
EPiC Series in Computing

Volume 57, 2018, Pages 583–603

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

A Theory of Satisfiability-Preserving Proofs in SAT Solving

Adrián Rebola-Pardo1∗ and Martin Suda2†

1 TU Wien, Austria,
arebolap@forsyte.at

2 Czech Technical University in Prague, Czech Republic,
martin.suda@cvut.cz

Abstract

We study the semantics of propositional interference-based proof systems such as DRAT
and DPR. These are characterized by modifying a CNF formula in ways that preserve
satisfiability but not necessarily logical truth. We propose an extension of propositional
logic called overwrite logic with a new construct which captures the meta-level reasoning
behind interferences. We analyze this new logic from the point of view of expressivity and
complexity, showing that while greater expressivity is achieved, the satisfiability problem
for overwrite logic is essentially as hard as SAT, and can be reduced in a way that is
well-behaved for modern SAT solvers. We also show that DRAT and DPR proofs can be
seen as overwrite logic proofs which preserve logical truth. This much stronger invariant
than the mere satisfiability preservation maintained by the traditional view gives us better
understanding on these practically important proof systems. Finally, we showcase this
better understanding by finding intrinsic limitations in interference-based proof systems.

1 Introduction

The story of SAT solving is one of great success, which has made SAT solvers widely used
in practical applications due to their ability to routinely solve instances with millions of vari-
ables. Two recent interrelated breakthroughs in SAT solving are the extension of conflict-driven
clause learning (CDCL) solvers [34] with inprocessing techniques that allow efficient solving in
fragments where CDCL has exponential behavior [1, 24, 19] and the introduction of increas-
ingly expressive and easy to check proof systems to certify the correctness of unsatisfiability
results [7, 11, 41, 17].

The connection between these two features is subtle, and it is yet to be fully understood how
to exploit it to improve the solvers’ efficiency. Inprocessing techniques [19], including clause
elimination [10], symmetry breaking [1], bounded variable addition [24], and parity reason-
ing [35], often tackle fragments hard for CDCL [37, 38, 9]. Behind the scene, these techniques

∗Supported by the Austrian National Research Network S11403-N23 (RiSE), the LogiCS doctoral program
W1255-N23 of the Austrian Science Fund (FWF), the Vienna Science and Technology Fund (WWTF) through
grant VRG11-005, and Microsoft Research through its PhD Scholarship Programme.
†Supported by the ERC Consolidator grant AI4REASON 649043, ERC Starting grant SYMCAR 639270,

and the Austrian research project FWF S11409-N23.

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 583–603

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

briefly violate the rules of the proof system underlying SAT solvers, namely DAG-like reso-
lution [2], in a sound way. Escaping the limitations of this proof system also allows one to
circumvent their known pitfalls in terms of complexity. For example, symmetry breaking or
bounded variable addition allow to derive clauses that are not implied by the formula, but rather
just consistent with it. In doing so, potential exponential speed-ups are attained [12, 17], and
the solver briefly operates under much more general implicit proof systems.

The delete resolution asymmetric tautology (DRAT) and delete propagation redundancy
(DPR) proof systems were developed to express and check these operations [41, 17]. While
DRAT proof generation is widely supported [25, 28, 13], DPR is fairly recent and is yet to be
adopted in practice. Recent results show that these proof systems are polynomially equivalent
to the extended resolution proof system [16, 20], for which no exponential lower bounds are
known [22]. In other words: if SAT solvers fully exploited the power of DRAT and DPR, no
known fragments of CNF formulas would be hard to solve. Alas, this is far from the case,
despite some recent advances in exploiting DPR-based reasoning [18]. Constructing methods
that capitalize on DPR is notably complex due to the involvement of the whole formula in the
inferences, a phenomenon known as interference [14].

Interference has practical implications beyond SAT solving, especially when one considers
the use of proofs with aims other than certifying the solvers’ results. For example, no method
exists in the literature to generate Craig interpolants [5] from DRAT proofs that can be used
in model checking [27], and the allowed inferences lack of some of the intuitive features familiar
from other proof systems such as resolution [29]. The issues of interference all boil down to
the allowed inferences being just satisfiability-preserving, rather than truth-preserving [29].
For example, methods to obtain interpolants from other proof systems work by recursively
constructing partial interpolants throughout the proof tree [26, 40, 8, 33], but the invariants
ensuring the correctness of this procedure rely strongly on the proof being truth-preserving, i.e.
the conclusion of every inference being a consequence of its premises [29]. Even worse, DRAT
and DPR proofs are not even tree-shaped. Rather, these proofs modify the formula in an
incremental way by introducing and deleting clauses. Again, this is mandated by interference:
since the absence of some clauses is a requirement for some inferences, proofs in the shape of
clause trees do not make much sense. It has been argued that further research is needed to
fully understand the potential and possible shortcomings of interference reasoning [14].

Contributions One way to understand DPR proofs is to look for semantic invariants pre-
served throughout proofs. In truth-preserving proof systems this is straightforward, but pre-
vious results imply that no such invariants exist for DPR proofs [29]. In this paper, we argue
that DPR can be construed as operating over a more general logic, called overwrite logic, which
derives expressions that generalize clauses. Reasoning under this perspective is similar to as-
sumptions “without loss of generality” that are familiar in mathematics. Not only can we find
stronger invariants when using overwrite logic: DPR proofs, which are satisfiability-preserving
proofs when considered over propositional logic, become truth-preserving proofs. Moreover, we
argue that for any practical application overwrite logic is no more different from CNF formulas
than propositional logic, and Tseitin-like procedures [30] exist with similar complexity. Finally,
this new perspective enables inferences that cannot be performed with interference reasoning.

Related work DRAT and DPR proofs [41, 17] were developed to increase the reliability of
SAT solvers’ unsatisfiability results by allowing powerful inferences that easily expressed the
reasoning techniques used by SAT solvers [25, 13, 28]. Recent work shows that both proof
systems are essentially as expressive as extended resolution [16, 20], for which no exponential

584

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

lower bounds exist [22]. Some early work on interference-based solving techniques exists but is
still relatively limited [18]; a goal of this work is to provide a deeper understanding of interference
that furthers the development of such techniques.

The issue of the semantics preserved by DRAT proofs has been tackled in [29] for a restricted
case without deletion, presenting an intuitive explanation in terms of permissive definitions.
A result presented there seemed to prevent semantic invariants stronger than satisfiability
preservation in the unrestricted case. We show that overwrite logic is able to overcome this
limitation. The model extraction method from [19] bears some clear similarities to our work,
although the focus there is on identifying correctness criteria for interference during solving.
Some inconsistencies on DRAT proof checking have their roots in the unexpected interaction
between deletion and interference reasoning [32].

Many methods for extracting interpolants from resolution-like proofs have been proposed [26,
40, 8, 33], but truth-preservation in inferences is required. (Propositional) interpolant extrac-
tion from extended resolution proofs, hence from DRAT proofs, has been shown to be expo-
nential under cryptographic assumptions [3, 23]. Since many model checking approaches are
interpolation-based [27], or can work as interpolant generators [4], there are compelling reasons
to study the interaction between interpolation and interference reasoning.

2 Preliminaries

We consider a countable set of propositional variables. An interpretation maps each propo-
sitional variable to either 0 or 1. Throughout this paper we define several kinds of logical
expressions and semantics for them. For each logical expression E, we give a notion of when
an interpretation I satisfies E; in this case we write I � E. An expression E is satisfiable
whenever there is some interpretation I with I � E, and unsatisfiable otherwise. Furthermore,
given two logical expressions E1, E2, we say that E1 entails E2 whenever I � E2 for every
interpretation I such that I � E1; and that E1 satisfiability-entails E2 whenever the existence
of an interpretation I1 with I1 � E1 implies the existence of an interpretation I2 such that
I2 � E2. We denote this by E1 � E2 and E1 �sat E2, respectively. We say that E1 is equivalent
to E2 whenever E1 � E2 and E2 � E1; and that E1 is satisfiability-equivalent to E2 whenever
E1 �sat E2 and E2 �sat E1. We denote this by E1 ≡ E2 and E1 ≡sat E2, respectively. The set
of variables occurring in an expression E is denoted by Var(E).

In this paper we consider CNF formulas and propositional formulas as expressions of different
logics, in order to clearly compare them and their variants from a complexity perspective. Let us
first start with propositional logic. We consider propositional logic (PL) formulas as recursively
defined by the following Backus-Naur form:

ϕ := > | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where p represents propositional variables. The semantics are defined as usual, e.g. I � p
whenever I(p) = 1, and I � ϕ ∨ ψ whenever I � ϕ or I � ψ.

We now define clausal normal form (CNF) logic. A literal is an expression of the form
+p or −p, where p is a propositional variable.1 The complement of a literal is defined by
+p = −p and −p = +p; we then say that +p and −p are complementary literals. A cube is
an expression of the form 〈l1, . . . , ln〉, and a clause one of the form [l1, . . . , ln], where the li
form a finite, complement-free set of unique literals. We regard both cubes and clauses as sets

1 Albeit unusual, the distinction between literals and variables or their negations makes somewhat easier
the definition of overwrites later in Section 3; it does not otherwise affect the content.

585

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

of literals. The complements of clauses and cubes are given by 〈l1, . . . , ln〉 =
[
l1, . . . , ln

]
and

[l1, . . . , ln] =
〈
l1, . . . , ln

〉
. A CNF formula is a finite set of clauses. The semantics of CNF logic

are given as usual: the literal +p is equivalent to p, and −p is equivalent to ¬p; clauses (resp.
cubes) are interpreted as disjunctions (resp. conjunctions) of their literals; and CNF formulas
are interpreted as conjunctions of their clauses. Given a clause C and a cube Q such that
Q 6� C, i.e. Q and C have no literals in common, we then define the clause C|Q as C \Q. We

lift this definition to CNF formulas via F |Q =
{
C|Q | C ∈ F and Q 6� C

}
.

2.1 Redundancy notions on CNF logic

For the rest of this section, we focus on CNF logic, since it is the logic modern SAT solvers
operate within. They work by iteratively modifying a CNF formula in a satisfiability-equivalent
way [10, 41]. In particular, redundant clauses are introduced into or deleted from the formula.
A clause C is said to be redundant in a formula F whenever F∪{C} ≡sat F . Several refinements
of the notion of redundancy have been proposed, and new inference techniques arise from them.

Entailment criteria It is straightforward to observe that C is redundant in F whenever
F � C, so entailment criteria are a good source of redundancy criteria. Checking whether C is
entailed by F is coNP-complete [18], but more restricted criteria are relatively easy to check.
Two simple entailment criteria can be combined to express every entailed clause [21]. The first
one is resolution: given two clauses C and D, and a literal l, we say that C is resolvable with
D upon l (or simply that the resolvent C ⊗lD exists) whenever l is the only literal k such that
k ∈ C and k ∈ D. In this case, we call the clause C ⊗l D defined by (C \ {l}) ∨ (D \

{
l
}

) the
resolvent of C with D upon l; it can be then shown that {C,D} � C ⊗lD. Since the literal l is
unique, we will sometimes omit it and simply write C⊗D. The second criterion is subsumption:
we write C v D whenever every literal in C is contained in D; in that case, we have C � D.

A particular combination of resolution and subsumption yields an entailment criterion able
to express clauses introduced in CDCL SAT solving [6, 2], called reverse unit propagation
(RUP) [7]. Let us call a resolvent C ⊗lD a merge resolution whenever D \

{
l
}
v C [42]. Then,

a subsumption-merge chain2 is a string of clauses E0, . . . , En such that some clauses A0, . . . , An
exist with E0 v A0, and the resolvent Ai = Ai−1 ⊗Ei exists and is a merge resolution for each
i = 1, . . . , n; in this case, we say that the subsumption-merge chain derives the clause An. A
clause C is a RUP clause in a CNF formula F if there exists some SM chain E0, . . . , En deriving
C where {E0, . . . , En} ⊆ F ; if this is the case, then F � C. Although this is not obvious from
the definition, it is relatively easy to establish whether a clause is a RUP in a formula by using
unit propagation, and subsumption-merge chains can be easily extracted in this case. We refer
the reader to [29] for further reference.

Interference criteria More generally, redundancy criteria exist for which the redundant
clause is not entailed by the formula, but rather is simply consistent with it. In such criteria,
both the presence of some clauses and the absence of others are required; this phenomenon is
known as interference [14]. Several interrelated interference criteria have been proposed. Res-
olution asymmetric tautologies (RAT) [10, 41] are widely used, but so far the most powerful
criterion, subsuming all others to the best of our knowledge, is that of propagation redun-
dancy (PR) [17].

2Subsumption-merge chains have been called subsumption self-subsuming resolution (SSSR) chains in [29].

586

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

A clause C is a PR clause in F upon a cube Q whenever, Q∩C is nonempty and, furthermore,
every clause in F |Q is a RUP in the CNF formula F |C . In this case, it can be shown that
F ≡sat F ∪ {C} [17]. From a model-theoretical standpoint, the condition that such clauses
must be RUPs is quite restrictive; in fact, the satisfiability-equivalence above holds if “RUP”
is replaced by any other entailment criterion, including entailment itself. PR clauses are very
powerful: every non-empty redundant clause can be expressed as a PR clause [17]; unfortunately,
finding the appropriate cube Q is NP-complete [18].

2.2 Interference-based proofs

Traditional proof systems represent proofs as trees (or, if clauses are repeated, as DAGs) with
clauses as nodes and edges representing truth-preserving inferences, i.e. inferences where the
conclusion is entailed by the premises. However, this approach is inadequate for interference-
based inferences, since a representation of the “clauses derived so far” must be kept. In general,
satisfiability-preserving inferences preclude tree-shaped proofs, since they violate monotonicity:
if C is redundant in F , it does not follow that C is redundant in F ∪G, whereas this property
holds if entailment is considered instead of redundancy [29].

There are compelling reasons to use satisfiability-preserving inferences. From a theoretical
perspective, satisfiability-preserving inferences allow exponentially shorter proofs [22]. A more
pragmatic standpoint also shows that proof trees are not appropriate: proofs generated by SAT
solvers follow the solver run, deriving essentially the same clauses [11]. However, SAT solvers
frequently delete redundant clauses [10, 11], and since we do not have monotonicity, deletion
can enable satisfiability-preserving inferences, which would never happen with truth-preserving
inferences. This makes it hard to reason about interference criteria, to the extent that the
interplay between interference and clause deletion is at the root of some discrepancies between
the theory and the practice of proof logging in SAT solvers [32]. Hence, for interference-based
proofs, an instruction string approach is more appropriate.

Instructions are expressions which come in two flavors: introductions i:C and deletions d:C,
where C is a clause. Optionally, introduction instructions can be annotated by a cube Q as in
i: Q I C. Each instruction string maps a CNF formula F into its accumulated CNF formula,
also called effect, as follows:

effF (ε) = F effF (i: C, π) = effF∪{C}(π) effF (d: C, π) = effF\{C}(π)

Intuitively, the accumulated formula applies the instructions along the string: i: C introduces
C in the CNF formula and d: C deletes C from it.

With the purpose of designing unsatisfiability certificates that can be both efficiently gener-
ated and efficiently checked, the Delete Resolution Asymmetric Tautology (DRAT) and Delete
Propagation Redundant (DPR) proof systems were introduced [41, 17]. State-of-the-art SAT
solvers are able to generate a DRAT proof when reporting an unsatisfiable CNF formula. Its
extension to DPR proofs was developed recently, and allows for practically shorter and easier
to generate proofs than DRAT [17]; theoretically, both proof systems are (polynomially) as
powerful as extended resolution, though [16, 20]. The DPR proof system allows introduction
and deletion instructions under the following conditions:

• ε is a DPR derivation from F .

• i: C, π is a DPR derivation from F if π is a DPR derivation from F , and C is a RUP
clause in effF (π).

587

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

• i:Q I C, π is a DPR derivation from F if π is a DPR derivation from F , and C is a PR
clause in effF (π) upon Q.

• d: C, π is a DPR derivation from F whenever π is a DPR derivation from F .

The DRAT proof system can be obtained by further requiring the annotation Q in the third
condition to have exactly one literal l: the clause C would in that case be RAT in effF (π)
upon l [17]. A DPR refutation of a CNF formula F is a DPR derivation π from F such that
[] ∈ effF (π). If π is a DPR derivation from a CNF formula F , then F �sat effF (π); in particular,
if it is a refutation of F , then F is unsatisfiable.

3 Overwrite propositional logic

The proof of correctness of PR clause introduction in [17] relies on modifying an interpretation
by overwriting variable truth assignments. It is thus apparent that assignment overwriting
plays a pivotal role in the semantics of DPR proofs. This was already crucial in the approach
from [29], where a variation on the form of formulas is explored. Unfortunately, the definitional
formulas discussed in that work are cumbersome to work with and not versatile enough to
deal with deletion. We propose a more natural approach which only adds one constructor to
propositional logic; we call the obtained logic overwrite propositional logic (OPL).

Given an interpretation I and a cube B, the overwrite of B on I is the interpretation I +B
defined by:

(I +B)(p) = I(p), if p /∈ Var(B) (I +B)(p) = 0, if −p ∈ B (I +B)(p) = 1, if +p ∈ B

The interpretation I + B is well-defined, because B does not contain complementary literals.
Intuitively, the interpretation I +B is obtained by minimally forcing I to satisfy B.

We define a rule as an expression of the form (B :− E), where B is a cube and E is any
logical expression. Rules are not logical expressions, i.e. they are merely syntactic building
blocks and do not have truth values. Given an interpretation I, the conditional overwrite of B
on I subject to E is the interpretation I + (B :− E) defined by:

I + (B :− E) = I +B, if I � E I + (B :− E) = I, if I 6� E

Starting from propositional logic, overwrite propositional logic (OPL) is obtained by con-
sidering one extra connective: given two OPL formulas ϕ and ψ, and a cube B, the ex-
pression ∇(B :− ψ). ϕ is an OPL formula. Its semantics are given by conditional overwrites:
I � ∇(B :− ψ). ϕ if and only if I + (B :− ψ) � ϕ.

In the following, we consider strings of rules ~ε = ε1 . . . εn, where the εi are rules. We
denote by ∇~ε. E the iterative application of overwrite operators to the expression E, i.e.
∇ε1. ∇ε2. . . .∇εn. E. Similarly, we denote by I + ~ε an iterative conditional overwrite on
I, i.e. I + ε1 + ε2 + . . .+ εn.

Clause-based normal forms As for propositional logic, clause-based normal forms can be
defined for overwrite propositional logic. An initial restriction can be made on the form of rules.
Whereas OPL allows rules of the form (B :− ϕ), where ϕ is an arbitrary OPL formula, we will
show that it suffices to consider cubic rules given by (B :−Q), where Q is a cube. Overwrite
clausal normal form (OCNF) is obtained by stacking overwrite connectives with cubic rules over
each clause. Another restriction can be obtained by writing a stack of overwrite connectives over

588

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

a CNF formula; we call such expressions uniformly overwrite clausal normal forms (UOCNF).
As we show in Section 3.2, the expressive power of OPL, OCNF and UOCNF is polynomially the
same; this is unlike the case for propositional logic, where PL is exponentially more expressive
than CNF.

An overwrite clause is an expression of the form ∇~ε. C where ~ε is a (possibly empty) string
of cubic rules and C is a clause; an OCNF formula is a set of overwrite clauses. The semantics
are given as expected: I satisfies the overwrite clause ∇~ε. C whenever I + ~ε satisfies C; and I
satisfies an OCNF formula F whenever I satisfies every overwrite clause in F . Furthermore, if
F is a (standard) CNF formula, then we say that ∇~ε. F is a UOCNF formula, again with the
expected semantics: I � ∇~ε. F whenever I + ~ε � F . The following result shows that UOCNF
can be naturally embedded into (i.e. regarded as a sub-logic of) OCNF:

Proposition 1. ∇(B :− ψ) distributes with ∨, ∧, ¬. In particular, ∇~ε. F ≡ {∇~ε. C | C ∈ F}.

Expressivity and complexity of overwrite formulas Having extended propositional logic
PL with the overwrite connective to obtain the new logic OPL and its restrictions OCNF and
UOCNF, it is natural to ask how these logics compare with respect to expressivity and what is
the complexity of deciding their satisfiability. Expressivity can be studied from a qualitative as
well as quantitative point of view. For instance, it is well known that for every CNF formula
an equivalent PL formula exists and vice versa [39], so we say that PL and CNF have the same
qualitative expressivity. However, CNF formulas need in the worst case to be exponentially
larger than some equivalent PL formulas [39]; we thus say that PL is quantitatively more
expressive than CNF.

When we talk about expressivity we consider the existence of truth-equivalent formulas.
A different question is the complexity of the satisfiability problem for a given formula in a
logic, in particular whether a polynomially-sized, satisfiability-equivalent formula can be found
in polynomial time. Following our example, even if PL is quantitatively more expressive than
CNF, the Tseitin procedure [30] provides a way to reduce the satisfiability problem for PL
to the satisfiability problem for CNF in linear time, and so both satisifiability problems are
NP-complete.

Figure 1 displays what we will know by the end of this section. For example, three arrows
are shown between PL and CNF. The inclusion arrow shows that CNF can be embedded in
PL; the coiled arrow shows that transforming PL formulas into equivalent CNF formulas is
worst-case exponential; and the dashed arrow shows that the satisfiability problem for PL can
be polynomially reduced to the satisfiability problem for CNF. These simulations are shown in
black, because they are known from previous work. Simulations in grey are straightforward,
namely the embeddings CNF ⊆ PL ⊆ OPL, and CNF ⊆ UOCNF ⊆ OCNF ⊆ OPL. Finally,
three non-trivial simulations are shown in red, so we explain them in the next sections. All in
all, by the end of this section we will have argued the following results:

1. CNF, PL, UOCNF, OCNF and OPL all have the same qualitative expressivity.

2. UOCNF, OCNF and OPL all have the same quantitative expressivity.

3. The procedure we provide to simulate OPL through PL is worst-case exponential.

4. Despite the latter two results, the satisfiability problem for OPL can be reduced to the
satisfiability problem for CNF in a manner suitable for SAT solving.

589

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

OPL

PL

OCNF

UOCNF

CNF

polynomial simulation

embedding

exponential simulation

exponential separation

polynomial reduction for satisfiability

Figure 1: Simulation landscape between the CNF, PL, OPL, OCNF and UOCNF logics.

3.1 Qualitative expressivity

In the following paragraphs we argue that OPL, OCNF, UOCNF, PL and CNF have all the
same qualitative expressivity, i.e. for every formula in one of these logics, we can find a truth-
equivalent formula in any other of them. This does not a priori need to be the case, for there
exist sets of interpretations that are not expressible within PL, e.g. the set of interpretations
that map exactly one variable to 1. We show this by finding a cycle of simulations through all of
these logics. The embeddings CNF ⊆ UOCNF ⊆ OCNF ⊆ OPL, together with the well-known
(exponential) transformation of PL formulas into equivalent CNF formulas [39], leaves only the
simulation of OPL by PL to be shown. We devote the rest of this section to obtain a procedure
that, given an OPL formula, generates a truth-equivalent PL formula.

Let us first consider PL formulas ψ and ϕ, so they do not contain ∇ connectives. One can
show the following equivalence:

∇(B :− ψ). ϕ ≡ (ψ ∨ ϕ) ∧ (¬ψ ∨ ϕ|B) (1)

where ϕ|B is obtained by replacing variables x in ϕ by > if +x ∈ B and by ⊥ if −x ∈ B.
Observe that the PL formula ϕ|B is truth-equivalent to the CNF formula F |B as defined in
Section 2 whenever F is a CNF formula truth-equivalent to ϕ, so the notation is consistent;
also for the sake of consistency, we call ϕ|B the reduct of ϕ under B. Formula (1) expresses the
intuition that either the condition ψ holds, in which case we must evaluate ϕ with respect to
the interpretation overwritten by B, or ψ does not hold and we evaluate ϕ as usual.

In order to extend this transformation to arbitrary OPL formulas, we need to generalize also
the notion of reduct to OPL formulas. However, this is not so straightforward, since it raises the
question how would one replace literals inside overwrite rules by > or ⊥. We instead generalize
the notion of reduct in such a way that it directly yields a PL formula, which effectively defines
a truth-equivalent transformation from OPL to PL. In particular, we define:

(∇(B :− ψ). ϕ)|A = (ψ |A ∨ϕ|A) ∧ (¬ψ |A ∨ϕ|B∪A\B)

Before we continue, let us justify this definition, which may seem odd at first. In order to
compute this reduct, we first apply the transformation from (1) to the formula ∇(B :− ψ). ϕ,
and then apply the reduct using the definitions for the other connectives. We then obtain:

(ψ |A ∨ϕ|A) ∧ (¬ψ |A ∨ϕ |B |A)

Finally, we observe that ϕ |B |A = ϕ|B∪A\B holds for every propositional formula. Having
clarified this point, we now show a result characterizing the semantics of reducts, and we
obtain as an immediate consequence that PL qualitatively simulates OPL.

Theorem 1. Let ϕ be an OPL formula and A be a cube. For every interpretation I, we have
I � ϕ|A if and only if I +A � ϕ. In particular, the PL formula ϕ|∅ is truth-equivalent to ϕ.

590

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

> ⊥ p ¬ψ ψ ∧ η ψ ∨ η

t> t⊥ tp
p

t¬ψ
ψ

tψ∧η ψ

η

tψ∨η ψ

η

{t> ↔ >} {t⊥ ↔ ⊥} {tp ↔ p} {t¬ψ ↔ ¬tψ} {tψ∧η ↔ tψ ∧ tη} {tψ∨η ↔ tψ ∨ tη}

Figure 2: Tseitin transformations of subformulas into circuits and definitions. Variables tϕ
represent the circuit output for subformulas ϕ.

3.2 Quantitative expressivity

We now analyze the question of the relative quantitative expressiveness of each logic. It is
known that PL is exponentially more expressive than CNF. This in particular means that there
exists no mapping Φ that maps PL formulas ϕ to truth-equivalent CNF formulas Φ(ϕ) such
that the size of Φ(ϕ) is polynomial in the size of ϕ.

Remarkably, a similar separation does not exist between OPL formulas and neither of their
clause-based normal forms OCNF and UOCNF. In fact, any OPL formula can be linearly
transformed into a truth-equivalent UOCNF formula. The Tseitin transformation achieves a
similar result from PL formulas into CNF formulas, but in this case the transformation is
only satisfiability-preserving, albeit some additional features are preserved. Together with the
embeddings UOCNF ⊆ OCNF ⊆ OPL, the quantitative equivalence of these three logics follows.

Our procedure is very similar to the Tseitin transformation, with two main differences. On
the one hand, the presence of an overwrite prefix in an UOCNF allows us to circumvent the loss
of truth preservation: values are assigned to Tseitin variables using overwrites. On the other
hand, an additional transformation for the overwrite connective is necessary.

The Tseitin transformation can be understood as follows. First, a formula is recursively
transformed into a Boolean circuit, possibly with sharing, and such a circuit does not contain
cycles. Then, new variables are introduced for every node in the circuit. For every such new
variable x, connected through a gate to nodes whose input nodes have variables y1, . . . , yn, a
definition of the form x↔ ϕ(y1, . . . , yn) of bounded size is generated, as shown in Figure 2.

Our procedure completes the Tseitin transformation by providing transformation rules to
turn the overwrite connective ∇(B :− ψ). ϕ into a circuit and a set of definitions. Let us split
B into its positive literals +p1, . . . ,+pn and its negative literals −q1, . . . ,−qm. Given circuits
for the subformulas ϕ and ψ, we construct the circuit shown in Figure 3. The circuit for
ϕ has as inputs the variables occurring in ϕ, which may or may not include variables from
p1, . . . , pn, q1, . . . , qm. Now, for any interpretation I, the formula ϕ is evaluated under the
interpretation I + (B :− ψ), and so the variables pi take the new truth value 1 if either ψ or
pi are satisfied by I; and the variables qi take the new truth value 1 if qi is satisfied and ψ is
falsified by I. Hence, the circuit computes new auxiliary variables p?1, . . . , p

?
n, q

?
1 , . . . , q

?
m that

express the values of the modified variables after the application of the rule (B :− ψ), and then
uses the starred variables as the input of ϕ. If a variable does not occur in B, then that variable
is itself used as input in ϕ.

In order to encode each generated sub-circuit, definitions as shown in Figures 2 and 3 can
be generated and collected in a set D. Observe that, for every node named with x, a unique
definition of the form x ↔ ψ exists in D. Furthermore, since the circuit is acyclic, the nodes
can be topologically sorted as x1, . . . , xn, i.e. if there is a path from xi to xj in the circuit, then
i < j. Now, for every node xi let us clausify the definition xi ↔ ϕi, obtaining a CNF formula

591

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

t∇(B:−ψ). ϕ
ϕ

...

..

.

ψ

p?1

p?n

q?1

q?m

p?1

p?n

q?1

q?m

p1

pn

q1

qm

p1

pn

q1

qm

(+pi ∈ B)

(−qi ∈ B)

p?1 ↔ p1 ∨ tψ

p?n ↔ pn ∨ tψ

q?1 ↔ q1 ∧ ¬tψ

q?m ↔ qm ∧ ¬tψ

. . .

. . .

t∇(B:−ψ). ϕ ↔ tϕ?

Figure 3: Circuit associated to the formula ∇(B :− ψ). ϕ. Triangles represent the use of the
outputs p?i , q

?
i as the inputs pi, qi in the ψ circuit. Introduced definitions are shown in the right:

variables p?i , q
?
i are required to be new.

Hi, whose size is bounded by a constant. Each obtained clause C ∈ Hi contains either +xi or
−xi, so it can then be turned into the rule

(
±xi :− C

)
, where the polarity of xi is chosen to be

the same as that of the corresponding occurrence in C. Then, we define a string ~εi given by
the concatenation of all such rules for the definition xi ↔ ϕi. The following result then holds:

Theorem 2. Under the conditions above, ϕ ≡ ∇ε1 . . . εn. {[+tϕ]}, where tϕ is the variable
associated to the output of the constructed circuit.

Let us briefly explain the intuition behind Theorem 2. By induction, one can show that,
after applying the rule string ~ε1 . . . ~εi, the variables x1, . . . , xi get assigned the respective truth
values that the nodes labeled by x1, . . . , xi would get in the circuit; in particular, the node
xn = tϕ gets assigned the truth value of the circuit output, which is equivalent to ϕ.

This finishes the proof that OPL, UOCNF and OCNF are all equally expressive. Further-
more, given the embedding PL ⊆ OPL, and that PL is exponentially more expressive than CNF,
we know that there is an exponential separation between CNF and OPL. However, the question
whether OPL is exponentially more expressive than PL remains. In general, the translation
from Section 3.1 is exponential:

Example 1. Consider the sequence of OPL formulas ϕn = ∇(+xn :− xn−1) . . . (+x1 :− x0).⊥
for n ∈ N. Given any cube B which does not refer to variables x0, . . . , xn, one can show by
induction that ϕn+1|B =

(
xn ∨ ϕn|∅

)
∧
(
¬xn ∨ ϕn|∅

)
. This means that

∣∣ϕn|∅∣∣ is exponential
on n, which implies that our transformation from OPL formulas to PL formulas is worst-case
exponential. �

From our argument throughout this section, it becomes apparent that the expressivity of
OPL is similar to that of (sharing) circuits. To the best of our knowledge, it is an open
question whether an exponential separation exists between circuits and propositional formulas,
so we speculate the following:

Conjecture 1. OPL is exponentially more expressive than PL.

3.3 Complexity of the satisfiability problem

Any potential use of overwrite logic in practice would be hindered if new solvers for this logic
would need to be developed. In particular, there are two closely related questions that must
be answered: 1) what is the complexity of the satisfiability problem for OPL, and 2) whether
efficient and effective translations into existing solving paradigms. In Section 3.2 we have shown

592

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

that an OPL formula can be linearly translated into an equivalent circuit. Linear encodings
of circuits into almost truth-equivalent formulas through the Tseitin procedure and variations
thereof are well known [30], in the sense that all interpretations of each formula coincide in the
variables occurring in the OPL formula. In a more formal way, the definitions from Figures 2
and 3, together with an assertion of the output node, is a suitable translation to CNF in this
sense. We then conclude:

Corollary 1. The satisfiability problem for OPL formulas is NP-complete. Furthermore, every
OPL formula ϕ can be linearly translated into a CNF formula F such that F � ϕ, and for
every interpretation I satisfying ϕ another interpretation J satisfying F exists such that I and
J coincide on Var(ϕ).

4 Understanding DPR

Throughout this section, we will obtain results that clarify the semantics of DPR proofs, i.e.
the semantic invariants they preserve. However, before we get to that, we believe it is useful
to understand DPR proofs in terms of a technique widely used in handwritten proofs, namely
making assumptions without loss of generality. We now provide two examples of the use of
these techniques; later in this section we will explain their relation to DPR proofs.

Example 2. A special case of Ramsey’s theorem can be stated as follows: given any set of
three people a, b and c, either one of them is a friend of everybody else, or one of them is a
friend of nobody else (assuming symmetry of the friendship relation). In order to show this,
we can assume without loss of generality the following constraint: if c is a friend of a, then it is
also a friend of b. Were this not the case, one can swap the roles of a and b, and obtain a new
problem satisfying both the preconditions of the problem and our assumption. �

Example 3. The pigeonhole problem asks whether m pigeons can be fit into n pigeonholes
in such a way that no two pigeons are allocated to the same hole. To show this, one can
assume without loss of generality that pigeons 1 and m are not both assigned to holes n and
1, respectively. If this happened, pigeon 1 can be moved to hole 1 while pigeon m is moved to
hole n. This operation applied to any solution of the problem yields another solution of the
problem, and additionally our assumption is fulfilled. �

In either case, assumptions without loss of generality are not implied by the problem, but
rather just consistent with it. The argument to introduce them is similar in both cases: if,
under the conditions of the problem, the assumption does not hold then one can perform
a transformation that again falls into the conditions of the problem and, additionally, the
assumption holds after the transformation.

4.1 Satisfiability preservation as a proof invariant

One pleasant and intuitive property of more traditional proof systems is truth preservation: if
we can derive G from F then we know that every model of F is a model of G. This property
holds for DRUP proofs, i.e. DPR proofs without PR introduction instructions, since both RUP
introduction and clause deletion are truth-preserving operations. Truth equivalence cannot be
concluded, because arbitrary clause deletion may allow additional models. Truth preservation
acts as a semantic invariant: if we consider the set M of all interpretations satisfying F then the
accumulated formulas F ′ throughout the proof have the property that M is a set of satisfying
interpretations for F ′, and in particular for G. Hence, one such DRUP proof acts as a witness

593

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

that all models of F are models of G. Truth preservation is a very strong invariant. For example,
effective methods to construct interpolants from resolution or DRUP proofs implicitly rely
heavily on truth preservation [33] and reasoning about non-truth-preserving proofs is notably
harder and often involves global reasoning about proofs [15, 31, 36].

Truth preservation is nevertheless lost once PR clause introduction is considered. Intro-
ducing a PR clause is only satisfiability-equivalent, but in general is not truth-preserving.
Satisfiabilility-preservation in PR introduction, together with truth-preservation of deletions
and RUP introductions, only establishes satisfiability preservation as a semantic invariant of
PR proofs. In particular, the property preserved by the proof is that the set of interpretations
satisfying each accumulated formula is non-empty. A reasonable question is then whether this
is the strongest semantic invariant preserved by DPR proofs: stronger invariants would allow
us to extract more information and have a more local understanding of proofs. In this regard,
a converse to the satisfiability-preservation result appeared in [29]:

Theorem 3. Let F and G be CNF formulas such that F �sat G. Then, there exists a DPR
proof that derives G from F .

This result seems at first discouraging. One interpretation thereof is that the existence of
a proof does not yield stronger semantic invariants than satisfiability preservation. Another
interpretation is that no stronger semantic invariant can be obtained within propositional logic.
As we will see in the rest of this paper, moving our framework to the fringes of these under-
standings (in the former case, by considering the proof itself instead of its mere existence; in
the latter, by understanding DPR inferences as acting over OCNFs) leads to new semantic
invariants.

4.2 Proof-dependent semantic invariants

Our understanding of satisfiability preservation in DPR proofs boils down to [17, Theorem 1]
which states that if F is a CNF formula and C is a PR clause in F upon a cube Q, then the
existence of some model of F implies the existence of some model of F ∪ {C}. This is actually
an understatement: a careful look into the proof of the result from [17] shows that we know
precisely how to transform every model of F into a model of F ∪ {C}.

Theorem 4. Let F be a CNF formula and C a PR clause in F upon some cube Q. Then, for
every interpretation I satisfying F , the interpretation I +

(
Q :− C

)
satisfies F ∪ {C}.

Theorem 4 gives a new view on PR introduction, from which the relation to assumptions
without loss of generality becomes apparent: if an interpretation satisfying the problem F
violates the assumption C, we refine the interpretation in such a way that the resulting in-
terpretation satisfies both the problem and the assumption. In the case of PR introduction,
interpretation refinement is only allowed in the form of block overwrites: specific literals, given
by the witness cube Q, are set to true or false. In particular, PR clauses cannot (directly)
encode refinements where a variable takes the truth value of another variable.

Example 4. We can encode the problem from Example 2 into the following CNF formula F ,
where variable xuv is satisfied if u and v are friends:

[+xab, +xbc] [−xab, −xbc] [+xab, +xac] [−xab, −xac] [+xac, +xbc] [−xac, −xbc]

This is the problem from Example 4 in [13]. There, the symmetry breaker [−xac, +xbc] is
introduced which expresses the assumption without loss of generality given in Example 2. This

594

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

clause can be introduced as a PR clause in F upon the witness cube 〈−xac, +xbc〉, and the
latter expresses precisely the swap of the roles of a and b. �

Example 5. The pigeonhole problem from Example 3 is expressed as the CNF formula F
containing the following clauses:

{[+xi1, . . . ,+xin] | 1 ≤ i ≤ m} ∪ {[−xik, −xjk] | 1 ≤ i < j ≤ m and 1 ≤ k ≤ n},

where the variable xuv is satisfied whenever pigeon u is in hole v. Our assumption without
loss of generality from Example 3 is written as the clause [−x1n, −xm1]. This clause can be
introduced in F as a PR clause upon the witness cube 〈−x1n, −xm1, +x11, +xmn〉. As in
the previous example, this cube represents the transformation proposed there, which moves
pigeon 1 to hole 1, and pigeon m to hole n. This PR introduction corresponds to the first
clause introduced in the DPR proof for the pigeonhole problem with n+ 1 pigeons and n holes
presented in [17]. �

Semantics in terms of assumption without loss of generality can be expressed, as given by
Theorem 4, using conditional overwrites. By collecting introduced overwrite rules, new semantic
invariants can be developed to circunvent the limitations posed by Theorem 3. These semantics
do not depend only on the existence of a proof, but also on the specific features of the proof,
specifically on the witness cubes. In addition to the accumulated CNF formula throughout a
proof, we recursively define the accumulated rule string throughout a DPR proof π as follows:

ars(ε) = ε ars(i: C, π) = ars(d: C, π) = ars(π) ars(i:Q I C, π) =
(
Q :− C

)
, ars(π)

Intuitively, ars(π) collects the set of overwrite rules that would be applied by every PR in-
troduction throughout the proof π in the same order as they occur. Theorem 4 can then
straightforwardly be extended to work over whole DPR proofs, which gives a much stronger
semantics than satisfiability preservation:

Corollary 2. Let F be a CNF formula and π be a DPR derivation of a CNF formula G from
F . Then, for every interpretation I such that I � F , we have I + ars(π) � G.

4.3 DPR proofs as truth-preserving proofs on UOCNFs

An alternative way to understand DPR proofs is to embed the interpretation transformations
induced by PR introductions in Theorem 4 directly into the formula syntax. Overwrite logics
are especially appropriate for this: from Theorem 4 it becomes apparent that PR introduction
naturally operates over UOCNF formulas.

Corollary 3. Let F be a CNF formula and C a PR clause in F upon some cube Q. Then,
F � ∇

(
Q :− C

)
. F ∪ {C}.

Observe a key feature of this perspective on PR introduction: when considered as an oper-
ation over UOCNF formulas, it is not only a satisfiability-preserving operation, but actually a
truth-preserving one. Hence, the question of what are the semantics preserved by DPR proofs
becomes trivial under the UOCNF perspective. This means that DPR proofs can be construed
as (truth-preserving!) proofs over UOCNF formulas as follows:

DPR instruction inference over CNFs inference over UOCNFs

i: C F � F ∪ {C} ∇~ε. F � ∇~ε. F ∪ {C}
i: C I Q F �sat F ∪ {C} ∇~ε. F � ∇~ε,

(
Q :− C

)
. F ∪ {C}

d: C F � F \ {C} ∇~ε. F � ∇~ε. F \ {C}

595

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

Intuitively, in the same way that the accumulated CNF formula throughout a DPR proof
applies the clause introductions and deletions specified by the proof, the accumulated UOCNF
formula additionally applies the overwrites associated to PR introductions. In particular, a
DPR proof π deriving a CNF formula G from a CNF formula F can be understood as deriving
from an UOCNF formula ∇~ε. F the UOCNF ∇~ε, ars(π).G. The semantics of DPR proofs then
become clear in the way that one would expect from a traditional proof system:

Corollary 4. Let π be a DPR proof deriving a UOCNF formula Σ from a UOCNF formula Π,
in the sense explained above. Then, Π � Σ.

5 New insights with overwrite logic

In Section 4.3, a perspective on DPR proofs as proofs over UOCNF formulas was explored.
However, the answer is rather unsatisfactory: although now we have truth-preservation as an
invariant, the usual properties of truth-preserving proofs are not attained. In particular, proofs
are still interference-based: the whole CNF part of the formula is involved in the inference cri-
terion, which precludes tree-shaped proofs where inferences depend exclusively on the presence
of some clauses, rather than on their absence. The choice of UOCNF logic is to blame for
this limitation, since clauses cannot be split from the formulas. However, understanding DPR
proofs from an OCNF perspective eliminates this disadvantange.

Observe that, if a DPR proof can derive the UOCNF formula ∇~ε.G from a formula F , then
we have F � ∇~ε. G ≡ {∇~ε. C | C ∈ G}, where the latter is a OCNF formula. In particular,
every overwrite clause ∇~ε. C independently follows from F , regardless of other clauses. This
suggests that interference can then be avoided. Our goal is to enrich a typical proof system
over clauses with resolution and subsumption as proof rules into a proof system over overwrite
clauses and to show that such a proof system can be used to simulate DPR in a tree-shaped
manner. The inferences of this overwrite resolution proof system are shown in Figure 4.

Theorem 5. The inference rules from Figure 4 are truth-preserving.

The rules ow-res and ow-sub are simply generalizations of the resolution and subsumption
inference rules for clauses. Following the characterization of RUPs as clauses derived by SSSR
chains, these allow the simulation of RUP inferences in an OCNF setting. The rule ow-bot is
necessary to eliminate the string of overwrite rules to ultimately derive a contradiction. Finally,
the role of PR clause introduction is performed by the ow-wlog, ow-taut and ow-ax rules. Perhaps
counterintuitively, introducing any clause C under an overwrite rule

(
B :− C

)
only requires that

B � C, as shown by the ow-ax rule; this is a necessary but insufficient condition for C to be a
PR clause upon B, and it corresponds only to the requirement for PR introduction that B and
C share some literal. In essence, this inference simply proves that an assumption without loss
of generality holds after the associated model transformation. However, the troublesome part of
reasoning without loss of generality is usually arguing that the model still satisfies the original
conditions after the transformation, i.e. showing that F � ∇

(
B :− C

)
. F . The rules ow-wlog

and ow-taut allow to independently derive the overwrite clauses corresponding to this kind of
reasoning: each of these rules introduces a new overwrite rule at the bottom of the prefix of an
overwrite clause, deriving from ∇~ε.D the overwrite clause ∇ε

(
B :− C

)
. D. The reason why we

need two such inference rules is simply that the clause C ∪D|B in ow-wlog does not exist when
B � C or C � D|B , in which case it is simply not needed, obtaining the inference rule ow-taut.

We now need to argue that this proof system can indeed simulate the wealth of instructions
allowed by the DPR proof system. Firstly, observe that deletion instructions can be outright

596

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

∇~ε. C ∇~ε. D
∇~ε. C ⊗D

ow-res if the resolvent C ⊗D exists

∇~ε. C
∇~ε. C ∪D

ow-sub if C 6� D

∇~ε. []

[]
ow-bot

∇~ε. D ∇~ε. C ∪D|B
∇~ε
(
B :− C

)
. D

ow-wlog if B 6� D and C 6� D|B

∇~ε. D
∇~ε
(
B :− C

)
. D

ow-taut if B � D or C � D|B

∇~ε
(
B :− C

)
. C

ow-ax if B � C

Figure 4: Proof rules for the overwrite resolution proof system

ignored: since we are working with tree-shaped, truth-preserving proofs, deletion in this setting
fulfills the same role as in resolution or DRUP: they only represent promises that a proof
will not use a given clause in the future, and so they do not carry semantic meaning. RUP
introductions are unproblematic: every RUP clause C in F can be derived by a proof using
resolution and subsumption from F . This can be simulated by deriving an analogous proof of
∇~ε.C from {∇~ε. D | D ∈ F} using the ow-res and ow-sub inference rules. The PR introduction
case is more interesting. If C is a PR clause in F upon a cube B then, as argued in Section 4.3,
we need to derive ∇~ε

(
B :− C

)
. F ∪ {C} from ∇~ε. F . On the one hand, this involves deriving

the overwrite clause ∇~ε
(
B :− C

)
. C, but this is straightforward using the inference rule ow-ax.

On the other hand, we need to derive ∇~ε
(
B :− C

)
. D for every clause D ∈ F . The following

result implies that we can always do so:

Proposition 2. Let C be a PR clause in a CNF formula F upon a cube B, and D ∈ F . Then,
either of the following hold: B � D, or C � D|B, or C ∪D|B is a RUP in F .

Indeed, the premise ∇~ε. D in both inference rules ow-wlog and ow-taut is automatically
satisfied, because D ∈ F . Moreover, this is the only premise in the case of ow-taut; if the first
or the second alternatives in Proposition 2 holds then we can simply apply that inference rule
to derive ∇~ε

(
B :− C

)
.D. Otherwise, the clause C ∪D|B is a RUP in F ; once again, this means

that we can find a proof of ∇~ε. C ∪ D|B from ∇~ε. F , thus deriving the premises required by
ow-wlog to derive ∇~ε

(
B :− C

)
. D.

The overwrite resolution proof system thus allows to completely represent DPR proofs. Let
us illustrate how a specific DPR proof looks like in this framework.

Example 6. Let F be the formula containing the following clauses:

[+x, +y, −z] [+y, +z, −t] [−x, −z, −t] [−x, +y, +t]

[−x, −y, +z] [−y, −z, +t] [+x, +z, +t] [+x, −y, −t]

597

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

We consider the following DPR (in fact, DRAT) refutation of F , which appeared in [41]:

i: 〈−x〉 I [−x]

d: [−x, −y, z]
d: [−x, −z, −t]
d: [−x, +y, +t]

i: [+y]

d: [+x, +y, −z]
d: [+y, +z, +t]

i: []

In this DPR proof, the clause C = [−x] is introduced as a RAT, i.e. a PR clause in F upon the
cube B = 〈−x〉. On the one hand, this means, by definition, that for every clause D ∈ F ∪{C}
we can derive every clause in F |B as a RUP in F |C . On the other hand, within the overwrite
resolution framework, we need to derive∇ε.D for every clauseD ∈ F∪{C} (where we have taken
ε = (〈−x〉 :− 〈+x〉)), which can only be done using the inference rules ow-taut and ow-wlog.
Proposition 2 and the discussion above show that this can be done, but it may not be clear
exactly how. For the clauses D ∈ F such that B � D or C � D|B hold, this is straightforward:
since the clause D is in F , we can simply apply the ow-taut rule:

[−x, −y, +z]

∇ε. [−x, −y, +z]
ow-taut

[−x, −z, −t]
∇ε. [−x, −z, −t]

ow-taut
[−x, +y, +t]

∇ε. [−x, +y, +t]
ow-taut

The case for clauses D ∈ F such that B 6� D and C 6� D|B is slightly more complicated. The
first condition is needed so that the reduct clause D|B exists. In particular, D|B ∈ F |B , so by
the definition of a PR clause D|B is a RUP in F |C . To apply the inference rule ow-wlog we
need to derive the clause C ∪ D|B from F ; Proposition 2 tells us that it can be derived as a
RUP. Thus, the question is: how can we transform the subsumption-merge chain that derives
D|B from F |C into a subsumption-merge chain that derives C ∪D|B from F? To explain this,
let us compute the reduct F |C :

[−y, +z] [+y, +z, −t] [−y, −z, +t] [−z, −t] [+y, +t]

Let us take as an example the clause D = [+x, +y, −z]. The reduct of this clause under B
is D|B = [+y, −z], and as explained above, it is a RUP on F |C , and so a subsumption-merge
chain deriving it from F |C can be found, shown below on the left. Every premise used is the
reduct D′|C for some clause D′ ∈ F . By replacing these reducts by the original clauses, we
obtain a subsumption-merge chain that derives the clause C ∪D|B = [−x, +y, −z]. Then, the
ow-wlog inference rule can be applied to derive ∇ε. D = ∇ε. [+x, +y, −z], shown shaded:

[+y, +t]

[+y, −z, +t] [−z, −t]

[+y, −z]

sub

res −→

[−x, +y, +t]

[−x, +y, −z, +t] [−x, −z, −t]

[−x, +y, −z][+x, +y, −z]

∇ε. [+x, +y, −z]

ow-sub

ow-res

ow-wlog

We can similarly derive the overwrite clauses corresponding to every clause in F :

598

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

[−x, −y, +z]

[−x, −y, +z, +t] [−x, +y, +z]

[−x, +z, +t][+x, +y, +t]

∇ε. [+x, +y, +t]

ow-sub

ow-res

ow-wlog

[+y, +z, −t]

[−x, +y, +z, −t] [+y, +z, −t]

∇ε. [+y, +z, −t]

ow-sub

ow-wlog

[−x, −y, +z]

[−x, −y, +z, −t] [−x, −z, −t]

[−x, −y, −t][+x, −y, −t]

∇ε. [+x, −y, −t]

ow-sub

ow-res

ow-wlog

[−y, −z, +t]

[−x, −y, −z, +t] [−y, −z, +t]

∇ε. [−y, −z, +t]

ow-sub

ow-wlog

Now it only remains to derive the overwrite clause corresponding to the RAT clause C itself.
As with any PR clause, it can be derived directly with the ow-ax inference rule:

∇ε. [−x]
ow-wlog

The other two introduction inferences in the DPR proof are RUP clause introductions, so
in particular they can be derived from previous clauses by subsumption-merge chains. Since
we have derived the corresponding overwrite clauses and all of them have the same overwrite
prefix, we can simply replace each clause by their overwrite version and replace resolutions and
subsumptions by ow-res and ow-sub. In our proof system, we will not directly obtain the empty
clause, but instead it will be preceded by an overwrite prefix. The inference rule ow-bot allows
in this case to derive the empty clause.

[]

∇ε. []

∇ε. [+x]

∇ε. [+x, −y]

∇ε. [+x, −y, +t]

∇ε. [+x, −y, +z, +t]

∇ε. [+x, +z, +t]

∇ε. [−y, −z, +t]

∇ε. [+x, −y, −t]

∇ε. [y]

∇ε. [+x, +y]

∇ε. [+x, +y, +z]

∇ε. [+x, +y, +z, −t]

∇ε. [+y, +z, −t]

∇ε. [+x, +y, +t]

∇ε. [+x, +y, −z]

∇ε. [−x]

∇ε. [−x]

ow-bot

�

Limitations of interference-based proof systems Our framework presents an inconspic-
uous feature: it can perform inferences which cannot be obtained within DPR proofs, due to
the notion of accumulated formula inherent to interference-based proofs. Let us first express the
problem within an interference framework and then we show how this limitation can be over-
come with the use of the finer-grained reasoning of tree-shaped proofs over overwrite clauses.
Given a CNF formula F and a clause C candidate to be PR in Q, the notion of PR clause
forces us to derive every clause in F |Q from F |C as a RUP. By Proposition 2, this is equivalent

599

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

to deriving C ∪ D|Q as a RUP in F for every clause D ∈ F for which the former expression

makes sense, i.e. Q 6� D and C 6� D|Q must hold.
It might be the case that for some D ∈ F the clause C∪D|Q is not a RUP in F , but we may

know how to derive it by RUP once a lemma D′ has been introduced. Under the interference
framework, one would then need to derive C ∪ D′|Q by RUP, which may need an additional
lemma D′′, and so on. This influence of the whole formula, which interference is named after,
makes it very hard to reason about PR introduction. This limitation is eliminated in our OCNF
framework: since there is no notion of accumulated formula, there is no need for ∇

(
B :− C

)
. D

to be derived for all clauses D ∈ F , and so we are able to derive more redundant clauses.

Example 7. Consider a clause C and a cube Q such that Q � C, and let us assume that
Q \ C 6= ∅. We provide a formula F and a clause D ∈ F such that C is neither a RUP clause
nor a PR clause in F nor in F \ {D}. In other words, C cannot be derived by neither of the
following proof fragments:

i: C i:Q I C d:D, i: C d:D, i:Q I C

Nevertheless, it can be derived within our framework. Let us choose literals l ∈ Q ∩ C and
k ∈ Q\C, and variables x, y not occurring in C or Q. Consider the formula F given by clauses:

[l, k, −u, −v]
[
l, k, −u, −v

] [
l, k, +u, +v

] [
k, −u

]
Then, C is not a RUP in F nor in F \ {D}, since unit propagation on F ∪ C does not reach
a contradiction. Furthermore, C is not a PR in F upon Q: although Q implies both clauses
[l, k, −u, −v] and

[
l, k, +u, +v

]
, and furthermore C∪

[
l, k, +u, +v

]
|Q = C∪[−u, −v] reaches

contradiction by unit propagation using clauses
[
k, −u

]
and [l, k, −u, −v], the clause C ∪[

k, −u
]
|Q = C ∪{−u} cannot itself be derived as a RUP in F . Moreover, C is not a PR either

in F \
{[
k, −u

]}
upon Q, since the removed clause was needed to reach a contradiction before.

However, in our framework, we can use rules ow-taut and ow-wlog to derive the overwrite
clauses:

∇
(
Q :− C

)
. [l, k, −u, −v] ∇

(
Q :− C

)
.
[
l, k, −u, −v

]
∇
(
Q :− C

)
.
[
l, k, +u, +v

]
�

6 Conclusion

We introduced overwrite logic, a new extension of propositional logic with a connective which
allows us to capture the meta-level reasoning behind interference-based proof systems.

We analyzed the logic from the point of view of expressivity and complexity. We learnt
that while often more succinct than standard propositional logic, the satisfiability problem for
overwrite logic remains in NP and can be efficiently reduced to SAT.

We shed new light on DPR and DRAT proofs by proposing to understand the non-monotone
PR introduction (and its restriction RAT introduction) as formalisation of the proof technique
“assumption without loss of generality” common in mathematics.

We then show that any DPR (DRAT) proof can be seen as a truth preserving proof in
overwrite logic. This much stronger invariant than mere satisfiability preservation restores
monotonicity: the clause deletion operation simply becomes a promise not to reuse the deleted

600

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

clause later in the proof. This simplifies reasoning about proofs, opening possibilities for non-
trivial processing of proofs such as interpolation.

This resolves the question of implicit semantics of DRAT proofs only partially answered in
previous work [29] and extends to the more general DPR proof system as well. Moreover, we
use this framework to identify an intrinsic limitation of interference proof systems and propose
how it could be overcome in the more general setting using overwrite logic.

References

[1] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving difficult instances
of boolean satisfiability in the presence of symmetry. IEEE Trans. on CAD of Integrated Circuits
and Systems, 22(9):1117–1137, 2003.

[2] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res., 22:319–351, 2004.

[3] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. No feasible interpolation for tc0-frege proofs. In
38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 254–263. IEEE Computer Society, 1997.

[4] Aaron R. Bradley. Understanding IC3. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer Science,
pages 1–14. Springer, 2012.

[5] William Craig. Linear reasoning. A new form of the herbrand-gentzen theorem. J. Symb. Log.,
22(3):250–268, 1957.

[6] Allen Van Gelder. Producing and verifying extremely large propositional refutations - have your
cake and eat it too. Ann. Math. Artif. Intell., 65(4):329–372, 2012.

[7] Evguenii I. Goldberg and Yakov Novikov. Verification of proofs of unsatisfiability for CNF formu-
las. In 2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003),
3-7 March 2003, Munich, Germany, pages 10886–10891. IEEE Computer Society, 2003.

[8] Arie Gurfinkel and Yakir Vizel. Druping for interpolates. In Formal Methods in Computer-Aided
Design, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014, pages 99–106. IEEE, 2014.

[9] Armin Haken. The intractability of resolution. Theor. Comput. Sci., 39:297–308, 1985.

[10] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere. Clause elimina-
tion for SAT and QSAT. J. Artif. Intell. Res., 53:127–168, 2015.

[11] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking clausal proofs.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23,
2013, pages 181–188. IEEE, 2013.

[12] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying refutations with extended
resolution. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th Interna-
tional Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings,
volume 7898 of Lecture Notes in Computer Science, pages 345–359. Springer, 2013.

[13] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Expressing symmetry breaking in DRAT
proofs. In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25 - 25th In-
ternational Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings,
volume 9195 of Lecture Notes in Computer Science, pages 591–606. Springer, 2015.

[14] Marijn Heule and Benjamin Kiesl. The potential of interference-based proof systems. In Giles
Reger and Dmitriy Traytel, editors, ARCADE 2017, 1st International Workshop on Automated
Reasoning: Challenges, Applications, Directions, Exemplary Achievements, Gothenburg, Sweden,
6th August 2017, volume 51 of EPiC Series in Computing, pages 51–54. EasyChair, 2017.

601

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

[15] Marijn J. H. Heule and Armin Biere. Compositional propositional proofs. In Martin Davis, Ans-
gar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, Novem-
ber 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science, pages 444–459.
Springer, 2015.

[16] Marijn J. H. Heule and Armin Biere. What a difference a variable makes. In Dirk Beyer and Marieke
Huisman, editors, Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
II, volume 10806 of Lecture Notes in Computer Science, pages 75–92. Springer, 2018.

[17] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs without new variables. In
Leonardo de Moura, editor, Automated Deduction - CADE 26 - 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings, volume 10395 of
Lecture Notes in Computer Science, pages 130–147. Springer, 2017.

[18] Marijn J. H. Heule, Benjamin Kiesl, Martina Seidl, and Armin Biere. Pruning through satisfaction.
In Ofer Strichman and Rachel Tzoref-Brill, editors, Hardware and Software: Verification and
Testing - 13th International Haifa Verification Conference, HVC 2017, Haifa, Israel, November
13-15, 2017, Proceedings, volume 10629 of Lecture Notes in Computer Science, pages 179–194.
Springer, 2017.

[19] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer
Science, pages 355–370. Springer, 2012.

[20] Benjamin Kiesl, Adrián Rebola-Pardo, and Marijn J. H. Heule. Extended resolution simulates
DRAT. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Rea-
soning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture
Notes in Computer Science, pages 516–531. Springer, 2018.

[21] Hans Kleine Büning and Theodor Lettmann. Aussagenlogik - Deduktion und Algorithmen.
Leitfäden und Monographien der Informatik. Teubner, 1994.

[22] J. Krajicek, J. Kraj́ıček, M.I.J. Krajicek, G.C. Rota, B. Doran, P. Flajolet, M. Ismail, T.Y. Lam,
and E. Lutwak. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1995.

[23] Jan Kraj́ıcek and Pavel Pudlák. Some consequences of cryptographical conjectures for s12 and
EF. Inf. Comput., 140(1):82–94, 1998.

[24] Norbert Manthey, Marijn Heule, and Armin Biere. Automated reencoding of boolean formulas. In
Armin Biere, Amir Nahir, and Tanja E. J. Vos, editors, Hardware and Software: Verification and
Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8,
2012. Revised Selected Papers, volume 7857 of Lecture Notes in Computer Science, pages 102–117.
Springer, 2012.

[25] Norbert Manthey and Tobias Philipp. Formula simplifications as DRAT derivations. In Carsten
Lutz and Michael Thielscher, editors, KI 2014: Advances in Artificial Intelligence - 37th Annual
German Conference on AI, Stuttgart, Germany, September 22-26, 2014. Proceedings, volume 8736
of Lecture Notes in Computer Science, pages 111–122. Springer, 2014.

[26] Kenneth L. McMillan. An interpolating theorem prover. In Kurt Jensen and Andreas Podelski,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume 2988
of Lecture Notes in Computer Science, pages 16–30. Springer, 2004.

[27] Kenneth L. McMillan. Interpolants and symbolic model checking. In Byron Cook and Andreas

602

A theory of satisfiability-preserving proofs in SAT solving Adrián Rebola-Pardo and Martin Suda

Podelski, editors, Verification, Model Checking, and Abstract Interpretation, 8th International
Conference, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings, volume 4349 of Lecture
Notes in Computer Science, pages 89–90. Springer, 2007.

[28] Tobias Philipp and Adrian Rebola-Pardo. DRAT proofs for XOR reasoning. In Loizos Michael
and Antonis C. Kakas, editors, Logics in Artificial Intelligence - 15th European Conference, JELIA
2016, Larnaca, Cyprus, November 9-11, 2016, Proceedings, volume 10021 of Lecture Notes in
Computer Science, pages 415–429, 2016.

[29] Tobias Philipp and Adrián Rebola-Pardo. Towards a semantics of unsatisfiability proofs with
inprocessing. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, May 7-12,
2017, volume 46 of EPiC Series in Computing, pages 65–84. EasyChair, 2017.

[30] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation. J.
Symb. Comput., 2(3):293–304, 1986.

[31] Adrián Rebola-Pardo. Unsatisfiability proofs in SAT solving with parity reasoning. Master’s
thesis, TU Dresden, 2015.

[32] Adrian Rebola-Pardo and Armin Biere. Two flavors of DRAT. In Pragmatics of SAT 2018, 2018.

[33] Matthias Schlaipfer and Georg Weissenbacher. Labelled interpolation systems for hyper-resolution,
clausal, and local proofs. J. Autom. Reasoning, 57(1):3–36, 2016.

[34] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers, 48(5):506–521, 1999.

[35] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryptographic
problems. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings,
volume 5584 of Lecture Notes in Computer Science, pages 244–257. Springer, 2009.

[36] Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In Olaf Beyersdorff and
Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018
- 21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer
Science, pages 217–234. Springer, 2018.

[37] Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987.

[38] Alasdair Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathematics,
96-97:177–193, 1999.

[39] Dirk van Dalen. Logic and structure (3. ed.). Universitext. Springer, 1994.

[40] Georg Weissenbacher. Interpolant strength revisited. In SAT, volume 7317 of Lecture Notes in
Computer Science, pages 312–326. Springer, 2012.

[41] Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory and Applications
of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of
Lecture Notes in Computer Science, pages 422–429. Springer, 2014.

[42] Edward Zulkoski, Ruben Martins, Christoph M. Wintersteiger, Jia Hui Liang, Krzysztof Czarnecki,
and Vijay Ganesh. The effect of structural measures and merges on SAT solver performance. In
John N. Hooker, editor, Principles and Practice of Constraint Programming - 24th International
Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture
Notes in Computer Science, pages 436–452. Springer, 2018.

603

	Introduction
	Preliminaries
	Redundancy notions on CNF logic
	Interference-based proofs

	Overwrite propositional logic
	Qualitative expressivity
	Quantitative expressivity
	Complexity of the satisfiability problem

	Understanding DPR
	Satisfiability preservation as a proof invariant
	Proof-dependent semantic invariants
	DPR proofs as truth-preserving proofs on UOCNFs

	New insights with overwrite logic
	Conclusion

