Perspectives on Constraints,
Process Algebras, and Hybrid Systems

Luca Bortolussi

Dept. of Mathematics and Informatics, University of Trieste, Italy.
luca@dmi.units.it
and Alberto Policriti

Dept. of Mathematics and Informatics, University of Udine, Italy.
Istituto di Genomica Applicata, Udine, Italy.
policriti@dimi.uniud.it

Abstract

Building on a technique for associating Hybrid Systems (HS) to stochastic programs
written in a stochastic extension of Concurrent Constraint Programming (sCCP), we will
discuss several aspects of performing such association. In particular, as we proved an sCCP
program can be mapped in a HS varying in a lattice at a level depending on the amount
of actions to be simulated continuously, we will discuss what are the problems involved in
a semi-automatic choice of such level. Decidability, semantic, and efficiency issues will be
taken into account, with special emphasis on their links with biological applications. We
will also discuss about the role of constraints and of the constraint store in this construction.

1 Introduction

Systems biology emerged in recent years as the discipline promising to deepen the understanding
of living beings, studying them from a systemic perspective. Interactions among constituents are
considered in their concerted activity, and biological behavior is seen as an emergent property
of these intricate patterns of cooperation and repression [13].

However, studying biological systems from this perspective is rather difficult for many rea-
sons: the number of actions and interactions into play is huge, most of them are still unknown
or poorly understood, the complexity of mathematical descriptions grows combinatorially, and
efficiency and precision issues of models are critical.

Stochastic process algebras (SPA) [I7], despite coming from the different context of per-
formance analysis of distributed computing systems, proved to be a promising tool, inasmuch
they offer a simple, compositional, description language that is automatically mapped into the
complex mathematical formalism of continuous time stochastic processes, for simulation and
analysis. Indeed, SPA have at their disposal automatic reasoning tools both at the syntactic
and semantic levels, making them a powerful framework.

Commonly used SPA in systems biology are stochastic w-calculus [§] and bioPEPA [9].
However, their simple primitives may make difficult the description of complex interactions, like
those typical of combinatorial biochemical networks [I4]. Furthermore, they lack any ready-to-
use computational or reasoning power, which is a limitation when facing the issue of modeling
systems at greater level of detail.

Concurrent Constraint Programming [18], in its stochastic variant, sSCCP [3], can be a
way to circumvent these problems. In fact, it combines the simplicity of process algebras for
describing agents with the reasoning and computing capabilities of constraints.

In our attempt to use sCCP as a modeling framework for biological systems, we found two
main advantages:

1. the “computational twist” of constraints allow a compact description of complex opera-
tions, as those needed to describe combinatorial biochemical networks [2] or spatiality [6],
without the need of introducing further primitives in the language.

A. Dovier, A. Dal Pal, S. Will (eds.), WCB10 (EPiC Series, vol. 4), pp. 59 59

luca@dmi.units.it
policriti@dimi.uniud.it

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

2. The separation between agents and the constraint store (cf. Section [2|) forces a modeling
discipline that requires to separate the description of the control logic of the system
(modeled by agents) from the description of the configurations of the system (naturally
modeled in the constraint store).

This second aspect proved its utility as it greatly simplified the definition of an additional
semantics for sSCCP in terms of (a family of) Hybrid Automata [5], thus enhancing the math-
ematical instruments at disposal for analysis

However, these two features of sCCP, namely the “computational twist” and the flexible
semantics based on hybrid automata, are somehow in conflict. In fact, the first one exploits
the reasoning power of the constraint store, while the second one works when constraints are
simplified to very basic interactions. Reconciling these aspects is an open problem.

In addition to the above issues, our reflection on the perspectives of usage of sCCP for
Systems Biology must take into account realistic and effective semantics for sCCP. If, on the
one hand, the control mechanisms are naturally interpreted in fully discrete terms, on the other
hand, the stochastic as well as some of the substance-level modelling (constraint) variables, are
more naturally kept continuous. This was the main reason that lead us to the above mentioned
Hybrid Automata semantics, which can be seen as a way to associate sCCP programs to Hybrid
Automata organized in a lattice at varying levels of discreteness.

Some of the features of such (variable) association were expected: the higher the level of
discreteness to be maintained, the more adherent the program behaviour to the automaton time-
evolution to be observed. Some other feature we found surprising: stochasticity can sometimes
be dropped in favor of discreteness alone, with a very positive drawback in terms of simulation
costs.

We conclude our discussion here putting forward a pair of open problems naturally arising
in the above outlined framework:

1. Is there an optimal level of discreteness to be maintained when associating a hybrid
automaton with a(n sCCP) program?

2. Can we automatically or semi-automatically address the above question by some sort of
analysis of the (sCCP) program?

In this paper, we will not provide answers to such questions, but rather we will discuss these
open problems in more detail, suggesting possible directions of attack. Before doing this, we
will briefly survey the previous work on sCCP and on the hybrid semantics in a non-formal
manner, illustrating the relevant notions by means of an example.

2 Stochastic Concurrent Constraint Programming

sCCP [3] has two basic ingredients: agents and constraints. Agents are the main actors, inter-
acting by asynchronously exchanging information in form of constraints, through the constraint
store. sSCCP has been mainly applied as a modeling language for biological systems [3], using
the constraint store to describe the state of the system, e.g. numerosity of molecular species.
As these quantities evolve in time (and one is precisely interested in such a dynamics), we con-
sidered special variables, called stream wvariables, which can change value during computation
(in contrast with standard logical variables, that can be instantiated just once). At least for
modelling simple biological scenarios, one needs very simple constraints, basically comparing
and assigning new values to stream variables.

60

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

As an example, consider a simple genetic network, with one single gene producing a protein
X at a basal rate k,, acting as its own repressor (by binding in the promoter region of the
gene). When the gene is repressed, it does not produce protein X and, after a delay, it goes
back in the normal state (i.e., the repressor unbinds from the gene). Each copy of protein X is
also constantly subject to degradation at rate kg .

In order to model such a system in sCCP, we need one stream variable keeping track of
the amount of protein X in the system. All interactions, instead, are described by sCCP
agents. In particular, we need a simple recursively looping agent to model degradation and an
agent modelling the gene. This latter agent is slightly more complex, as it describes the control
mechanisms that the gene is subject to.

The sCCP program is gene_on || degrade, where (* stands for true):

[« = X=X+ 1]z, .gene_on + [X >0 — #]i, x .gene_off
gene_off [* — *]k, -gene_on
degrade S [X >0— X=X — 1],x .degrade

f
gene_on =
@

4

The basic actions executable by the agents above are guarded updates of the form [G — R],
where G is a guard that must be satisfied for the action to be performed and R is the update
policy—Dbasically a conjunction of atoms of the form X’ = X + k. Furthermore, each action
has a stochastic duration, given by an exponentially distributed random variable with rate
depending on the state of the system through a positive real-valued function A. Additionally,
the language has standard constructs of SPA: stochastic choice +, parallel composition ||, and
recursion.

The semantics of sSCCP is given by a Continuous Time Markov Chain [I6] (CTMC). Definitions
and further details can be found in [3].

Remark 2.1. The constraints that can be used to update the constraint store are rather limited,
as they simply add a constant term to some stream variables. This restriction, however, allows
to interpret sCCP-actions as continuous fluxes, a required condition to define the hybrid se-
mantics, see also Section [To model more involved biological systems, more complex update
constraints and more complex constraint stores can/should be considered. For instance, in [2],
we used a class of constraints operating on graphs and stream variables to tame the combina-
torial complexity of modelling the formation of protein complexes. We will return on the issue
of interfacing these two needs in Section

Looking again at the example, we can see that the parallel operator is used only to compose
the single agents, but not within agents. When such condition is in force, we can represent
sCCP agents as automata, synchronizing on store variables, called Reduced Transition Systems
(RTS) [4]. The RTS of the agents of the example are shown in Figure As can be seen,
recursion is basically dealt with by introducing loops in the graphs, whose edges are labelled
by rate/guard/update of the corresponding sCCP action. In Figure there are also two
additional variables: G; and Gy. They keep track of which state of the agent is the active
one, with G; = 1 and Gy = 0 corresponding to gene_on and G; = 0 and Gy = 1 to gene_off.
The updates of edges deal with such variables mimicking the program structure, while explicit
dependence on Gy and G is introduced in rates (i.e. production rate becomes k,G1, because
production is possible only in state gene_on). This is a technical trick useful to introduce the
hybrid semantics.

61

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

3 Hybrid Automata

The hybrid semantics of sCCP will be defined in terms of Hybrid Automata (HA), see [I1] for
more details.

The basic idea of HA is that they have a mixed discrete/continuous evolution. The discrete
part of the system is described as a labelled graph, while the continuous part is modelled by
an array of real-valued variables X. In each vertex g of such a graph, called mode, variables
are subject to a continuous evolution, usually defined by a set of ordinary differential equa-
tions (ODE) X = F,(X). The continuous evolution within a mode can be interrupted by the
happening of a discrete event, corresponding to an edge of the graph. This event happens as
soon as specific conditions on variables (described by a guard predicate) becomes true. Its
execution changes the mode of the automaton (hence, also the ODE may change) and modifies
discontinuously the value of variables X, according to an edge-dependent reset policy.

Usually, compositionality of HA is achieved by a suitable definition of a HA-product, cf. [T11 [7].

4 Hybrid Semantics of sCCP

In this section we informally explain the definition of the hybrid semantics for sCCP [5] [7].
The construction is compositional: first, single sSCCP agents are converted into HA, then these
HA are combined by taking their product.

The mapping starts from the RTS of each sCCP agent. The first step consists in partition-
ing the edges of such a RTS into two sets: those that will contribute to continuous dynamics
and those that will define the discrete skeleton.

Consider again the RTS of the gene agent of Figure It has three edges: we will treat as
continuous only the looping edge on gene_on, corresponding to the production of X, while the
ones corresponding to binding and unbinding will be dealt discretely. This is nothing but one
possible choice. Think, for instance, of the case in which all edges are treated as continuous.
Actually, all possible partitions are admissible, and the final choice is left to the modeler.
Once the edges are partitioned, we can construct the graph of the hybrid automaton. This
is essentially derived from the RTS, collapsing nodes connected by continuous transitions and
removing edges to be treated as continuous.

The continuous dynamics within each mode is defined according to continuous transitions con-
necting collapsed RTS-states. Consider the continuous transition producing protein X. It
modifies only variable X, increasing it by 1 unit, with rate kpG;. The associated ODE is
X = (+1) - kpG1, an it can be seen as obtained by multiplying the net increase of X by the
rate. In case more than one transition is acting on a variable, their effect will be summed up."
The definition of the discrete dynamics, instead, is slightly more complicated. In fact, we need
to render the fact that sSCCP actions take time to be executed. This is somehow un-natural for
HA, in which discrete transitions are instantaneous. The idea is to introduce extra (continu-
ous) variables to faithfully govern firing of discrete transitions. Such firing will happen when a
threshold value set at the expected time of the stochastic transition is reached. Consider the
RTS-edge corresponding to the repression of the gene in our running example. As discussed
in [7], we can introduce a new continuous variable—Z27;, in this case—and let it evolve according
to Zp = kyG1 X, ie. according to the rate of the stochastic transition. When Z, reaches 1, we
fire the transition and reset Z; to zero. Z, can be seen as a clock evolving at a non-constant
speed.

IThis is the motivation for requiring constant updates of variables. In fact, it is not clear how to describe in
terms of continuous fluxes other kind of updates, think for instance at X’ = k.

62

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

kuGO kd X

ko G1 X>0—>X'=X-1

geneoff

degrade

X>0—G1'=G1-1&G0'=GO+1
(a) Reduced Transition System

X = kG1
Zy = kyGiX
=0

Gy= G =0

(b) Hybrid Automaton

Figure 1: (b{l(a)) Reduced Transition System for the agents of Section (bl (b)) Hybrid
Automata obtained from gene example. Variables Z;, and Z, are associated with the edge from

gene,, to gene,rs and from gene,rr to gene,, of the RTS. See the text for a more detailed
discussion on these edge variables.

In addition, each edge in the HA will be subject to the same guard and update policies of the
corresponding sCCP action.

Once an HA has been build for each sCCP agent, these are composed together by a special
product construction, which adds the right end sided of differential equations, cf. [7] for further
details. The HA obtained for our example is shown in Figure

The Lattice of HA. The previous construction is parametric with respect to the partitioning
of sCCP actions into discrete and continuous. We can arrange the different HA so obtained
in a lattice, where at the top element all sSCCP actions are treated as continuous, while at the
bottom element they are all kept discrete. Essentially, the fully continuous HA corresponds
to the set of ODE associated to an sCCP program by fluid-flow approximation [4], while the
fully discrete HA is a timed automata with skewed clocks (the so called Multi-Rate Timed
Automata, [12]).

In this section, we assumed that the HA obtained has a (non-)deterministic evolution.
We can also maintain the discrete dynamics stochastic, by simply replacing the threshold 1
in the guards of variables associated to edges by a randomly chosen threshold (exponentially

63

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

distributed with rate 1) [7].

5 Perspectives

In the introduction, we argued that sCCP has two characterizing features that are somehow
in conflict. On the one side, in order to model more complex systems, we would like to increase
the complexity of constraint-based operations acting on the constraint store. On the other side,
however, we want a simple form for such interactions in order to use hybrid-automata based
semantics.

How can we reconcile these two aspects? Considering the use of constraints of [2] [6], we can
observe that, in all cases, the basic entity involved in modeling are stream variables. Constraints
build a structure upon them to define complex manipulations and bookkeeping, in order to
execute a sequence of simple operations as a single step activity.

One possibility is, therefore, to “make explicit” the constraints used, finding a low level
description of the constraint store based only on stream variables, and precisely define the
effect of each constraint in this new store. This construction can be hampered by combina-
torial explosion of store size and even by the emergence of infinity in order to deal correctly
with recursion. However, this direction is worth investigating, for it would reconcile these two
conflicting aspects of sCCP.

Moving forward to the two open problems stated at the end of our introduction, let us
observe that at the top of the lattice mentioned at the end of the previous section we have
a single-mode automaton whose evolution is entirely described by a set of ODEs. Such an
automaton can be seen as a full “mathematical” reduction of our initial sSCCP program: being
able to solve the ODEs we would have a complete solution of the system simulated by the
sCCP program. The discrete dimension plays no role at the top of the lattice.

An attempt to push as down as possible this property, motivates us in the following defini-
tion:

Definition 5.1. An hybrid automaton A in the lattice associated to an sCCP program A is
said to be an optimal approzimation of A if and only if its bisimulation quotient? [15] is finite
and every H' below H in the lattice does not enjoy this property.

On the ground of the previous discussion we have that given an sCCP program A there
always exists a (not necessarily unique) optimal approximation of A.

Notice that it is not clear the role of stochasticity in Definition (5.1). In fact, we need to
explain in some more detail the relationships intervening among continuity, discreteness and
stochasticity in our construction. The key point is that, CTMC are decidable, in the sense that
reachability is computable (one can compute the probability of reaching any subset of states
with arbitrary precision), and model checking of CTL [I0] formulae (or better, its stochastic
version CSL [1]) is decidable. However, when we simplify a CTMC, replacing it by a Multi-Rate
Automaton (MRA)?, decidability is lost. This phenomenon is a consequence of the fact that in
CTMCs time enters the picture orthogonally with respect to evolution: The choice of next state

2The bisimulation quotient of an hybrid automaton H can be seen statically or dynamically. Statically, is
the coarsest partition refinement of the infinite state system (whose states are points in the n-dimensional space
of flows), stable with respect to H’s continuous and discrete transitions. Dynamically, is the fix point of the
partitioning procedure splitting states with respect to the predecessor relation of arcs in H.

3MRA correspond to CTMC in the lattive of non-stochastic HA, as they are the HA associated to the fully
discrete case.

64

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

and the elapsed time before reaching it are probabilistically independent. In MRA, instead,
time drives the evolution and the infinite precision involved in its density may result in the high
expressiveness leading to undecidability.

The above discussion suggests that we can can tackle the open problems we proposed also
focusing on the interplay among continuity, discreteness, and stochasticity. Alternatively, we
can restrict our analysis on the removal of stochasticity, perhaps studying the effect of trading
non-determinism and probability in our models. Again, a precise assessment of the level of
decidability becomes an important benchmark for the approach.

As a final consideration we briefly comment on the following issue: is this circle of ideas/prob-
lems peculiar of Systems Biology? Biological systems seem naturally described by Hybrid Au-
tomata at a certain level of abstraction. At the finest level they can be modeled by CTMC,
but these models may be not manageable in practice because of their complexity. However,
the efficiency issue is not the most peculiar one for Systems Biology applications. In a certain
sense, the features of biological systems hinting more directly at the necessity of a study of the
above mentioned interplay, are their inherent uncertainty (consequence of realistic quantita-
tive environmental interaction) and their complexity (consequence of our lack of knowledge of
the internal biological control mechanisms). In this perspective, Systems Biology can be seen
as a most interesting and promising arena in which testing model building techniques to mix
different levels of discrete, continuous, and stochastic components.

References

[1] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. Sangiovanni-Vincentelli. Verifying continuous
time markov chains. In Proceedings of CAV96, 1996.

[2] L. Bortolussi, S. Fonda, and A. Policriti. Constraint-based simulation of biological systems de-
scribed by molecular interaction maps. In Proceedings of IEEE conference on Bioinformatics and
Biomedicine, BIBM 2007, 2007.

[3] L. Bortolussi and A. Policriti. Modeling biological systems in concurrent constraint programming.
Constraints, 13(1), 2008.

[4] L. Bortolussi and A. Policriti. Dynamical systems and stochastic programming — from ordinary
differential equations and back. Transactions of Computational Systems Biology, 2009.

[5] L. Bortolussi and A. Policriti. Stochastic programs and hybrid automata for (biological) modeling.
In Proceedings of CiE 2009, 2009.

[6] L. Bortolussi and A. Policriti. Tales of spatiality in stochastic concurrent constraint programming.
In Proceedings of BioLogic09, 2009.

[7] L. Bortolussi and A. Policriti. Hybrid dynamics of stochastic programs. Theoretical Computer
Science, 2010.

[8] L. Cardelli. Abstract machines of systems biology. Transactions on Computational Systems Biol-
ogy, 111, LNBI 3737:145-168, 2005.

[9] F. Ciocchetta and J. Hillston. Bio-PEPA: an extension of the process algebra PEPA for biochemical
networks. In Proceeding of FBTC 2007, 2007. Workshop of CONCUR 2007.

[10] E. Clarke, A. Peled, and A. Grunberg. Model Checking. MIT press, 1999.

[11] T. A. Henzinger. The theory of hybrid automata. In LICS ’96: Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, 1996.

[12] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata?
In Proceedings of 27th annual ACM symposium on Theory of Computing, 1995.

[13] H. Kitano. Computational systems biology. Nature, 420:206-210, 2002.

65

Perspectives on Constraints, Process Algebras, and Hybrid Systems L. Bortolussi and A. Policriti

[14] K. W. Kohn, M. I. Aladjem, J. N. Weinstein, and Y. Pommier. Molecular interaction maps
of bioregulatory networks: A general rubric for systems biology. Molecular Biology of the Cell,
17(1):1-13, 2006.

[15] G. Lafferriere, G.J. Pappas, and S. Sastry. O-minimal hybrid systems. In Proceedings of Mathe-
matics of Control, Signals, and Systems (MCSS), 2000.

[16] J. R. Norris. Markov Chains. Cambridge University Press, 1997.

[17] A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature, 419, 2002.

[18] V. Saraswat and M. Rinard. Concurrent constraint programming. In Proceedings of 18th Sympo-
sium on Principles Of Programming Languages (POPL), 1990.

66

	Introduction
	Stochastic Concurrent Constraint Programming
	Hybrid Automata
	Hybrid Semantics of sCCP
	Perspectives

