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Abstract

Expectations are that automated and connected mobility will increase road safety and
traffic efficiency. However, due to possible shortcomings of new technologies , road users
may be confronted with disturbances and potential safety risks. The mitigation of such
risks will bring necessary changes to road infrastructure, vehicles and road-users’ behavior.
In a traffic environment that was built to fit the human perception, preemptive simulation
of parametrized scenarios can provide guidelines for what changes and difficulties are to
be expected. Utilizing SUMO in varied scenarios, this paper outlines the creation of
virtual models that correspond to interaction hot spots on the Austrian road network
- from digitizing the infrastructure, to calibrating a simulation scenario with congruent
traffic measurements - while it concludes with the evaluation of scenario simulation results.
The approach is demonstrated for a selected motorway ramp scenario, varying rates of
automated vehicles and different infrastructure layouts. Performance indicators like vehicle
speed distributions and traffic disruptions are defined and analyzed to investigate how
adaptations can mitigate risks, influence traffic flow and hence support progressing vehicle
automation.

1 Introduction
The application of artificial intelligence is increasingly present in many parts of our lives. On the
roads the capabilities and possible shortcomings of new technologies might cause disturbances
and potential threats regarding what humans have come to perceive as a usual flow of traffic.
An automated vehicle (AV) will, for instance, not be equipped with a comparable decision
logic applied by a human driver who steers a conventional vehicle (CV). While the foreseeable
developments in this field allow for a greatly improved safety in many traffic situations [13], this
promise is uncertain to hold true for the period of mixed traffic with conventional road users.

Besides potential safety risks, this can lead to situations where traffic flow is easily inter-
rupted by the strict adherence to high safety standards, causing an AV to stop or slow down
at non-ideal conditions for a planned maneuver. Problematic factors that may cause such
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non-ideal conditions in traffic can be distinguished into three groups: (1) Road infrastructure
characteristics and conditions such as limited distance of sight, poor surface or lane markings
quality, (2) adverse weather conditions that lead to reduced sensor visibility and (3) misleading
or insufficient interaction with other human road users.

The work conducted for this article was part of a larger Austrian research project called
via-AUTONOM, which studied the requirements for future road infrastructure in the light of
increased AV penetration. Simulation models and methods allow to preemptively study possible
scenarios, at little cost and no risk of harm.

This publication demonstrates microscopic simulations in reconstructions of a select motor-
way on-ramp scenery to evaluate how an infrastructure adaptation influences the efficiency and
safety of a mixed traffic flow. The software package for road traffic simulation SUMO [8] was
chosen as the simulation tool due to its easy extensibility, good user support, as well as the
transparency of an open-source project.

As indicators for the fluency of the traffic, we calculate the frequency of forced stops, the
minimal time to collision (TTC), minimal vehicle spacing and the harmonization of the traffic
flow after merging, which are detailed in section 3.3.

This research focuses on two key issues. First, it presents the accurate reconstruction of a
road section from real-world measurements, and subsequent transfer to the OpenDRIVE format
[4]. Second, a novel set of indicators was combined to derive findings about traffic efficiency in
relation to an adapted road infrastructure. Ultimately, the methods presented form the basis to
determine the optimal cost benefit trade-off for proposed infrastructure measures, by comparing
the resulting impacts to expected costs for adapting or retrofitting current infrastructure.

This document is structured as follows: Section 2 presents the road layout and the traffic
composition. Section 3 describes the data acquisition chain from road to virtual representation,
the methods used for simulation and traffic flow evaluation. It is followed by a summary of
results in section 4. The conclusions in section 5 and perspective on future work in section 6
conclude the report.

2 Simulation Scenario

The following section describes the required components that constitute the overall virtual
representation of the investigated scenario, which comprise the setting’s road topology and the
traversing traffic.

2.1 Road Layout

A motorway segment with a ramp and an acceleration lane was chosen as the primary scenario
for the presented research. The real-world location of this segment is near Exit ’Zöbern’, on
the Austrian motorway ’A2 - Süd Autobahn’. The speed limits on this motorway section is 100
km/h for passenger cars.

Figure 1 shows the layout of the traffic situation. Cross-sectional speed detectors were
introduced at different locations in the virtual representation of the scenery, represented by
points ’C’, ’P1’ and ’P2’. Location C was used for measurements to calibrate a realistic behavior
of the simulated traffic on the main lanes 0 and 1 (see section 3.2.2). Locations ’P1’ and ’P2’ were
introduced to measure the differences in speed distributions at these points (see section 3.3).

Two different infrastructural settings were examined in this study. The first being the
baseline situation of the real road infrastructure (“short” acceleration lane). An identical layout,
but with an acceleration lane extended by 300 m was used as the second, modified infrastructural
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situation (“medium” acceleration lane). This was done to examine the effects on traffic flow,
given an adapted infrastructure.

Lane A

C

Lane 0

Lane 1

P1P2

500m

„Short“ acceleration lane: 200m
„Medium“ acceleration lane: 500m

Figure 1: Scenario of traffic merging from right to left. Position C is the detector location for
calibration, positions P1 and P2 are detectors for speed-profiling the consequences of merging.
Lane A designates the acceleration lane with different lengths for the two infrastructural set-
tings. The length of the acceleration lane is different for the settings of “short” and “medium”
acceleration lane.

2.2 Traffic Composition

The traffic load at the scenario site was determined by using measurement data from roadside
sensors that provided aggregated averages by vehicle category for a period of approximately
6 weeks. Segmentation of this data yields traffic counts of (940 / 165) vehicles per hour for
(passenger cars (PC) / heavy goods vehicles (HGV)) during the morning peak, and (625 / 170)
vehicles during late morning, respectively. The higher load at morning peak hours was chosen
as base value in the following investigations.

In the simulation model, the scenario traffic is composed of three different vehicle type
compositions, one for each lane which are illustrated in Table 1. 18 % of total traffic on both
lanes are HGV which are restricted to the right lane. This is kept constant for all considered
traffic scenarios. Additionally, the composition contains two different types of CVs as well as AVs
on all lanes, which uniformly make up all the PCs in the simulation. The mixed composition
of CVs was chosen to better model the measured speed distributions of the scenario, thus
improving the stability of calibration results (see section 3.2.2). Furthermore, to avoid an
overly regular insertion of vehicles into the simulations, they were defined by a probability per
second, resulting in a binomially distributed inflow.

3 Methods

Starting with the means to obtain the baseline data of the simulation scenarios, the choice of the
simulation approach is presented in the following section. This includes the vehicle models, and
is followed by scenario calibration and the description of indicators for traffic flow evaluation.
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vehicle
type lane 0 lane 1 lane A

CV 1 + 0 +
CV 2 0 + +
HGV ≈ 18 % tot. traffic 0 0
AV 0 - 70 % CV 0 - 70 % CV 0 - 70 % CV

Table 1: Traffic inflow composition given by vehicle type components per lane (given in %).
’+’ indicates presence of inflow of different volumes, depending on the scenario setting. See
Figure 1 for road layout.

3.1 Digitalization of Roads

A tool chain was developed to digitalize real-world road sections for simulation purposes. It
consists of four steps, which are depicted in Figure 2.

Road data
acquisition

Extraction of road
geometry, lanes
and objects

Conversion to the
OpenDRIVE format

Import and 
modelling of
virtual roads

1 2 3 4

Figure 2: Tool chain to reconstruct real-world roads for simulations.

As the simulations are done on reconstructed real-world road sections, the modelling is based
on measurements conducted by a dedicated mobile laboratory called RoadSTAR [16]. The road
data consists of stereo-video streams recorded during a large-scale road condition monitoring
campaign on the Austrian motorway network. Additionally, a precise trajectory was generated
from positioning and attitude data from a tightly-coupled IMU and GNSS system. An in-house
mobile mapping work flow was utilized to manually extract road characteristics such as lane
width, lane markings and roadside objects, e.g. traffic signs or restraint systems. The extracted
objects and their coordinates were stored in a database and mapped to a global coordinate sys-
tem. A software was developed to convert the object database to the XML-based OpenDRIVE
format [4], which allows a standardized and detailed description for wider application in the
future.

To generate a simulation network based on the real-world data, the SUMO tool NETCONVERT
was used for converting the data from OpenDRIVE format to the likewise XML-based SUMO-
network format [8]. Subsequently, a validation of the obtained SUMO network ensured the two
network representations to coincide. A prohibition rule for trucks and trailers was added to
the left main motorway lane of the SUMO-network, which effects the situation of prohibited
overtaking for HGVs.
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3.2 Simulation

The investigation of traffic flows containing a multitude of AVs is the aim of this study. To
simulate the behavior of automated vehicles, different alternatives to model AVs in the SUMO
environment were considered. A co-simulation approach for a simulated AV requires a well de-
fined interface that transforms and exchanges all information between vehicle and environment.
For the simulation of many AVs this most versatile method soon becomes computationally pro-
hibitive. Therefore, a strategy for modeling was chosen that has been presented as a viable
solution in other traffic micro simulation studies utilizing SUMO [11, 18], as well as other simu-
lation tools [9]. The parameters of SUMO’s standard car following model were adapted to best
mimic the behavior of automated vehicles. This is technologically identical to a conventional
simulated vehicle model while it offers all the benefits of efficiency and stability.

3.2.1 Vehicle Model

Due to its simplicity and reliability, a modified version of the model Krauss was chosen for
modeling the vehicle behavior. This microscopic, space-continuous car following model based
on the safe speed (according to [10]) is documented as the default model of SUMO in [2]. In
contrast to other car following models (CFM), e.g. the Wiedemann model used in VISSIM
[5], it only consists of a small set of significant input parameters, which have to be adapted
appropriately for describing AVs. The set of parameters used in the simulations within this
project are shown in Table 2 and were chosen based on the following assumptions:
All AVs aim at driving with their desired speed, which is equal to the maximum speed limits
in the simulation scenarios. Therefore, the variance of the speed distribution was set to zero
in order to avoid speed deviations, which is one of the important differences compared to
CVs. In addition, the drivers imperfection described by sigma was set to zero (compare [1]).
Furthermore, reaction times of AVs are defined by technological limitations and therefore can
be shorter than those of human drivers [19]. To account for this the actionStepLength (aSL),
which describes the periodicity of vehicle-control decision updates of the CFM, was set to
smaller values for AVs. As a consequence, the desired minimum time headway tau of AVs was
reduced, allowing a denser traffic flow. Consequential effects are discussed in section 4.

In this study, identical acceleration values for AVs and CVs were set due to the focus on
delicate merging situations and emergency maneuvers. This is in contrast to other studies,
which also consider the more energy-efficient driving behavior of AVs and assume reduced
values for these parameters. However, in the presented investigations, such efficiency limitations
should not be applied. In general, AV parameters were set compliant with SAE level 5 in [15].
However, for the purposes of this study, vehicle connectivity and its effects on driving decisions
were disregarded.

For the simulations, the continuous lane-change model of SUMO was chosen in order to
represent the more realistic aspects of non-instantaneous lane-changing as suggested in [2]. Some
adaptions of the lane-change model parameters were made to describe the assumed behavior of
AVs. In essence (see Table 2), more strategic and cooperative lane changing behavior of AVs in
comparison to CVs was effected.

3.2.2 Calibration

Actual roadside detector data (see section 2.2) was used to compare against data from the sim-
ulation’s instantaneous induction loops (IIL) taken at cross section ’C’ in Figure 1. Preparation
of the IIL data enables to treat the simulated detectors identical to the real ones.
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vehicle
type accel decel tau∗ sigma aSL speedFactor∗ lcS lcC

CV 1 2.0 4.0 1.07 0.5 0.7 µ = 1.03, σ = 0.103 0.8 0.5
CV 2 2.0 4.0 1.07 0.5 0.7 µ = 1.04, σ = 0.161 0.8 0.5
HGV 2.0 4.0 1.21 0.5 0.7 µ = 0.91, σ = 0.115 1.0 0.5
AV 2.0 4.0 0.4 0.0 0.1 µ = 1.00, σ = 0.000 5.0 1.0

Table 2: Car-following and lane-changing Parameters for both classes of CV and HGV for the
Krauss car-following model. Optimized parameters are shown as starred∗ and are a result of
the the calibration. Using the same model for AV, the last line shows the chosen parameters.
In this context, aSL denotes the actionStepLength, lcS denotes the parameter lcStrategic
and lcC denotes the parameter lcCooperative.

For the calibration of the baseline scenario the parameters of the desired speed normal
distributions were optimized separately for both CV types and the HGV type. An additional
minimum time headway parameter was used for the CV and HGV, resulting in a total of
eight parameters ({µ, σ} × {CV1, CV2, HGV} and {τ} × {CV, HGV}) for optimization.
The distribution splitting of the CV vehicle class allows for a wider speed distribution in the
measured data, which thereby is expressed as a gaussian mixture of two components. Using
the Manhattan distances of speed distribution probability mass functions (PMF) weighted by
the counts of the detected vehicle class (CV, HGV), provides a sufficient optimization criterion
for the given scenario. To check the stability of obtained optimization solutions, two different
optimization algorithms (swarm optimization [17] and a bayesian optimization [7]) were used
which both yielded similar numerical results.

20 25 30 35
speed [m/s]

0.0

0.1

0.2

0.3

HGV
measured
simulation

20 25 30 35
speed [m/s]

PC
speed distributions compared

Figure 3: Compared distributions of vehicle speeds by types heavy goods vehicle (HGV), passen-
ger car (PC) for roadside measurements and simulation detector outputs of calibrated scenario.
The optimization yields good similarity of the speed profiles.

The optimization results in Figure 3 show the desired speed distributions, comparing the
real measured PMF for both vehicle types currently encountered on the scenarios’ roads (CV,
HGV) against the simulated measurements.
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3.2.3 Scenario Variations

Considering possible settings for the chosen scenario location led to the choice of three different
traffic composition parameters that are described in Table 3. The cartesian product of all three
sets leads to 120 different scenario variations, to be simulated and analyzed. To derive solid
statistical conclusions on the effects of the scenario variations, each of the parameter settings
was run in repeated simulations for a total of 100 hours each.

main traffic scale 1.0, 1.5, 2.0, 2.5
AV penetration rate 0, 0.1, 0.2, 0.3, 0.5, 0.7

inflow rate 0.1, 0.2, 0.4, 0.6, 0.8

Table 3: Sets for each considered scenario parameter. The inflow rate yields the traffic on lane
A in relation to lane 0 (compare Figure 1).

3.3 Indicators for Safety and Traffic Flow
Considering the safety conditions and fluency of the traffic under scenario variations, the fol-
lowing indicators were implemented:

• Frequency of severe interruptions
When AVs react to situations that can not be handled safely by their steering functions
they will be forced to halt the vehicle. This also affects other oncoming traffic. This
aspect was implemented by analyzing the number of forced stops on the acceleration lane
A.

• Harmonization of traffic after merging
Because freeway flow disturbances and oscillations often form near ramps where traffic
merging happens (as shown in [12]), it is of special interest to monitor the restored unifor-
mity of traffic after the end of the acceleration lane. The speed distributions at points ’P1’
and ’P2’ in Figure 1 are utilized as a measure to characterize and compare flow uniformity
by speed mean values and variances.

• Vehicle spacing
A popular temporal indicator to distinguish critical from normal driving behavior is the
Time to Collision (TTC) [6], which is used for traffic conflict analysis and collision avoid-
ance systems as a measure for the imminence of a collision. Complementary to the TTC,
spatial distance provides another perspective on potential conflicts. Occurrence of close
vehicle proximity results in challenging driving situations.

4 Results
In the following, results will be presented for the three defined indicator aspects.

4.1 Flow Interruptions
Flow interruptions are caused by the rush of merging traffic. As the first indicator of traffic-
fluency, the number of forced stops of vehicles on the acceleration lane is investigated. A
normalization to the inflow traffic volume was carried out to equalize the following results.
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Figure 4: Box plot of forced stops on ’lane A’ normalized to inflow for 100% main traffic scaling
and “short” acceleration lane.

For the baseline scenario (“short” acceleration lane) and nominal traffic flow on the main
lanes (main lanes’ traffic at 100 %), Figure 4 shows a reduction of stop occurrences per inflow
strength with increasing penetration of AVs. The same scenario with 250% main lane traffic
load in Figure 5a, exhibits a drastic increase of the median values at a factor of ≥ 2.5 in
comparison to Figure 4. Increasing inflow leads to excessively more vehicle stops - especially
for low AV penetration rates. Higher AV rates result in a number of stops less sensitive to the
inflow. The cause for this effect is two-fold. On the one hand, AVs exhibit a more conservative
driving style, with homogeneous speed choice, higher cooperativity and no driving errors. On
the other hand, a greater traffic volume leads to more tightly coupled vehicle behavior, where
AVs enforce their style onto others.
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(a) “short” acceleration lane.
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(b) “medium” acceleration lane.

Figure 5: Box plot of forced stops on ’lane A’ normalized to inflow for 250% main traffic scaling.
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With modified road infrastructure (“medium” acceleration lane) a very low number of stops
can be seen. Figure 5b shows median values of approximately 1/10 of those for the same traffic
scaling in the baseline with “short” acceleration lane (Figure 5a). The long distance allows for
enough time to maintain fluent traffic. Yet the effects of increased AV rates are discernible.

4.2 Traffic Homogeneity
As a measure for the homogenization of downstream-traffic after the end of the acceleration
lane, two detectors for cross-sectional speed measurements were introduced in the simulation.
In the diagram of Figure 1, their locations are ’P1’ and ’P2’. The space between those points
is considered as traffic ’adaptation zone’. Aggregation of these detector measurements into
speed distribution PMFs (similar to those used for calibration in Figure 3) allows inspection
and comparison of the traffic in both detection points. The following analysis shows the results
for passenger cars only.

For the sake of presentation as well as comparability, the considerable amount of information
contained in those measurements for all parameter settings is reduced to weighted averages
(average) and standard deviations (std) of the measured speed. Because the changes of the
speed distributions between the two detection points is of major interest, relative differences
r(P1, P2) of average and std are calculated as r(P1, P2) = (v(P2) − v(P1))/v(P1) with v being
the value of either average or std at the respective detection points (i.e.: how much do those
values change in relation to the value at P1). These values are computed for all cases of defined
v(P2) and v(P1).

The baseline scenario (“short” acceleration lane) and nominal traffic flow on the main lanes
(main lanes’ traffic at 100 %) is summarized in Figure 6. Reading this diagram reveals the
following: For high inflow on lane A (80%) and low AV penetration rate (0%), the relative
average speed (left green diagram) increases by about 35% throughout the adaptation zone
and has a starting value of 21m/s at point ’P1’. The relative standard deviation of the speeds
(right blue diagram) for the same inflow and AV penetration reduces by 80% throughout the
adaptation zone, with a start value of 5m/s at point ’P1’, effectively reducing the spread of PC
speeds significantly.

When considering high main traffic load of 250% for the “short” acceleration lane setting, the
consequences are shown in Figure 7. High inflow and low AV penetration significantly reduce
the average speeds right after the acceleration lane in point ’P1’. More AVs cause significantly
less of these speed reductions due to merging. The right std diagram shows little spread (4.1)
for high inflow and no AVs, which indicates coupled vehicle behavior. An increasing AV rate
leads to better speed synchronization and higher average speeds.

Comparing against the case of high traffic load of 250% on the medium acceleration lane
scenarios shows that relative speed increases are smaller, because the traffic flow is almost undis-
turbed after the acceleration lane. The increasing the number of AVs causes higher uniformity
of speeds.

4.3 Vehicle Spacing
To investigate the safety impact of AVs, the safety surrogate measurements (SSM) of the im-
plemented simulation scenarios are analyzed. All simulated passenger cars (CV1, CV2, AV) to
that effect were equipped with an SSM device, which logs the conflicts and corresponding safety
surrogate measures. With our focus set on passenger cars, no measurements were recorded for
the unmodified HGV traffic. Furthermore, this section only includes results for the scenario
with short acceleration lane and a main traffic scaling of 250%. The demonstrated effects are
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Figure 6: Relative change of weighted average and standard deviation of PC speeds between
the detection points for 100% main traffic scaling and “short” acceleration lane. Color indicates
the relative change in %. Absolute values at detector ’P1’ are annotated as [m/s] in the cells.
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Figure 7: Relative change of weighted average and standard deviation of PC speeds between
the detection points for 250% main traffic scaling and “short” acceleration lane. Color indicates
the relative change in %. Absolute values at detector ’P1’ are annotated as [m/s] in the cells.

more pronounced for this most critical setup, where the available time for completion of the
merging maneuvers is limited.

For estimating the number of occurrences of critical situations, it is generally assumed that
whenever a vehicle’s TTC falls below a certain value, this can be considered as an unsafe
situation [3]. Based on previous research on the safety impact of AVs [14], the critical threshold
value was set to 1.5 seconds. In addition to the investigation of the number of conflicts, the
minimal time and space headway were analyzed.
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In Figure 8, the impact of the AV penetration rate on the number of conflicts per simulation
hour (left) and mean values of the average minimal spacings (right) for different inflows are
shown. The abolute number of conflicts considerably reduces even for high inflows, which is in
accordance with the results obtained in [14]. Here, both the number of conflicts and minimal
spacing tend to converge against a specific value defined by the increasing predominance of
automated vehicles.
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Figure 8: Impact of the AV penetration rate on the absolute number of conflicts (TTC ≤ 1.5
seconds) occuring in one simulation hour (left) and the mean values of all run average minimal
spacings (right) for different traffic inflows. Data point errors are ≤ 1%. The figures show a
main traffic scaling of 250 % with short acceleration lane.

This convergence behavior at increasing AV penetration shows the mean value of the minimal
spacings to increase (Figure 8 right), due to less critical situations occurring by the moderating
influence of AVs. With further increase of AV penetration, for low inflows, the smaller headway
distances of AVs reduce the minimal spacings still, while numbers of conflicts decrease.

5 Conclusions
This research studied the infrastructural modification of an on-ramp motorway section under
different traffic compositions, especially varying autonomous vehicle penetration rates. To this
end multiple traffic scenarios were simulated for each of two different infrastructural settings.

Implementing the infrastructure measure of a significant extension of the acceleration lane
for the studied motorway ramp scenario, strongly reduces the effects of interruptions arising
due to limited opportunities for merging into the main lanes’ traffic.

Similar mitigation effects can be achieved with an increasing penetration rate of automated
vehicles, partially replacing the passenger cars as conventional vehicles. AV penetration rates
of 15 - 25% already show considerable improvements regarding the investigated indicators of
forced stops, traffic harmonization (uniformity) and the safety surrogate measures of TTC and
minimal space gap. As a consequence, the smaller minimum time headway of AVs coincide with
a reduced number of conflicts that are expressed by the emergence of situations with a TTC
below threshold.

Conclusively, this research demonstrates that properly scaled adaptions of the road infras-
tructure can ease the transition towards increasing automation of vehicles. With an extension
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of the methods presented here, traffic micro-simulations allow to better determine the optimal
extent of such adaptions. This can also be applied inversely to locate the spots within a road
network that may require infrastructural adaptations. If constructional measures such as the
extension of lanes are infeasible, infrastructure-to-vehicle digital systems can be implemented.

The presented approach can therefore be extended to support infrastructure operators in
their decisions to prepare for the rise of automated mobility.

6 Outlook

With the outlined strategy of this research, several key issues have to be addressed in the future
to help further improve upon results that can be derived by the presented approach.

To allow for a good prediction of the traffic situation at a given site of interest, detailed
traffic data is required. This includes estimates of expectable penetration rates of AVs. Im-
provement upon the vehicle model of AVs by implementing one of the other presented options
allows for even more realism and predictability. Future work will certainly address the point of
allowing for a parametrized change of road topology, e.g. changing the length of the accelera-
tion lane in our presented example by a ’free’ parameter and optimizing it for any given traffic
situation. The inclusion of different vehicle automation levels as well as vehicle communication
capabilities show great promise for more detailed investigations.

Regarding the extent of infrastructure measures to prepare for vehicle automation, it becomes
important to estimate a cost / benefit balance for road adaptions using road construction or
stationary electronic means to provide the required traffic safety and fluency, depending on
technical capabilities of vehicles.
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