1 ∪ {L}, F1) |= forget (M2 ∪ {L}, F2)

Proof. The statements (1) – (4) were proven in [47, Prop 7]. (5) follows from the fact that
forgetting is a semantic operator (see (3)). (6) and (8) are easy to see. (7) is proven in [26].

The following lemma expresses some invariants in P1, and is used to show soundness of P1,
i.e. if P1 terminates with SAT, then the input formula is satisfiable, and if P1 terminates in
UNSAT, then the input formula is unsatisfiable. The invariants state that the working formulas
Fi are entailed by the input formula w.r.t. the forgetting about the melted literals Mi, and
furthermore, the input formula and the working formulas are equivalent w.r.t. satisfiability.

Lemma 1. Let F0 be a formula, n > 0 and m ∈ N. Assume that

init(F0, n)
m;P1

((M1, F1), . . . , (Mn, Fn))

Then the following properties hold:

inv-1 forget (Mi, F0) |= forget (Mi, Fi) for every i ∈ {1, . . . , n}, and
inv-2 forget (Mi, F0) ≡sat forget (Mi, Fi) for every i ∈ {1, . . . , n}.

Proof. We show the statement by induction on the number m of transition steps. For the base
case m = 0, inv-1 trivially holds since Fi = F0, and inv-2 follows by Prop. 2.2. For the induction
step, assume that the claim holds for the state ((F1,M1), . . . , (Fn,Mn)) and that

((F1,M1), . . . , (Fn,Mn)) ;R ((F ′1,M
′
1), . . . , (F ′n,M

′
n))

for some rule R. Note that R 6∈ {SAT,UNSAT}. We distinguish between the applied rule R:
AT-rule: Then, there is an i ∈ {1, . . . , n} and C such that the following holds: i) Mk = M ′k

for all k ∈ {1, . . . , n}, ii) Fk = F ′k for all k ∈ {1, . . . , n}\{i}, iii) F ′i = Fi∪{C}, and iv) Fi |= C.
Since iv) we know that F ′i ≡ Fi. Consequently, the literal sets Mi were not modified, and the
semantics of the formulas kept untouched. Since the literal forgetting operator is a semantic
operator, it cannot distinguish between equivalent formulas.

RAT-rule: Then, there is an i ∈ {1, . . . , n} , C and L such that the following holds:
i) Mk = M ′k for all k ∈ {1, . . . , n} \ {i}, ii) Fk = F ′k for all k ∈ {1, . . . , n} \ {i}, iii) C is a RAT
upon L w.r.t. Fi, iv) F ′i = Fi ∪ {C}, and v) Mi = Mi ∪ {L}. It follows by induction hypoth-
esis and the facts i) and ii) that forget (Mk, F0) |= forget (Mk, Fk) for all k ∈ {1, . . . , n} \ {i}.
It remains to show that forget (Mi ∪ {L}, F0) |= forget (Mi ∪ {L}, Fi ∪ {C}). By induc-
tion hypothesis we know that forget (Mi, F0) |= forget (Mi, Fi). By Prop. 2.8 we know
that forget (Mi ∪ {L}, F0) |= forget (Mi ∪ {L}, Fi). Moreover, by Prop. 2.4 we know that
forget (Mi ∪ {L}, Fi) = forget (Mi, forget ({L}, Fi)). Then by Prop. 2.7 and iii), we know that
forget ({L}, Fi) ≡ forget ({L}, Fi ∪ {C}). Consequently, we conclude forget (Mi ∪ {L}, Fi) ≡
forget (Mi ∪ {L}, Fi ∪ {C}) by Prop. 2.3. inv-2 can be proven as in the AT-rule.
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DEL-rule: Then, there is an i ∈ {1, . . . , n} and C such that the following holds: i) Mk = M ′k
for all k ∈ {1, . . . , n}, ii) Fk = F ′k for all k ∈ {1, . . . , n} \ {i}, iii) F ′i = Fi \ {C}, and
iv) Fi ≡sat Fi \ {C}. inv-1 follows by the observation that Fi |= Fi \ {C}. inv-2 follows straight-
forward by iv).

SHARE-rule: Then, there is an i ∈ {1, . . . , n} and j ∈ {1, . . . , n} with i 6= j such
that the following holds: i) C ∈ Fj , ii) F ′i = Fi ∪ {C}, iii) Mk = M ′k for all k ∈
{1, . . . , n}, iv) Fk = F ′k for all k ∈ {1, . . . , n} \ {i}, v) C ∩ Mi = ∅, and vi) C ∩Mj = ∅.
First, we proof inv-1: It follows by induction hypothesis and the facts iii) and iv) that
forget (Mk, F0) |= forget (Mk, Fk) for all k ∈ {1, . . . , n} \ {i}. It remains to show that
forget (M ′i , F0) |= forget (M ′i , F

′
i ), i.e. forget (Mi, F0) |= forget (Mi, Fi ∪ {C}). By vi) and

Prop. 2.6 we conclude that forget (Mj , Fj) |= C. Consequently we obtain forget (Mj , F0) |= C
by induction hypothesis. Since v) it follows that F0 |= C. Then forget (Mi, F0) |= C since
v). We also know by induction hypothesis that forget (Mi, F0) |= forget (Mi, Fi). Therefore,
forget (Mi, Fo) |= forget (Mi, Fi) ∪ {C}. We conclude forget (Mi, Fo) |= forget (Mi, Fi ∪ {C})
by Prop. 2.5. Second, we proof inv-2: In the case that forget (Mi, F0) is satisfied by an in-
terpretation I, we can conclude that I is a model of forget (Mi, F

′
i ) by inv-1. Otherwise, we

know that forget (Mi, Fi) is unsatisfiable by induction hypothesis. By Prop. 2.1 we know that
Fi is unsatisfiable. Consequently, F ′i = Fi ∪ {C} is unsatisfiable. Therefore, forget (Mi, F

′
i ) is

unsatisfiable by Prop. 2.1.

We can now show correctness of the formalism:

Theorem 1. The portfolio model P1 is sound and complete.

Proof. Suppose some formula Fi is satisfiable. Then, by Prop 2.1 we conclude that
forget (Mi, Fi) is satisfiable. Moreover, we know by inv-2 that forget (Mi, Fi) ≡sat forget (Mi, F0).
Therefore forget (Mi, F0) is satisfiable. Again, by Prop 2.1 we conclude that F0 is satisfiable.
Soundness with respect to UNSAT answers can be treated analogously. Completeness for satis-
fiable formulas is due to the fact that one can immediately terminate with SAT. Completeness
for unsatisfiable formulas follows from the fact that resolvents are asymmetric tautologies, and
since for unsatisfiable formulas, a resolution refutation exists, we can apply the AT-rule until
we added the empty clause.

3.2 Variation with Unlimited Deletion

We will now consider the system P2, which is a variation of P1, which is later used to construct
a proof format: The SAT-rule is not contained in P2 and replace the DEL-rule with UDEL-
rule that allows to remove every clause. Formally, the transition relation of our system P2

is of the following rules (see Figure 2): ;P2 := {UNSAT,AT,RAT,UDEL,SHARE}. P2 is non-
terminating, and incomplete, since for satisfiable formulas, it is not possible to reach a final
state. However, P2 is sound:

Lemma 2. Let F0 be a formula, n > 0 and m ∈ N. Assume that

init(F0, n)
m;P2

((M1, F1), . . . , (Mn, Fn))

Then the following properties hold:

inv-1 forget (Mi, F0) |= forget (Mi, Fi) for every i ∈ {1, . . . , n}, and
inv-2 If forget (Mi, F0) is satisfiable, then

forget (Mi, Fi) is satisfiable for every i ∈ {1, . . . , n}.
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Proof. This can be shown similar to Lemma 1.

Theorem 2. The portfolio model P2 is sound.

Proof. Suppose some formula Fi contain the empty clause, and therefore unsatisfiable. Then,
by Prop 2.1 we conclude that forget (Mi, Fi) is unsatisfiable. Since by inv-2 of Lemma 2 we know
that forget (Mi, F0) must be unsatisfiable. By Prop 2.1 we conclude that F0 is unsatisfiable.

Note that P2 is complete w.r.t. unsatisfiable formulas, and can be shown analogously to the
proof in Theorem 1.

4 A New Proof Format for Parallel SAT Portfolios

The DRAT format is based on the idea of clausal proofs, suggested by Goldberg et al. [14]. It
consists of a sequence of clauses that were added to the working formula by the SAT solver.
This made it easy to construct proofs from clause learning SAT solvers [36]. Beame et al.
characterized learned clauses as trivial resolution derivations [4], which can be efficiently checked
in terms of reverse unit propagation. Clause removal [3, 12] is also traced in form of deletion
information [18]. Later, Järvisalo et al. generalized the concept of trivial resolution derivation
to resolution asymmetric tautologies (RAT), thus allowing proof generation for most known
formula simplification techniques [26]. In particular, RAT subsumes extended resolution [43,
46], which allows to infer fresh variables. Heule et al. developed the drat-trim [19, 48] tool
based on backward checking [18], which efficiently checks unsatisfiability proofs, as well as the
mechanically verified checker written in the ACL2 theorem prover [49].

However, the DRAT format is inadequate to be used as clausal proofs for parallel portfolios,
since the simultaneously addition of RAT clauses to a formula can make the resulting formula
unsatisfiable:

Example 4. Consider the input formula F in Example 1 and the RAT clauses presented in
Example 2. Suppose we have given three solvers Solver1,Solver2 and Solver3. Then, Solver1
adds {¬q}, Solver2 adds {¬r}, and Solver3 adds {q, r}. However, F ∪ {{¬q}, {¬r}, {q, r}} is
unsatisfiable, but F is satisfiable.

Instead of merging the clauses into a single formula as done in [20], we propose to trace the
added and deleted clauses from each solver incarnation separately: Each solver incarnation in
the portfolio logs clause addition and deletion information to a central proof logging device.
We omit the information whether a clause is an AT, RAT or was obtained by importing the
clause from another solver.

4.1 Parallel DRAT

Labeled clauses are expressions of the form (`, j, C), where ` ∈ {a, d}, j ∈ N, and C is a clause.
Intuitively, ` = a (` = d, resp.) expresses that Solver j adds (deletes, resp.) the clause C.
Figure 2 contains for each rule the corresponding labeled clause. A run in P2 of multiplicity
m on input F is a sequence of states in (Si | 0 ≤ i ≤ n) such that that S0 = init(F0,m), and
Si ; Si+1 for all i ∈ {0, . . . , n − 1}. For convenience we write (S!j) for the formula Fj in a
state S in P2 of multiplicity m of the form ((M1, F1), . . . , (Mm, Fm)).

Definition 2. A sequence of labeled clauses (Di | 1 ≤ i ≤ n) represents the run in P2 of
multiplicity m on input F (Si | 0 ≤ i ≤ n), if for every i ∈ {1, . . . , n} it holds that: if
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Di = (a, j, C), then (Si!j) = (Si−1!j)∪{C}, and if Di = (d, j, C), then (Si!j) = (Si−1!j) \ {C}.
A sequence of labeled clauses (Di | 1 ≤ i ≤ n) is a PDRAT derivation in F , if it represents
some run in P2 of some multiplicity on input F . A PDRAT derivation (Di | 1 ≤ i ≤ n) in F is
a PDRAT refutation of F if it represents some run (Si | 0 ≤ i ≤ n) in P2 of some multiplicity
m on input F such that there is k ∈ {1, . . . ,m} with ∅ ∈ (Sn!k).

Intuitively, a sequence of labeled clauses represents a run if the working formulas in the
run are modified according to the labeled clauses. A sequence of labeled clauses is a PDRAT
derivation if there exists a run that is represented by the sequence. The following example
illustrates these definitions:

Example 5. Consider the following input formula

F0 = {{p, q, r}, {p,¬q, r}, {¬p, q, r}, {¬p,¬q, r}}

The clauses C1 = {q, r} and C2 = {¬q, r} are AT w.r.t. F0, the clause C3 = {r} is no AT w.r.t.
F , an AT w.r.t. F0 ∪ {C1, C2} and is a RAT upon q w.r.t. F0. Then labeled clause sequence
D = (a, 1, C1)(a, 1, C2)(a, 1, C3)(a, 2, C3) is a PDRAT derivation in F0 since it represents the
following two runs:

init(F0, 2) ;AT ((∅, F0 ∪ {C1}), (∅, F0)) ;AT ((∅, F0 ∪ {C1, C2}), (∅, F0))

;AT ((∅, F0 ∪ {C1, C2, C3}), (∅, F0)) ;SHARE ((∅, F0 ∪ {C1, C2, C3}), (∅, F0 ∪ {C3}))

init(F0, 2) ;AT ((∅, F0 ∪ {C1}), (∅, F0)) ;AT ((∅, F0 ∪ {C1, C2}), (∅, F0))

;AT ((∅, F0 ∪ {C1, C2, C3}), (∅, F0)) ;RAT ((∅, F0 ∪ {C1, C2, C3}), ({q}, F0 ∪ {C3}))

Theorem 3. F is unsatisfiable if and only if there is a PDRAT refutation of F .

Proof. We show both directions:

⇒ Suppose that F is unsatisfiable. As P2 is complete w.r.t. to unsatisfiable formulas, we
conclude init(F,m)

n;P2
Sn ;P2

UNSAT for all m > 0 and some n ∈ N. Therefore,
there is a run (Si | 1 ≤ i ≤ n) in P2 of multiplicity m on input F such that for some
j ∈ {1, . . . ,m} it holds that ∅ ∈ (Sn!j). It is easy to see that the construction of the
sequence of labeled clauses (Di | 1 ≤ i ≤ n) given in Fig 2 represents this run. Therefore,
it is a PDRAT refutation of F .

⇐ Suppose there is a PDRAT refutation (Di | 1 ≤ i ≤ n) of F . Consequently, there
exists a run (Si | 1 ≤ i ≤ n) in P2 on input F that represents D. Therefore we know

init(F,m) = S0
n;P2

Sn ;P2
UNSAT for some m > 0. By Theorem 2 we conclude that F

is unsatisfiable.

4.2 Forward-Checking Parallel DRAT Refutations

Algorithm 1 presents a procedure that efficiently answers the question, whether a sequence of
labeled clauses is a PDRAT refutation of F . Line 1 and 2 initialize the variables Fi and Mi

such that they represent the initial state for the input formula F . Afterwards, it iterates over
the labeled clauses, i.e. i ∈ {1, . . . , n}. It first checks whether Di is of the form (d, j, C). In this
case, it removes one occurrence of the clause C from Fj . Otherwise, it checks 1. whether the
clause is an AT w.r.t. Fj , or 2. whether it can be imported from Fk, or 3. whether it is a RAT
upon pick(i) w.r.t. Fj , where the function pick(i) is an arbritrary function returning a literal
for each i. If one of these checks succeeds, it adds the clause C to Fj , and in the case only the
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third check succeeds, we add L to Mj . If all checks fail, the algorithm rejects the sequence of
labeled clauses in Line 13. Finally, we check whether the empty clause appears in some of the
working formulas in Line 14. If the empty clause appears, we accept the derivation, otherwise
we reject it.

Algorithm 1: Forward checking algorithm

input : input formula F , and labeled clause sequence (Di | 1 ≤ i ≤ n) of multiplicity m

1 Fk ← F for each k ∈ {1, . . . ,m}
2 Mk ← ∅ for each k ∈ {1, . . . ,m}
3 for i← 1 to n do
4 (`, j, C)← Di

5 if ` = d then Fj ← Fj \ {C}
6 else
7 if C is AT w.r.t. Fj then Fj ← Fj ∪ {C}
8 else if there is k ∈ {1, . . . ,m} s.t. C ∈ Fk, C ∩Mk = ∅, C ∩Mj = ∅ and k 6= j then
9 Fj ← Fj ∪ {C}

10 else if C is RAT upon pick(i) w.r.t. Fj then
11 Mj ←Mj ∪ {L}
12 Fj ← Fj ∪ {C}
13 else reject

14 if there is k ∈ {1, . . . ,m} such that ∅ ∈ Fk then accept
15 else reject

Example 5 shows that a sequence of labeled clauses may represent several runs that are
different in the set of melted literals. Observe that in the forward-checking procedure, we
check, whether there is a run in the P2 that prefers AT and SHARE-rule over RAT-rule. Such
a run always exists, as P1 and P2 are monotone in the following sense:

Lemma 3. If ((S1, F1), . . . , (Sn, Fn))
∗; ((S′1, F

′
1), . . . , (S′n, F

′
n)) and Ti ⊆ Si for every

i ∈ {1, . . . , n} then ((T1, F1), . . . , (Tn, Fn))
∗; ((T ′1, F

′
1), . . . , (T ′n, F

′
n)), and T ′i ⊆ S′i for every

i ∈ {1, . . . , n}.

Proof. By induction over the length of the transition steps.

We can now state the main theorem:

Theorem 4. If forward checking accepts (F,D), then D is a PDRAT refutation of F .

Proof. Let D = (Di | 1 ≤ i ≤ n) be a labeled clause sequence and assume that forward
checking accepts F,D. The algorithm constructs a sequence of states (Si | 0 ≤ i ≤ n). As
forward checking accepts D, we know that Si ; Si+1 for every i ∈ {1, . . . , n}. Moreover, it
holds that init(F,m) = ((∅, F1), . . . , (∅, Fn)). As the algorithm additionally checks whether the
empty clause appears in some Fk, we know that the labeled clause sequence represents the run
(Si | 0 ≤ i ≤ n), and consequently is a PDRAT refutation of F .

Corollary 1. If forward checking accepts (F,D), then F is unsatisfiable.

Proof. Straightforward from Theorems 3 and 4.
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In implementation of DRAT checkers, labeled clauses are represented by a string of space-
separated literals, with a possible prefix of “d” to denote deletion information. Moreover, one
can assume without loss of generality that the melted literal is always the first literal in this
sequence. Then pick(i) function is defined to return the first literal in this sequence. If an
implementation of the PDRAT construction in parallel portfolios guarantees this, we can show
that forward checking is complete, in a similar way as we have shown soundness.

5 Conclusion

We considered the parallel portfolio approach for solving the propositional satisfiability problem.
In this approach, the input formula is given to multiple SAT solvers that run in parallel. Each
solver may add clauses that are AT or RAT w.r.t. their working formula, or remove clauses
provided that the removal preserves satisfiability. Once a solver adds a RAT upon L w.r.t. to its
working formula, L is added to the set of melted literals, which forbid exporting and importing
clauses that contain L. If one of the solvers detects the empty clause, the complete procedure
terminates with the answer that the input formula is unsatisfiable.

The transition system P1 models the computation of these parallel SAT solvers, and can
be used to reason formally about them. In particular, we presented a set of invariants that
can be used to show soundness of the system. The portfolio model P1 is sound and complete,
which in particular shows that more clauses can be shared than in Plingeling . To the best of
the authors knowledge, existing formalisms did not included this setting: The formal models
in [34] imposed the restriction that at most one solver applies clause addition techniques, with
the consequence that all clauses can be shared; and the formal model in [40] was based on
the instance decomposition approach, and all solvers were restricted to equivalence-preserving
clause addition techniques.

Unfortunately, we cannot merge the formulas appearing in the state of the formal models,
as it was done [20] to guarantee correctness of portfolio solvers. Therefore, we developed the
PDRAT format, which is a generalization of the DRAT proof format. This allows to emit
unsatisfiability proofs from parallel portfolios where clause sharing is restricted but formula
simplifications are applied with no restriction. To the best of our knowledge, this is the first
approach that allows generation of unsatisfiability proofs of the best available portfolio solver.
These proofs can then be independently checked by the forward checking procedure: in the case
it is accepted, we know that the input formula must be unsatisfiable; otherwise, the checker
rejects the certificate, and we discovered a buggy run in the parallel SAT solver. This certifying-
computation approach guarantees the correctness of unsatisfiability answers in parallel SAT
solver portfolios. A prototypical Haskell implementation of the forward checking procedure is
available1.

In the future, we plan to find a backward checking theme similar as in [18], which is known
to significantly improve the efficiency, as well as implementing proof construction in the SAT
solvers PRiss and Plingeling .
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