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Abstract— In this work, we evaluated unsupervised cluster-
ing methods in segmenting the electrical impedance tomography
image during the assessment of pulmonary perfusion by injec-
tion of hypertonic saline solution. In clustering the image pixels,
we assume the existence of purely lung pixels (solely due to lung
perfusion without effects from other organs) and hybrid pixels
(which contain heart and lung effects together). We used data
from 5 pigs to generate truth masks and assess the quality of
clustering. Among the methods tested, the k-means with the co-
sine metric proved to be the best, as it obtained the 95% sen-
sitivity median and the 90% specificity median. We prioritized
minimizing the false negative cases and false positive cases, as it
would overestimate regional pulmonary perfusion.

Keywords— electrical impedance tomography, lung perfu-
sion, clustering, k-means, hierarchical clustering.

I. INTRODUCTION

Electrical impedance tomography (EIT) is a non-invasive,
non-ionizing, and functional imaging modality. The EIT ma-
chine generates images by mapping biological tissues’ elec-
trical characteristics. The technique is primarily used to con-
tinuously monitor lung ventilation and perfusion in mechan-
ically ventilated patients [1, 2, 3]. For patients with differ-
ent ventilation conditions (undergoing surgical procedures or
lung diseases), EIT allows adjusting the ventilator settings
based on the individual needs [4, 5].

The protocol to estimate lung perfusion begins with in-
jecting a hypertonic saline solution into the right atrium that
takes the blood to the lungs. This procedure modifies and de-
creases the regional impedance [6]. Usually, 16 or 32 elec-
trodes are positioned around the thorax, and a high frequency
and low amplitude electrical current is applied for tissue ex-
citation. The electrical potentials are measured and used to
calculate the thorax impedance distribution. A reconstruction
algorithm uses this data to create the lung perfusion distribu-
tion map [7].

The EIT has been verified and validated as a useful method
in clinical practice [8, 9], mainly in monitoring lung venti-

lation. The perfusion estimation using EIT has a hindrance
caused by the problem of signal interference between lungs
and heart where a given voxel captures partial behaviors of
the contrast passage throght the right heart, the lungs, and
returning to the left heart [7, 10]. Some approaches were
developed trying to segment the lung and heart regions.
These methods include comparing functional EIT images
with anatomic images from a computed tomography (CT)
slice in the plane of the electrodes. Often, the approaches
use unsupervised methods combining statistical and spectral
analysis with an image processing algorithm to define the
heart and lung regions of interest (ROI) [10].

Another study evaluated whether the EIT could determine
the redistribution of lung perfusion elicited by one-lung venti-
lation. To find the lung and heart ROIs, they applied a Fourier
transform to the pixels’ time courses of relative impedance
change to examine the frequency components of the EIT data.
The heart ROI (negative slope) and lung ROI (positive slope)
were acquired by calculating the slope of the linear regression
fit between the local pixel and global EIT data [11].

This paper proposes a method to segment the EIT image
during a hypertonic saline injection to evaluate lung perfu-
sion by clustering the pixels with only lung behavior (solely
lung) and pixels with hybrid behavior (heart and lung at the
same time). The approaches rely on clustering tools to detect
hybrid and lung pixels in the time-series data of five pigs.

II. METHODS

A. Animal experiment

The study relies on landrace swine’s experimental data
without previous or induced lung injury. The project was
approved by the Ethics Committee on the Use of Animals
(CEUA) of the Faculty of Medicine of the University of São
Paulo (FMUSP) under number 1242/2019. The study was
carried out in the animal ICU of the Laboratory of Medi-
cal Investigation in Experimental Pulmonology (LIM-09), lo-
cated on the 4th floor of the FMUSP, and in the Tomography
room of the Department of Pathology, located in the basement
of the same building.



A belt containing 32 EIT electrodes was positioned in the
plane corresponding to the 4th-5th intercostal space on the
previously shaved skin. We used the EIT device (Enlight-
1800, Timpel, São Paulo, Brazil). For evaluating perfusion
by EIT, data were acquired during an apnea period of 30 sec-
onds: 10 seconds pre-injection, followed by a rapid injection
of 10 mL of 7.5% NaCl through a central catheter located in
the right atrium of the animal. The images obtained by EIT
have a sampling rate of 50 Hz and spatial resolution of 32-
by-32 pixels in just one slice, representing about 15-20 cm of
the lung.

B. Clustering algorithms

We have evaluated two clustering algorithms: k-means and
hierarchical clustering. We used the complete dataset to test
and assess both methods.

The k-means is an iterative, data-partitioning algorithm
that assigns n observations to precisely one of the k clus-
ters. Where k is chosen before the algorithm starts. K-means
treats each observation in the data as an object with a space
location. The method finds a partition in which objects within
each cluster, using a metric distance, are as close to each other
as possible. Our experiment used two (k=2) clusters: hybrid
and lung pixels. We chose the correlation and cosine metric
distance based on the pig data signal. An assessment with a
metric distance from an origin (cosine and correlation) gives
a clustering considering the phase and magnitude between
two time series, it is more useful than use the Euclidean met-
ric distance that only find the shortest distance between two
time series.

The cosine metric, also called cosine similarity, calculates
the cosine of the angle between two points (treated as vec-
tors). The cosine metric distance is shown in Equation 1,
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Where ai and bi are the samples of vectors a and b, respec-
tively, n is the number of samples, with the dcos(a,b) as the
cosine metric distance between a and b. The cosine metric
distance is one minus the cosine similarity and has a range of
values between 0 and 2.

The correlation metric distance is shown according to
Equations 2, 3 and 4,

dcorr(a,b) = 1− ∑
n
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√
∑

n
i=1(bi − b̄)2

(2)
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Where ai and bi are samples of a and b respectively, n is the
number of samples, with dcorr(a,b) as the correlation metric
distance between a and b. The correlation metric distance is
one minus the correlation and take a range of values from 0
to 2.

The hierarchical clustering method includes grouping data
over various scales by creating a cluster tree or dendrogram.
The tree is not a single set of clusters but a multilevel hier-
archy, where clusters at one level are joined as clusters at the
next level. To perform the clustering, the purpose is to find
the similarity or dissimilarity between every pair of objects
in the data set, calculating the distance between objects. We
also used two clusters (hybrid and lung pixels). Based on the
pig data signal and to compare k-means and the hierarchical
clustering methods, we used the correlation and cosine metric
distance in clustering routines [12].

C. Implementation

The dataset consists of each pixel’s impedance waveforms
per time (samples). The waveforms are shown in Figure 1 (a)
and correspond to those pixels that varied during the acquisi-
tion. The silent pixels were excluded from the analysis.

During a hypertonic saline injection, the time series of
the impedance per time (samples) can be associated with the
blood volume, while the time derivative of the impedance
per time (samples) is associated with the blood flow. The
blood volume does not give quantitative information about
how much and what conditions (slow or fast flow) the blood
is reaching the lung. Therefore, we decided to analyze only
the time derivative waveforms (Figure 1 (b)).

The derivative signals are clustered using k-means and hi-
erarchical clustering with the correlation and cosine metrics.
After finishing the clustering step, we reorganized the data in
hybrid masks with 32x32 pixels for each derivative result and
we apply a morphological operation to dilate and expands the
hybrid region. The kernel shape used was “square” with size
“2” to increase the true positive pixels and reduce the pixels
incorrectly classified.

The result masks were compared with the truth masks
(manually created). The method to create the truth masks was
observing the EIT derivative signal (32x32 pixels) in time
(samples) looking frame by frame and deciding to use the
frame that do not presented lung perfusion pixels. The deriva-
tive perfusion signal was set with a sequential color scale as



(a)

(b)
Fig. 1: Time series (a) and derivative (b) for the electrical impedance signal of each pixel.
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Fig. 2: Actual contrast passage (a) used to create the truth mask (b) with binary colors representing the hybrid and lung regions manually segmented.

shown in Figure 2 (a). The pixels with higher impedance/time
present a lighter color. Thus, we selected only the pixels with
color ≥ 25% of the chosen scale to the hybrid region (hy-
brid pixels with considerable signal amplitude), and the oth-
ers were considered as lung region of the truth mask. The
results of the truth masks are visualized in Figure 2 (b).

All hybrid masks comparison results are evaluated quanti-
tatively using the following parameters:

• True Positive (hybrid pixels considered as hybrid pixels);
• True Negative (lung pixels considered as lung pixels);

• False Positive (lung pixels considered as hybrid pixels);
• False Negative (hybrid pixels considered as lung pixels).

The parameters were used to calculate the sensitiv-
ity, specificity, and accuracy of each clustering algorithms
method.

III. RESULTS

The analysis focus was on the masks comparisons. Each
mask was compared with the truth mask (Figure 2 (b)). The
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Fig. 3: Time series k-means clustering (Cosine) electrical impedance per samples by each pixel and its Hybrid Mask with K-means Clustering (Cosine); (a)

Time series K - means Clustering (Cosine); (b) Hybrid Mask - K - means Clustering (Cosine).

k-means and hierarchical clustering results using the cosine
metric are visualized in Tables 1 and 2 respectively. The re-
sults using the correlation metric are shown in Tables 3 and
4, respectively.

The tables were used to evaluate which method using
each metric quantitatively has shown the best performance.
The objective was to examine the higher sensitivity percent-
age median. The high sensitivity median represents that the
method found the higher number of true positive cases (hy-
brid pixels as actual hybrid pixels) with the lower number
of false negative cases (hybrid pixels considered as lung pix-
els). Evaluating the false negative instead of the false positive
is damage control. For the proposed problem, taking a lung
pixel as a hybrid pixel is less troublesome than taking a hy-
brid pixel as a lung pixel.

Table 1: k-means clustering (cosine metric). Sensitivity (TPR) stands for
true positive rate; Accuracy (ACC) stands for the accuracy of the method;

and Specificity (TNR) stands for true negative rate. All values are in
percentage.

Pigs Sensitivity% Specificity% Accuracy %
1 95 90 91
2 83 92 90
3 93 85 87
4 96 90 91
5 98 88 90

Median 95 90 90

Table 2: Hierarchical clustering (cosine metric). Sensitivity (TPR) stands
for true positive rate; Accuracy (ACC) stands for the accuracy of the

method; and Specificity (TNR) stands for true negative rate. All values are
in percentage.

Pigs Sensitivity % Specificity% Accuracy %
1 92 91 91
2 73 95 89
3 89 90 90
4 95 94 94
5 98 89 91

Median 92 91 91

Searching for a method with the higher sensitivity median,
we found that the best method was the k-means clustering
using the cosine metric, as shown in Table 1. This method
presents its clustered time series and masks shown in Fig-
ure 3 (a) and 3 (b), respectively. Furthermore, the comparison
between the method masks and the truth masks is shown in
Figure 4.

IV. DISCUSSIONS

The k-means clustering (cosine metric) has gotten a 95%
of sensitivity and 90% of specificity, representing a consid-
erable probability of detection and a high selectivity of the
method.

The understanding of the false pixels cases are that the FN
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Fig. 4: Comparisons among the truth masks versus k-means clustering (cosine metric) masks.

Table 3: k-means clustering (correlation metric). Sensitivity (TPR) stands
for true positive rate; Accuracy (ACC) stands for the accuracy of the

method; and Specificity (TNR) stands for true negative rate. All values are
in percentage.

Pigs Sensitivity % Specificity % Accuracy %
1 94 89 90
2 73 93 88
3 82 93 90
4 96 89 91
5 98 90 92

Median 94 90 90

Table 4: Hierarchical clustering (correlation metric). Sensitivity (TPR)
stands for true positive rate; Accuracy (ACC) stands for the accuracy of the
method; and Specificity (TNR) stands for true negative rate. All values are

in percentage.

Pigs Sensitivity % Specificity % Accuracy %
1 91 92 92
2 76 94 90
3 88 90 89
4 96 91 92
5 92 94 94

Median 91 92 92

(yellow pixels) means that the hybrid pixels in hybrid mask,
has true positive almost all hybrid pixels of the truth mask.
However, the FP (pink pixels) reveals some hybrid pixels in
hybrid masks should be classified as lung pixels. This im-
plies that the k-means clustering (cosine) finds the true pos-
itive with the truth masks hybrid pixels, but it needs to be
investigated why some lung pixels are classified as hybrid
pixels. Reduce the FP cases is the best way to increases the
specificity median.

One approach to investigate what could be interfering in
false pixels cases was to plot the clustered time series of this

method (Figure 3 (a)), with the waveforms of FP and FN
parameters taken in Figure 4. We show such a plot for this
method in Figure 5.

Figure 5 shows essential information about the main errors
in our method. We verify that the hybrid pixels and the lung
pixels have very different and defined waveforms for each
one. Comparing the hybrid and lung pixels peak to the peak
of incorrectly classified pixels - FN (yellow pixels) and FP
(pink pixels). We observed that the yellow and pink pixels are
in an intermediary peak. This information suggests that the
intermediary peak influences a wrong hybrid classification by
the k-means clustering (cosine).

Furthermore, comparing the pink and yellow waveforms
with the lung waveforms, we notice that the similarity (phase
and magnitude) between then are higher than the hybrid
waveforms. The hybrid waveforms have defined negative re-
gion, while the pixels incorrectly classified have not. This
information suggests that the cosine metric distance used to
create the hybrid masks, has some problems when the wave-
forms presents a lower similarity.

In synthesis, the method using the k-means clustering (co-
sine) to create the hybrid masks was the best approach giving
a high probability of detection and selectivity, and promising
results to be a useful segmentation method to find the hybrid
and lung region in a perfusion data set. The main problem
is the wrong classification of the lung pixels as hybrid pixels
(pink pixels) and to understand the errors, more tests need to
be performed.

V. CONCLUSION

This work has shown and compared different methods for
waveform clustering in EIT data during lung perfusion as-
sessment. The approaches included using k-means and hi-
erarchical clustering methods using the cosine and correla-
tion metrics. The best result was using the time-derivative
dataset waveforms with k-means clustering (cosine metric).



Fig. 5: Time series of k-means clustering (cosine metric) with pixels incorrectly classified (false negative and false positive waveforms) from the
comparisons of Figure 4.

This method presents a 95% sensitivity median with a 90%
specificity median, highest within the compared methods.
The considerable accuracy represents promising results, but
more work should be performed to understand the errors be-
tween the clustering method and the truth masks.
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