
EPiC Series in Computing

Volume 49, 2017, Pages 1–16

PROOFS 2017. 6th International Workshop
on Security Proofs for Embedded Systems

Compositional Verification of Security Properties for

Embedded Execution Platforms

Christoph Baumann1, Oliver Schwarz2, and Mads Dam1

1 KTH Royal Institute of Technology, Stockholm, Sweden – {cbaumann,mfd}@kth.se
2 RISE SICS, Kista, Sweden – oliver.schwarz@ri.se

Abstract

The security of embedded systems can be dramatically improved through the use of
formally verified isolation mechanisms such as separation kernels, hypervisors, or micro-
kernels. For trustworthiness, particularly for system level behavior, the verifications need
precise models of the underlying hardware. Such models are hard to attain, highly com-
plex, and proofs of their security properties may not easily apply to similar but different
platforms. This may render verification economically infeasible. To address these issues,
we propose a compositional top-down approach to embedded system specification and
verification, where the system-on-chip is modeled as a network of distributed automata
communicating via paired synchronous message passing. Using abstract specifications for
each component allows to delay the development of detailed models for cores, devices, etc.,
while still being able to verify high level security properties like integrity and confidential-
ity, and soundly refine the result for different instantiations of the abstract components at
a later stage. As a case study, we apply this methodology to the verification of information
flow security for an industry scale security-oriented hypervisor on the ARMv8-A platform.
The hypervisor statically assigns (multiple) cores to each guest system and implements
a rudimentary, but usable, inter guest communication discipline. We have completed a
pen-and-paper security proof for the hypervisor down to state transition level and report
on a partially completed verification of guest mode security in the HOL4 theorem prover.

1 Introduction

The rise of embedded systems and the internet of things has been accompanied by a surge of
cyber-attacks against them. A possible solution to this security problem is to design provably
secure systems on top of formally verified separation kernels and hypervisors that provide
isolation guarantees through virtualization and help to reduce the trusted computing base.

Reflecting this trend towards increased use of virtualization, hardware vendors have started
to provide hardware virtualization support also for embedded system processors and system-
on-chips (SoCs). Tasks previously done in software now rely on this hardware and its correct
configuration. At the same time, devices and low-level hardware components like caches [18]
and direct memory access (DMA) controllers have also been identified as potential attack sur-
faces. For instance, an adversary controlling a DMA device (e.g. via a driver [36]) might be able
to circumvent the kernel’s memory isolation and install stealthy keyloggers [33]. Input/output

U. Kühne, J.-L. Danger and S. Guilley (eds.), PROOFS 2017 (EPiC Series in Computing, vol. 49), pp. 1–16

Compositional Platform Verification Baumann, Schwarz, and Dam

memory management units (IOMMUs) allow the kernel to constrain the address ranges acces-
sible by devices. However, IOMMUs are not always free from vulnerabilities either [28] and
proper configuration is not entirely trivial. Whatever protection system designers choose, it is
crucial to include hardware attack surfaces, protection units, and the configuration of both into
the reasoning, when system software is formally verified. However, more complete models of
the underlying hardware are by nature hard to attain and complex, leading to costly proofs of
their security properties. Moreover, if a model is monolithic and specific to a given platform,
proofs may not easily apply to similar but different platforms and the verification easily becomes
economically infeasible.

To overcome these issues, we propose a compositional top-down approach and model a SoC
as a network of distributed automata that communicate using paired synchronous message
passing. Abstract specifications for each component allow to delay the development of detailed
models for cores, devices, etc., while still being able to verify high level security properties
like integrity and confidentiality. Subsequently, abstract components can be instantiated with
more refined models and overall security is preserved by discharging local verification conditions
identified in the top-level proof. Decomposition provides the further advantage that guarantees
on constant parts can be reused when other parts change. Such reusability and adaptability
is especially important for embedded systems, since standard chipsets are rare and verification
needs to be performed for many different custom SoC designs.

As a case study, we apply the methodology to the verification of information flow security
for an industry scale security-oriented hypervisor on ARMv8 [7]. The hypervisor, developed in
the open source HASPOC project [19], provides full virtualization and supports several versions
of Linux (Debian, Ubuntu) and Android running on the HiKey 96-boards platform based on the
8-core HiSilicon Kirin 620 Cortex-A53 SoC. The hypervisor statically assigns (multiple) cores
to each guest system and implements a rudimentary, but usable, inter guest communication
discipline. The verification focuses on the behavior of the underlying SoC hardware during
guest execution. In particular, we consider memory, peripherals, (IO)MMUs, cores – including
their user mode capabilities – as well as interrupt controllers. Models and proofs have been
formalized in the HOL4 theorem prover with promising preliminary results.

2 Related Work

The merits of compositional reasoning in the design and validation of embedded systems have
been acknowledged for a long time, c.f. [16, 31, 4, 37, 21]. A compositional approach based on
component abstraction and rely-guarantee reasoning is also at the core of the contract-based
design and verification paradigm [27, 10]. In this work, we apply the same underlying techniques
to the formal verification of security properties for the low-level execution platform, that are
established if the hardware is configured properly by a trusted or verified piece of software, e.g.,
a hypervisor.

The first verification exercises of system software date back several decades [13]. The re-
search discipline has gained increased traction in recent years through prominent projects such
as seL4 [22] and Verisoft (XT) [3, 25]. Since isolation is both enabled (e.g. by MMUs) and
threatened (e.g. by DMA) by hardware, it is crucial to include underlying hardware into the
reasoning. This gains even more importance with virtualization support that shifts tasks tra-
ditionally managed by software to hardware units such as 2-stage MMUs. Given the central
role of memory management, recent work modelled the effects of several kinds of MMUs, their
proper configuration, caches, TLBs, and their interplay with system software [5, 8, 24, 34, 6].
The formalization of peripherals has been done both from a functional and from a security

2

Compositional Platform Verification Baumann, Schwarz, and Dam

perspective. For security, the main concern is the preservation of memory isolation in the pres-
ence of DMA devices [9]. Kernel verification has been studied both for settings with IOMMUs
[35, 20, 17] and for peripherals configured to comply with constrained access policies [29]. Fi-
nally, kernel code is not the only code executing on the system’s processors. Instruction sets
might grant to low-privileged code access to sensitive resources that kernel designers are not al-
ways aware of. While it is possible to mitigate such threats, it is important to be aware of them
both in the design and verification of kernels. ARM started to create machine-readable ISA
specifications [26] and demonstrated how to exploit them to check noninterference properties
of the ARMv8-M security extensions. Similarly, the information flow behavior of ARMv7 user
mode execution has been analyzed in [30]. While the above examples focus on single system
parts, we are interested in a holistic view and system-wide isolation guarantees, where existing
results potentially can be reused as building blocks.

3 System Model

Our system model is characterized by a tuple 〈n,M,K, T 〉, where n > 0 is the number of com-
ponents, M is the type of their messages, K : Nn → K contains all the component specifications
(with Nn = {1, . . . , n}), and T ⊆ T represents the possible global transitions of the system by
a set of synchronization vectors. Let B = {0, 1}. A component specification k ∈ K is a record
with the following components:

• Σ – the set of component states,

• Σ0 ⊂ Σ – a set of possible initial states for the component,

• snd, rcv : Σ×M×Σ→ B – transition relations for sending and receiving messages m ∈M,

• τ : Σ× Σ→ B – a transition relation for internal steps.

Note that we use transition relations (defined as boolean predicates) instead of functions to
a next state, in order to not rule out non-deterministic component models. Communication
between the components is governed by synchronization vectors of type t ∈ T, defined as follows:

t ::= Msg i j m | Tau i | ExtI im | ExtO im .

A vector Msg i j m denotes that a message m may be sent from component i to j, assuming
i 6= j. Vector Tau i represents internal actions of component i. Similarly, vectors ExtI im
and ExtO im represent external I/O actions of component i with associated messages m.

A (global) system state s ∈ S is now a mapping from component indices i ∈ Nn to component
states s(i) ∈ K(i).Σ. For all transitions t ∈ T a corresponding system transition from state
s to s′ is denoted by t ` s → s′ and defined in Fig. 1. There the global system transitions
are mapped to local component actions in the obvious way. In particular, a message passing
transition Msg is only enabled globally, if both the sending and receiving actions are enabled
in the corresponding components. Computations s →n s′ of the system model for n steps are
defined by demanding that there exists a sequence of n transitions t1, . . . , tn ∈ T that transform
s into s′ by repeated application of the transition relation.

3.1 Instantiation and Soundness

When instantiating the system model outlined above, a “natural” decomposition of a SoC can
be conducted as follows. As message channels we identify memory buses and interrupt signals

3

Compositional Platform Verification Baumann, Schwarz, and Dam

i, j ∈ Nn i 6= j
K(i).snd(s(i),m, s′i) K(j).rcv(s(j),m, s′j)

Msg i j m ` s→ s[i 7→ s′i; j 7→ s′j]
Msg

i ∈ Nn K(i).τ(s(i), s′i)

Tau i ` s→ s[i 7→ s′i]
Tau

i ∈ Nn K(i).rcv(s(i),m, s′i)

ExtI im ` s→ s[i 7→ s′i]
ExtI

i ∈ Nn K(i).snd(s(i),m, s′i)

ExtO im ` s→ s[i 7→ s′i]
ExtO

Figure 1: Overall system semantics. Component i in state s is updated to s′i using notation
s[i 7→ s′i] for the resulting system state.

and we model each bus master, e.g., cores and devices, as separate components. Similarly, the
memory system, including caches and RAM, is modeled as a component of its own. External
inputs and outputs target the devices only and are specific for each device, modeling for instance
network packages, user input, sensor data, or actuator control signals.

Note that communication through memory buses and interrupt signals is in nature asyn-
chronous, i.e., a sender does not know when a message will be received or a potential reply
be returned. In order to synchronize communication between components, these channels can
either be modeled as separate buffering components that communicate synchronously with the
sender and receiver components, or be merged with either the sender or the receiver, e.g., the
memory bus with the memory system or a buffered interrupt signal with the sending device.
Still, components in such a system may be quite complex, prompting further decomposition,
e.g., to separate MMU functionality from a core, or caches from memory.

Concerning communication, receiving transitions in such a system can occur whenever a
component is ready to receive data from a memory bus or an interrupt. Conversely, sending
transitions occur whenever a component is ready to send data or an interrupt. If a component
originally both receives and sends information simultaneously, the behavior must be modeled by
two separate transitions, where the receiving transition is executed first and then blocks until
the sending transition is completed. As defined above, the synchronized send and receive tran-
sition represent atomic actions in our decomposed SoC model. When defining the component
transitions, care must be taken wrt. atomicity, i.e., not to rule out certain interleavings of ac-
tions that lead to externally observable behavior. Therefore, internal transitions are important
to control the granularity of component transitions and expose certain intermediate component
states that are observable by other components or the environment through communication.

In general, the decomposed model and its interleaving semantics are sound if its externally
observable behavior is identical to that of a monolithical or true-concurrent model. As computer
systems are discrete, and external communication is generally asynchronous, the exact timing
of signals and component transitions can usually be neglected so that the interleaving model
captures all system behaviors. If timing properties are important, time can be added as a
variable to the model and restrict the possible interleavings [2]. Moreover, if completeness of
the model is desired, guards on component transitions and restrictions on the global schedule
may be necessary to rule out behaviors in the interleaved semantics that are not possible in the
real system.

3.2 Abstraction

The compositional approach facilitates abstraction. While detailed component models may
be complex, it often is not necessary to expose all of this complexity to a top-level proof.
Having decomposed the system into communicating units with clear interfaces opens the door
to underspecifying internals and focusing on interactive component behavior. Formally, we

4

Compositional Platform Verification Baumann, Schwarz, and Dam

introduce an abstract component specification K̂ and surjective abstraction functions absi :
K(i).Σ→ K̂(i).Σ for all i ∈ Nn such that:

K(i).rcv(σ,m, σ′) ⇔ K̂(i).rcv(absi(σ),m, absi(σ
′))

K(i).snd(σ,m, σ′) ⇔ K̂(i).snd(absi(σ),m, absi(σ
′))

K(i).τ(σ, σ′) ⇔ K̂(i).τ(absi(σ), absi(σ
′)) .

These conditions ensure that all properties proven about the abstract model K̂ also hold on
the concrete one K (for parts of the state covered by the abstraction function) [1]. Note that
equivalence is only needed in order to transfer trace hyperproperties, such as confidentiality
[11]. For safety properties, the implication from detailed to abstract model is sufficient.

This abstraction technique allows to start verification with an abstract model and only later
develop a more detailed model that refines the abstract one, reducing the initial modeling effort.
In practice, i.e., our case study, we have experienced that specifications for components can be
made very abstract using uninterpreted and underspecified types and functions, without losing
expressiveness wrt. the verification of platform security properties. We continue detailing our
modeling and verification methodology using the case study as an example.

4 Case Study: ARMv8 Platform Security

Below we present our case study of the compositional verification approach. We verify security
properties of an ARMv8-based execution platform as established through configuration by a
minimal bare-metal hypervisor which hosts a number of untrusted guests. The hypervisor
statically partitions the system resources, i.e., cores, memory, devices, and interrupts between
the guests, i.e., there is no resource sharing, except through a predefined set of communication
channels. The top goal of the verification effort is to show information flow security for the
hosted guest systems, i.e., that information can only be exchanged between guest partitions
through allowed channels. To this end, it is also necessary to prove integrity of the hypervisor,
as any successful attack on it may break the isolation guarantees imposed on the system.

The security property is formulated in the form of a bisimulation theorem between the de-
composed ARMv8 platform model and an idealized specification where guest systems are run-
ning on dedicated SoCs with explicit communication channels between them [12]. Both models
and the hypervisor design are completely formalized in the HOL4 computer aided verification
system. While the verification effort is ongoing, for the part of the bisimulation concerning
guest execution, i.e., the steps not virtualized by hypervisor handlers, we already verified the
most challenging cases with reasonable effort.

4.1 ARMv8 Platform Model

As the basis for our modeling work we extended the user-level ARMv8 CPU model by Fox
[15] with system-level functionality, i.e., the register state and instructions for the hypervisor
and TrustZone execution modes, as well as virtualization extensions in form of a two-stage
MMU. However, for a complete SoC model, detailed models of the System MMU (SMMU,
aka IOMMU), the Generic Interrupt Controller (GIC), the memory subsystem, and all of the
devices were missing. Nevertheless, the CPU model was already designed with decomposition
in mind, consisting of separate automata for the core instruction execution, separate first and
second stage MMUs, and a flat main memory, communicating via message passing.

5

Compositional Platform Verification Baumann, Schwarz, and Dam

Figure 2: ARMv8 platform model

In such a situation the combined approach of decomposition and abstraction shows its
strengths. As a first step we decompose the SoC into the following components: (1) a pa-
rameterized number of ARMv8 cores including their first stage MMUs, (2) the corresponding
second-stage MMU for each core, (3) a shared main memory component, (4) a parametrized
number of arbitrary devices, (5) a corresponding SMMU component for each device, and (6) the
GIC, that is treated as a special kind of device. There is another special device, the power con-
troller used for starting and stopping cores, but we omit its description here for brevity.

The first stage MMUs are merged with the cores, because in a hypervisor scenario they are
completely controlled by the untrusted guests, therefore their interactions with the cores are
irrelevant to the overall system security and we chose to simplify the model. In what follows, we
will refer to second stage MMUs simply by “MMU”. Moreover, having one SMMU per device
may seem like a strong assumption. Nevertheless, modern SMMUs usually manage different
session IDs for different devices, hence they can be modeled as private SMMUs for each device.1

The possible communication channels between the components are shown in Fig. 2 and we
distinguish (1) memory requests and replies, (2) virtual and physical interrupts, and (3) external
input and output signals for the devices, as messages of our system model. Memory requests
can be reads, writes, or page table walks of some (S)MMU. Memory replies contain either a
result for a matching request or a fault, e.g., due to failed access permission checks in the MMU.
In this case study we do not cover special memory instructions like barriers or cache flushes.

Reflecting a modeling decision in our initial CPU model, the MMU automaton handles
all communication between core and memory. Similarly, devices access the memory via their
SMMU. We decided not to model the memory bus explicitly. It is integrated into the memory
component, which thus needs to distinguish regular memory accesses from memory-mapped
I/O (MMIO) accesses by the cores and forward the latter to the right device (not involving any
SMMU). Devices may send interrupts to the GIC, from where they are forwarded to the cores
according to the GIC configuration. Cores can also request software-generated interrupts (SGIs)
to other cores through MMIO accesses to the GIC distributor module and the hypervisor can
configure virtual interrupts for the guests through accesses to the corresponding GIC interface.

The component configurations in our system model are instantiated with abstract specifica-
tions instead of detailed models, adapting the level of detail to the requirements of the top level
security proof. Specifically, the component state is kept as abstract as possible. To keep track of
sent and received memory requests, as well as received memory replies, all abstract component
states are equipped with corresponding history variables. Moreover, instead of defining the
component transition relations explicitly, each transition is described by a collection of specifi-
cation functions that relate the pre and post states of the transition for different cases. Almost

1Note that this model requires a correctness proof, showing that one SMMU virtualizes several SMMUs with
different session IDs. We assume it here for the sake of a simpler model.

6

Compositional Platform Verification Baumann, Schwarz, and Dam

all components can perform internal transitions, which are mostly underspecified except for
history variable updates. Further details on the components are described below.

Core and first stage MMU We model explicitly the program counter and processor status
register (containing among others the execution level). The remaining register state is divided
into an uninterpreted guest register state and a hypervisor register state. The guest register
state contains all registers accessible in execution levels EL0 and EL1, e.g., general purpose
registers, as well as system and status registers controlling the first stage MMU. The hypervisor
register state contains control registers accessible in EL2 and EL3, we only model those relevant
for the hypervisor design, e.g., HCR EL2 and SCR EL3, controlling traps from guest mode.

The possible transitions of the core are: (1) sending/receiving a memory request and (2) re-
ceiving a virtual or physical interrupt. All transitions that do not change the execution mode
are largely underspecified, e.g, for sending memory requests we assume that all information in
guest registers besides the execution mode may change arbitrarily. We only demand that the
history variable recording sent requests is updated correctly and that hypervisor registers are
unchanged. Memory replies may be received from the MMU if there is a matching outstanding
request and they are modeled similarly to send transitions unless a fault is received. Then,
and when receiving interrupts, an exception occurs. If the mode changes to EL2 or higher, we
model the behavior precisely, in order to identify the responsible hypervisor handler.

Second stage MMU The detailed model of the ARMv8 memory management units is quite
complex, exhibiting a large number of different address translation schemes and corner cases.
However, if configured statically by the hypervisor this complexity can be handled by repre-
senting the explicit MMU configuration as an abstract translation scheme parametrized for
each guest and by keeping track of the translation status for pending memory requests. In
particular, we keep an abstract MMU state that records for every possible memory request
if a corresponding translation is idle, i.e., not requested, still translating, or in its final stage
where the translated request is forwarded to memory. While a request is being translated, we
consider it non-deterministic when it will reach its final state or result in a fault. We only
require a progress condition that it will do so after a finite amount of MMU steps. Possible
actions of an MMU are (1) receiving a memory request from its core, (2) sending a translation
table lookup or a final memory request to memory, (3) receiving a corresponding reply from
memory, and (4) replying to the core for a pending request: either with a fault or the result
from memory. While the hypervisor is running on a core, we model its MMU as being turned
off. Then requests from the core are just forwarded to memory without translation.

Memory In this case study we use a simple coherent shared memory model without caches or
weak memory ordering. This is reflected in our abstract memory specification, which consists
of a single page-addressable map of physical memory contents along with the message history
variables. The transitions of memory consist of (1) receiving a request from an MMU or SMMU
(in case of device DMA access), (2) forwarding a core’s MMIO access to a device, (3) receiving
a device’s reply to an MMIO access, and (4) sending a reply for an earlier memory request. In
the latter case for physical memory access the usual memory semantics apply, MMIO replies
from devices are simply forwarded.

Soundness of the memory model presupposes that neither the hypervisor nor the guests
break memory coherency, and that the hypervisor code itself is correctly synchronized. The
former assumption can in fact be broken by phenomena such as mismatched cache attributes
that are known to produce memory incoherency and to potentially break guest-guest as well

7

Compositional Platform Verification Baumann, Schwarz, and Dam

as guest-hypervisor isolation [18]. The latter assumption (that the hypervisor code itself is
correctly synchronized) is delicate to validate in general but goes outside the analysis presented
in this paper. Weakly consistent memory behavior as seen in ARMv8 processors does not
seem to be a security concern. It mainly seems to complicate the verification of hypervisor
synchronization primitives. For guest memories, the memory semantics can easily be replaced
with more realistic models along the lines of previous work [14].

Devices Since all DMA accesses are protected by the SMMUs and the guests have full control
over the devices without the hypervisor ever touching them, we can leave the device states com-
pletely uninterpreted. Device transitions consist of (1) receiving and replying to MMIO accesses
from memory on behalf of a core, (2) sending DMA requests to an SMMU and receiving DMA
replies, (3) sending or receiving external signals associated with that device, and (4) sending an
interrupt associated with that device to the GIC. Our synchronous message passing approach
fits well with edge-triggered interrupt signaling. However, we can also model level-triggered
interrupts with the same mechanism, it all depends on the GIC’s interpretation of the edges.

SMMU On a detailed level the SMMUs on ARM SoCs differ from the regular MMUs of the
cores. However, the translation mechanism is similar and on an abstract level both MMUs and
SMMUs implement the same kind of functionality. Hence, we use the same abstract specification
for SMMUs as for MMUs, albeit parametrized with different translation schemes2, depending
on the guest a device belongs to. It is a particular strength of our approach to allow the reuse
of abstract models for components with similar functionality, but different implementation.

GIC The generic interrupt controller used on our ARM platform (GICv2) consists of four
different register states: (1) the interrupt distributor shared by all cores, and for each core (2) a
physical interrupt interface, (3) a virtual interrupt control interface, and (4) a virtual interrupt
interface. In the abstract specification we largely leave the registers underspecified.

For modeling the side effects of MMIO accesses to the GIC and interrupt reception, we
introduce uninterpreted functions that map the distributor register contents to the physical
interrupt state for the whole system and the control interface registers to the virtual interrupt
state per core. Then for the possible GIC actions of (1) receiving an interrupt from a device,
(2) signaling a physical or virtual interrupt to a core, (3) receiving MMIO accesses from the
cores to one of the register states, and (4) replying to an MMIO access, the side effects of
such transitions are expressed rather on the interrupt state than on the register state which
can change either non-deterministically or is unaffected by a given transition. Only for the
registers explicitly touched by the hypervisor, we model the effect on the registers explicitly.
For instance, as the virtual interrupt interface is only used by the guest, we leave the effect
on corresponding registers unspecified and overapproximate the side effects of MMIO accesses
on the interrupt state. In particular, accesses to the virtual interrupt interface only ever affect
interrupts pending or active on that interface and inactive interrupts stay inactive.

For interrupt signaling, the GIC transition is synchronized with a corresponding receiving
transition at the targeted core. Thus the signaling is modeled to occur in sync with the core
taking the exception for the asynchronous interrupt. We only distinguish physical from virtual
interrupts, which can only be received in guest mode, and only model the IRQ interrupt signal.

2For simplicity of the model, we forbid DMA accesses to other devices and the GIC in this work.

8

Compositional Platform Verification Baumann, Schwarz, and Dam

4.2 Hypervisor Model

The main functionality of the hypervisor is to bring up the platform into a state where different
guest systems can run in statically allocated partitions, each owning a number of cores, devices
and their interrupts, as well as a region of memory exclusively. Inter-guest communication
(IGC) is allowed only via predefined shared memory channels and associated inter-processor
notification interrupts.

For this work we are mainly interested in the platform invariant I : S→ B that constrains all
component configurations of the SoC during system execution to enable the desired information
flow policy and guarantee hypervisor integrity. To name a few of the most important properties:

• All translated requests sent by an (S)MMU are constrained by the translation scheme of the
corresponding guest, i.e., translated requests from cores and devices may access only the
associated guest’s physical memory, including outgoing IGC channels and memory mapped
I/O regions of owned devices, as well as each owned core’s GIC virtual interrupt interface.

• Likewise, all pending requests in memory from cores running in guest mode or devices
address the associated guest’s region of memory. Forwarded MMIO requests are sent by
cores with the same owner as the targeted device and addresses match the device’s I/O
region. Requests to GIC registers other than the virtual interrupt interface are sent by cores
running in hypervisor mode. For replies traversing the platform, similar restrictions hold.

• Page tables are stored in hypervisor memory, that is disjoint from guest memory. They are
fixed and implement a secure translation scheme for guests, guaranteeing memory isolation.

• The GIC is configured in such a way that physical device interrupts can only be forwarded
to cores of the same associated guest. SGIs are only pending or active between cores of the
same guest, unless they have a special ID reserved for IGC notifications. Similar conditions
are imposed on the virtual interrupts that are pending or active at each core’s interface.

• Well-formedness invariants on messages and the abstract state of all SoC components.

• Additional invariants capture intermediate states of the hypervisor computation, in partic-
ular they restrict the value of hypervisor system registers and its internal data structures.

The invariant has to be preserved by all guest and hypervisor steps for all components of
the SoC. For initial system states s0 ∈ S0 with s0(i) ∈ K(i).Σ0 for i ∈ Nn we have to prove:

Theorem 1. All computations s0 →n s′ starting in an initial system state s0 ∈ S0 preserve
the platform invariant, i.e., I(s′) holds.

The theorem is proven by induction on n. In particular the invariant needs to be defined in
such a way that I(s0) holds for all such s0, requiring certain invariant parts only after they have
been established by different phases of the hypervisor initialization process. In the induction
step we distinguish all possible component transitions and use their abstract specifications.
Decomposition allows local reasoning here as at most two components are changed in one step.

For example, in the proof of memory isolation we can focus on the interplay of (S)MMU and
memory, arguing that (1) the MMU is configured correctly to only send translation requests to
the area where the hypervisor stores the secure second level page tables, (2) memory returns
the correct values of data stored in it, i.e., entries from the secure page table, and (3) if the
MMU translates a guest’s memory request successfully, only using entries from the secure page
table for that guest, the translated memory request addresses the guest’s memory region.

9

Compositional Platform Verification Baumann, Schwarz, and Dam

Figure 3: Use case: with correctness of
the crypto service, traffic between the
networks is guaranteed to be encrypted,
even with other guests compromised.

Figure 4: Ideal model: Guest 1 with its share of cores,
devices, and memory regions – connected to guest 2
via an inter-guest communication (IGC) interrupt and
duplicated but synchronized IGC memory.

In addition to platform intialization, the hypervisor contains handlers for providing virtual-
ized functionality to the guest. In particular, it (1) virtualizes a GIC distributor for each guest,
preserving the interrupt isolation invariants, (2) handles all other translation faults of the sec-
ond stage MMU and injects them into the core in guest mode, (3) receives physical interrupts
and registers them as virtual interrupts in the GIC, (4) has a hypercall interface to request IGC
notification interrupts for outgoing channels of a guest. While the set of handlers is small, the
design and verification of the GIC handlers is quite cumbersome, mainly due to the fact that
the interrupt controller of our ARMv8 platform is of an older version that does not provide full
hardware support for distributor virtualization and distribution of virtual interrupts.

Concerning the modeling of the hypervisor, it would be infeasible to manually specify it on
the low abstraction level of our system level semantics. Instead we introduce a high level labeled
transition system (LTS) of the hypervisor design, where transitions atomically change (parts
of) the system configuration. This kind of reasoning requires an order reduction argument,
showing that the fine-grained instruction execution of the hypervisor can be abstracted into
atomic blocks [23]. In our case it suffices to design the LTS in such a way that each step
contains at most one transition that is either a send or receive action addressing the GIC
(which is shared by all cores), or an access to a shared hypervisor data structure. The LTS can
be used later as a specification to verify the binary hypervisor code [32].

Formally, we introduce such hypervisor transitions in our system model by adding a new
kind of synchronization vector Orcl ω, that specifies a system-wide oracle transition according
to relation ω ⊆ S×S. In our case ω captures the hypervisor LTS, allowing state changes in one
core and its MMU, the SMMUs, and hypervisor data structures in memory, whenever that core
is running in hypervisor mode. In the system model we have Orcl ω ` s→ s′ iff (s, s′) ∈ ω.

4.3 Information Flow Security

In order to show information flow security of the SoC as constrained by the hypervisor we
introduce an ideal model of the system where each guest is running on an idealized SoC, con-
nected only through IGC channels. If the ideal model is a sound and complete abstraction of
the system model, i.e., there exists a bisimulation relation between both, the information flow
restrictions that hold in the ideal model by construction also hold for the platform model. Then
we can use our platform to build trustworthy systems where security-critical services are prop-
erly isolated from untrusted software (see Fig.3). In the context of our formal system model,
the ideal model is a system where each component is instantiated with one idealized guest SoC.

10

Compositional Platform Verification Baumann, Schwarz, and Dam

On this level the only observable message passing is occurring through the IGC notification
channels between guests, or via external I/O of one guest SoC. In addition there are oracle
transitions that synchronize the contents of memory for the IGC channels between the guests
in order to simulate shared memory whenever one of the channels is written to.

The idealized guest SoC models are decomposed systems themselves, similar to the underly-
ing ARMv8 system model, containing only cores and devices of the guest concerned (see Fig.4).
The ideal SoC models differ from the platform models on a few important points, namely:

• Ideal cores execute in guest mode only. The hypervisor execution is invisible here and
effects of handlers on the core are modeled explicitly as part of the ideal core semantics. For
example, hypercall instructions and the reception of memory faults get special semantics
that reflect a complete handler execution. Regular core functionality is specified as in the
system model. In particular the ideal core model still contains the first stage MMU.

• The range of the ideal memory is restricted to the guest’s memory region. (S)MMUs are
replaced by simple core and device interface buffers that either forward memory requests
to memory if they are within the guest’s memory range or produce a fault otherwise. No
address translation is performed by these interface buffers, all messages use intermediate
physical addresses throughout the ideal model. These placeholders for the (S)MMUs are
introduced mainly to simplify the bisimulation proof.

• Each guest SoC has an own ideal GIC with a virtualized distributor and physical interrupt
interface. We define the ideal GIC semantics in such a way that it reflects the semantics of
the hypervisor handlers that virtualize the distributor and inject virtual interrupts.

• To handle IGC notification interrupts between guests, a special notification interrupt buffer
is added for each outgoing channel. The buffers are updated by a hypercall instruction with
idealized semantics mirroring the behavior of the underlying hypervisor handler. Upon a
global synchonization transition with the receiving guest SoC, an IGC interrupt is injected
into the receiver’s ideal GIC. This simulates the behavior of the hypervisor receiving the
physical inter-processor interrupt and registering it as a virtual interrupt in the GIC.

Note that we use exactly the same device models as in the platform model. This is possible
since the hypervisor allocates I/O regions of devices in the intermediate physical address space
using an identity mapping, thus devices in both models behave identically.

We prove an invariant Ī on ideal model configurations s̄ ∈ S̄, to support the bisimulation
proof and sanity-check our specifications. With initial states S̄0 defined similar to S0, we show:

Theorem 2. Given s̄0 ∈ S̄0, then all computations s̄0 →n s̄′ establish Ī(s′).

Given that there is no hypervisor running in the ideal model, the ideal invariant is much
simpler, covering basically just well-formedness conditions on the components and messages
in each guest. For the memory interface buffers and the ideal GIC it also requires security
properties, e.g., that requests sent to memory are within range, or that only interrupts belonging
to the guest are pending or active. As initially no requests or interrupts are pending, Ī(s̄0)
holds trivially. In the induction step we first show Ī for internal steps of a guest SoC. Then we
prove that for each IGC channel the memory regions in sender and receiver SoC are in sync, if
every write into the channel is directly followed by a synchronizing oracle transition.

11

Compositional Platform Verification Baumann, Schwarz, and Dam

4.4 Bisimulation Proof

Our final proof goal is to prove a trace equivalence result relating the platform and ideal models.
The proof of trace equivalence uses a bisimulation R ⊆ S× S̄ as an unwinding condition. For a
platform state s and an ideal state s̄, if s R s̄ then, among others, the following properties on
the abstract states of the system components are guaranteed.

• Corresponding cores have the same guest register states and message history variables while
the core is running in guest mode.

• Guest memory content in the ideal model is identical to the memory content in the platform
model at the translated addresses. Similarly, memory requests and replies are present in the
ideal model if, and only if, they are present as guest requests/replies in the platform model
at corresponding components with translated addresses. Exceptions are requests sent by
cores and devices, which have the same (untranslated) addresses, as well as write requests
to and read replies from the virtualized GIC distributor, as they are processed and sent by
the hypervisor on behalf of the guest to maintain interrupt isolation.

• The translation table lookups of the (S)MMUs are invisible in the ideal model.

• Device states and message history variables in both models are identical.

• The state of interrupts in the GIC distributor of a guest in the ideal model is the same as in
the GIC distributor of the platform model, while no hypervisor interrupt handler is running
on one of the guest’s cores. Similarly, for each core the same interrupts are pending or active
in the ideal virtualized physical interface and the platform virtual interrupt interface.

• IGC interrupts are active in the ideal IGC notification buffer while the corresponding SGI
in the platform model is pending.

• The register states of the virtual interrupt interface and the virtualized physical interface
are equal. GIC distributor registers are projected to the ideal model using an uninterpreted
filtering function that removes for each guest information about the other guests’ interrupts.

More complex definitions are needed for the coupling of components, memory messages, and
interrupts during the execution of the hypervisor handlers, as the ideal model artifacts have
to be linked with the state of the platform during different phases of the hypervisor execution.
Since our case study focused on the verification of the system properties guaranteed by the
hypervisor, rather than the correctness of the hypervisor implementation itself, we omit further
details. The desired correctness theorem can now be stated in two parts.

Theorem 3. Given initial states s0 ∈ S0 and s̄ ∈ S̄0 with s0 R s̄0, then (1) for any computation
s0 →n s′ of the platform model there exists an ideal model computation s̄0 →m s̄′ such that
s′ R s̄′ holds, and (2) for any computation s̄0 →n s̄′ of the ideal model there exists a platform
model computation s0 →m s′ such that s′ R s̄′ holds.

Theorem 3 is proved by induction on n for the two directions separately. The base case is
trivial. In the induction step we can use the invariants of both models by Theorems 1 and 2.
We perform a case split over the different steps of the simulated model, the proof of each case
then usually consists of two parts: (1) showing the existence of a – potentially stuttering –
corresponding step sequence in the simulating model and (2) showing that resulting states are
in the bisimulation relation again, preserving the properties sketched above.

12

Compositional Platform Verification Baumann, Schwarz, and Dam

While showing the existence of simulating steps, we often found that our abstract specifi-
cations of component behavior based on pre and post conditions were too weak. We had to
add verification conditions on the detailed component models, stating that under certain pre-
conditions, derived from relation R and the invariants, the corresponding transition is indeed
enabled. Assuming these proof obligations, the existence argument is usually straightforward.

Whenever the hypervisor handlers are not involved, steps of both models are mostly mapped
in a one-to-one fashion. An exception are the translation steps of the (S)MMUs that are invisible
in the ideal model. When performing the simulation of a core or device sending a request to its
memory interface buffer in the ideal model, we step the (S)MMU until either a fault occurs or
the translation is successful, using the (S)MMUs’ progress condition. Similarly, ideal transitions
that are implemented by a handler are simulated by executing the handler in its entirety.

We add an induction hypothesis to the simulation of the ideal by the platform model re-
flecting our stepping strategy. It states, e.g., that cores of the platform model are always in
guest mode and that no requests are currently being translated. This saves us from starting the
simulation of an ideal transition in the middle of a hypervisor handler or an address translation
in the MMU. In the opposite simulation direction we cover all these intermediate states.

When proving the bisimulation relation, we profit from the compositional approach, as at
most two components change in one model. Then clauses of R relating other components
are usually preserved trivially. Additional verification conditions on the detailed component
models are also needed when stepping cores or the GIC. As our abstract specification leaves the
detailed effects of transitions on registers and internal states undefined, it is impossible to derive
that the same transition on related components has the same effect on both, especially when
transitions are non-deterministic. Therefore, we introduce proof obligations on the core and
GIC transitions for these cases, demanding just that: if two components are coupled according
to the bisimulation relation and one of them performs a particular transition, then there exists
a corresponding transition on the other component such that the coupling is preserved.

Naturally, it is easy to make too strong assumptions here, hence it is crucial to discharge
them on the detailed component models. If such a proof fails, the abstract component spec-
ifications or the bisimulation relation for that component need to be strengthened. Here the
decomposed verification approach reduces the cost of re-verification, too. Nevertheless, the
bisimulation proof guarantees that all detailed component instantiations, satisfying the verifi-
cation conditions, exhibit the same secure information flow as the ideal model.

4.5 Implementation

We have modeled our case study in the theorem prover HOL4 and proved central obligations
of the guest execution (i.e. transitions not concerning the hypervisor). Further verification is
ongoing. The ideal invariant is verified while the platform invariant is only proven on paper so
far. The induction step for the bisimulation property comprises 10 hypervisor-transitions and
43 transitions that at least partly concern guest execution. Currently, we have verified about a
third of the latter. The successfully verified obligations include the most challenging transitions,
for instance those including address translation and the virtual interrupt interface, and cover
transitions of all SoC components in at least one direction of simulation. Remaining challenges
regarding guest execution mostly concern interrupt signaling to the cores. Besides those cases,
the remaining proofs should be straight-forward adaptations of the existing ones for similar
cases. Table 1 provides an overview on the size of the different parts of our development. We
consider ”basic” parts and the machinery as reusable for similar endeavors. The case study so
far took about 14 person months with low to intermediate level of a priori HOL4-expertise.

13

Compositional Platform Verification Baumann, Schwarz, and Dam

basic common ideal platform hyperv. bisim. total

model specification 99 435 1,121 1,750 1,440 350 5,195

invariant specification – 17 387 518 – 453 1,375

machinery 309 – 95 – – 585 989

proofs 652 1,094 1,132 1,466 145 7,437 11,926

total 1,060 1,546 2,735 3,734 1,585 8,825 19,485

Table 1: HOL4 lines of code for basic parts (general data types etc.), common parts for both
models, the ideal model, the platform model, the hypervisor, and the bisimulation proof.

We also started to verify hypervisor transitions, but decided to increase the support for
automation first before tackling the simulation of handler step sequences. To date, we have
developed some first machinery to step through bisimulation-proofs that map a transition step
of one side to a number of transition steps on the other side. The ambition is that the human
proof engineer should be able to focus on one transition step at the time and in particular on the
actual preservation property, leaving (de-)composition and rather trivial proof obligations to the
machinery. To that end, we employ a canonical form for bisimulation goals that we reestablish
between the different steps. The machinery is able to autonomously identify relevant pre and
post states, as well as transitions, relations and guarantees on them, with the help of some
form of incremental pattern matching. Several custom tactics automate unfolding and employ
tailored variants of standard machinery such as first order reasoning, conditional lifting, or
simplifications for record field updates, case splits, etc. For future work we plan to extend the
machinery by the automatic identification and verification of linking pre and post conditions.

A large part of the proofs is concerned with technical arguments about the transition system,
e.g., the matching of memory requests and replies, the relation of different address regions, or
the well-formedness of system parameters. We envision a formal framework for decomposed
system models that provides a lot of these properties by construction for a given instantiation
and avoids the pitfalls discovered in our ad-hoc definition.

5 Conclusion

With the increasing hardware support for virtualization and enhanced security threats through
malicious devices, security analysis of embedded systems today needs to consider the behavior
of all SoC components. To address this issue, we presented an approach for the compositional
verification of SoC level security properties in a virtualization context. It enables a top-down
approach to system verification, by modeling SoC components as communicating automata
with relatively abstract specifications, that can be refined gradually into more detailed com-
ponent models. Our HOL4 case study for an ARMv8 hypervisor highlighted the reusability
and adaptability of the approach. The preliminary results suggest that the verification of secu-
rity properties for a complete SoC is feasible, yet still time-consuming, especially for complex
COTS systems. For future work we therefore envision a formal framework supporting both the
modeling (e.g. with a domain specific language) and the reasoning (with more automation),
something for which HOL4 seems particularly well suited. The discussed case study – which we
are going to progress further – provided valuable insights towards that goal. Further directions
of improvement include discharging proof obligations discovered in the proof for the existing
detailed component models of the ARMv8 core and MMU, demonstrating property transfer
between bisimilar decomposed models, as well as supporting more realistic memory models.

14

Compositional Platform Verification Baumann, Schwarz, and Dam

6 Acknowledgments

We thank Thomas Tuerk for his support in improving our HOL4 definitions. Work supported by
the PROSPER project funded by the Swedish Foundation for Strategic Research, the HASPOC
project funded by the Swedish Innovation Agency VINNOVA, and the KTH CERCES Center
for Resilient Critical Infrastructures funded by the Swedish Civil Contingencies Agency.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer
Science, 82(2):253–284, 1991.

[2] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM Trans. Program.
Lang. Syst., 16(5):1543–1571, September 1994.

[3] Eyad Alkassar, Mark A. Hillebrand, Wolfgang J. Paul, and Elena Petrova. Automated verification
of a small hypervisor. In Proc. VSTTE, volume 6217 of LNCS, pages 40–54. Springer, 2010.

[4] Rajeev Alur, Thao Dang, Joel Esposito, Rafael Fierro, Yerang Hur, F Ivančić, Vijay Kumar,
Insup Lee, Pradyumna Mishra, George Pappas, and O. Sokolsky. Hierarchical hybrid modeling of
embedded systems. In Embedded Software (EMSOFT), pages 14–31. Springer, 2001.

[5] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Formally verifying isolation
and availability in an idealized model of virtualization. In Formal Methods, pages 231–245, 2011.

[6] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Cache-leakage resilient os
isolation in an idealized model of virtualization. In Proc. CSF’12, pages 186–197. IEEE, 2012.

[7] Christoph Baumann, Mats Näslund, Christian Gehrmann, Oliver Schwarz, and Hans Thorsen.
A high assurance virtualization platform for ARMv8. In European Conference on Networks and
Communications (EuCNC), pages 210–214, June 2016.

[8] Pauline Bolignano, Thomas Jensen, and Vincent Siles. Modeling and abstraction of memory
management in a hypervisor. In FASE/ETAPS, pages 214–230. Springer, 2016.

[9] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu. To-
ward compositional verification of interruptible OS kernels and device drivers. In Proceedings of
Programming Language Design and Implementation, PLDI ’16, pages 431–447. ACM, 2016.

[10] Alessandro Cimatti and Stefano Tonetta. Contracts-refinement proof system for component-based
embedded systems. Science of computer programming, 97:333–348, 2015.

[11] Michael R Clarkson and Fred B Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

[12] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and Oliver Schwarz. Formal
verification of information flow security for a simple ARM-based separation kernel. In Proceedings
of Computer and Communications Security, CCS’13, pages 223–234. ACM, 2013.

[13] Richard J Feiertag and Peter G Neumann. The foundations of a provably secure operating system
(PSOS). In National Computer Conference, pages 329–334. AFIPS Press, 1979.

[14] Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will
Deacon, and Peter Sewell. Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. ACM SIGPLAN Notices, 51(1):608–621, January 2016.

[15] Anthony C. J. Fox. Improved tool support for machine-code decompilation in HOL4. In Interactive
Theorem Proving (ITP), pages 187–202, 2015.

[16] D. D. Gajski and F. Vahid. Specification and design of embedded hardware-software systems.
IEEE Design Test of Computers, 12(1):53–67, 1995.

[17] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. CertiKOS: a
certified kernel for secure cloud computing. In Proceedings of the Second Asia-Pacific Workshop
on Systems, APSys’11, page 3. ACM, 2011.

15

Compositional Platform Verification Baumann, Schwarz, and Dam

[18] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. Cache storage channels:
Alias-driven attacks and verified countermeasures. In Security and Privacy, pages 38–55, 2016.

[19] HASPOC project. http://haspoc.sics.se/.

[20] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and
Brian Zill. Ironclad apps: End-to-end security via automated full-system verification. In Operating
Systems Design and Implementation, pages 165–181. USENIX Association, 2014.

[21] Nannan He, Daniel Kroening, Thomas Wahl, Kung-Kiu Lau, Faris Taweel, Cuong Tran, Philipp
Rümmer, and Sanjiv Sharma. Component-based design and verification in X-MAN. Proc. Em-
bedded Real Time Software and Systems, 2012.

[22] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolan-
ski, and Gernot Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst., 32(1):2, February 2014.

[23] Richard J Lipton. Reduction: A method of proving properties of parallel programs. Communica-
tions of the ACM, 18(12):717–721, 1975.

[24] Hamed Nemati, Roberto Guanciale, and Mads Dam. Trustworthy virtualization of the ARMv7
memory subsystem. In SOFSEM, pages 578–589. Springer, 2015.

[25] Wolfgang J. Paul, Sabine Schmaltz, and Andrey Shadrin. Completing the automated verification
of a small hypervisor - assembler code verification. In SEFM, volume 7504 of Lecture Notes in
Computer Science, pages 188–202. Springer, 2012.

[26] Alastair Reid. Trustworthy specifications of ARMv8-A and v8-M system level architecture. In
Proceedings of Formal Methods in Computer-Aided Design (FMCAD), 2016.

[27] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-based design. In Proceedings of
the 34th Annual Design Automation Conference, DAC ’97, pages 178–183. ACM, 1997.

[28] Fernand Lone Sang, Eric Lacombe, Vincent Nicomette, and Yves Deswarte. Exploiting an
I/OMMU vulnerability. In Malicious and Unwanted Software (MALWARE), pages 7–14, 2010.

[29] Oliver Schwarz and Mads Dam. Formal verification of secure user mode device execution with
DMA. In Hardware and Software: Verification and Testing (HVC), number 8855 in Lecture Notes
in Computer Science, pages 236–251, 2014.

[30] Oliver Schwarz and Mads Dam. Automatic derivation of platform noninterference properties. In
Software Engineering and Formal Methods, pages 27–44. Springer, 2016.

[31] Peter Sewell and Jan Vitek. Secure composition of insecure components. In Computer Security
Foundations, CSFW ’99, pages 136–. IEEE Computer Society, 1999.

[32] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. Translation validation for a
verified OS kernel. In Programming Language Design and Implementation, pages 471–482, 2013.

[33] Patrick Stewin and Iurii Bystrov. Understanding DMA malware. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), pages 21–41, 2012.

[34] Hira Syeda and Gerwin Klein. Reasoning about translation lookaside buffers. In Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR), pages 490–508, may 2017.

[35] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam Datta. überSpark: En-
forcing verifiable object abstractions for automated compositional security analysis of a hypervisor.
In 25th USENIX Security Symposium (USENIX Security 16). USENIX Association, 2016.

[36] Rafal Wojtczuk. Subverting the Xen hypervisor. Black Hat USA, 2008.

[37] Fei Xie, Guowu Yang, and Xiaoyu Song. Component-based hardware/software co-verification for
building trustworthy embedded systems. J. Syst. Softw., 80(5):643–654, May 2007.

16

http://haspoc.sics.se/

	Introduction
	Related Work
	System Model
	Instantiation and Soundness
	Abstraction

	Case Study: ARMv8 Platform Security
	ARMv8 Platform Model
	Hypervisor Model
	Information Flow Security
	Bisimulation Proof
	Implementation

	Conclusion
	Acknowledgments

