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Abstract. We employ a recently developed methodology—called struc-
tural refinement—to extract nested sequent systems for a sizable class
of intuitionistic modal logics from their respective labelled sequent sys-
tems. This method can be seen as a means by which labelled sequent
systems can be transformed into nested sequent systems through the in-
troduction of propagation rules and the elimination of structural rules,
followed by a notational translation. The nested systems we obtain incor-
porate propagation rules that are parameterized with formal grammars,
and which encode certain frame conditions expressible as first-order Horn
formulae that correspond to a subclass of the Scott-Lemmon axioms. We
show that our nested systems are sound, cut-free complete, and admit
hp-admissibility of typical structural rules.
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1 Introduction

Intuitionistic modal logics enable intuitionistic reasoning with the intensional
operators ♦ and �. While a variety of different intuitionistic modal logics have
been proposed [1, 9, 28, 30, 31], we focus on those defined in [28], which extend
the intuitionistic modal logic IK with Scott-Lemmon axioms [20]. These logics
were placed on a firm philosophical footing in [31] due to their satisfaction of
certain requirements that one might reasonably impose upon an intuitionistic
version of modal logic. Although such logics are interesting in their own right,
intuitionistic modal logics have proven useful in practical applications: having
been applied in the verification of computer hardware [8], to facilitate reasoning
about functional programs [27], and in defining programming languages [7].

The development of intuitionistic modal logics naturally gave rise to an ac-
companying proof theory. Labelled natural deduction and sequent systems were
provided for IK extended with geometric axioms in [31]. In [13] and [14], label-free
natural deduction systems and tree-sequent calculi were respectively provided for
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extensions of IK with combinations of the reflexivity axiom (T), symmetry axiom
(B), transitivity axiom (4), and Euclidean axiom (5). In [32], nested sequent sys-
tems were proposed for all logics within the intuitionistic modal cube (i.e. logics
axiomatized by extending IK with a subset of the axioms T, B, 4, 5, and the
seriality axiom D). Such systems provide a suitable basis for developing auto-
mated reasoning and proof-search methods, having been used—in particular—to
establish the decidability of logics within the intuitionistic modal cube [14, 31].

With the exception of the systems introduced in [31], the drawback of the
aforementioned proof systems is that they are rather limited, only being defined
for a handful of logics. Indeed, in a recent paper on nested systems for intu-
itionistic modal logics [25], the authors leave open the problem of defining rules
within the nested sequent formalism that allow for the capture of logics outside
the intuitionistic modal cube. Accomplishing such a task would prove beneficial,
since systems built within the nested formalism tend to be more economical (viz.
they utilize simpler data structures) than those built within the labelled formal-
ism, and have proven well-suited for the construction of analytic calculi [2, 3, 19],
for writing decision algorithms [14, 33], and for verifying interpolation [12, 24].

In this paper, we answer the open problem of [25] to a large extent, and
provide cut-free nested sequent systems for extensions of IK with what we call
Horn-Scott-Lemmon axioms (HSLs), namely, axioms of the form (♦n�A ⊃
�kA) ∧ (♦kA ⊃ �n♦A). We obtain such systems through the recently devel-
oped structural refinement methodology [21], which consists of transforming a
labelled sequent system into a nested system through the introduction of propa-
gation rules (cf. [4, 10]) and the elimination of structural rules, followed by a no-
tational translation. The propagation rules operate by viewing labelled sequents
(which encode binary labelled graphs) as automata, allowing for formulae to be
propagated along a path in the underlying graph of a labelled sequent, so long
as the path is encoded by a string derivable in a certain formal grammar. The
refinement methodology grew out of works relating labelled systems to ‘more
refined’ or nested systems [5, 18, 23, 26]. Also, the propagation rules we use are
largely based upon the work of [17, 33], where such rules were used in the setting
of display and nested calculi. These rules were then transported to the labelled
setting to prove the decidability of agency logics [23], to establish translations
between calculi within various proof-theoretic formalisms [6], and to provide a
basis for the structural refinement methodology [21].

This paper accomplishes the following: First, we show that structural re-
finement can be used to extract nested sequent systems from Simpson’s labelled
sequent systems [31] with proofs in the latter formalism algorithmically translat-
able into proofs of the nested formalism. Second, we provide sound and cut-free
complete nested sequent systems for a considerable class of intuitionistic modal
logics, and show that such systems admit the height-preserving admissibility
(which we refer to as hp-admissibility) of certain structural rules (e.g. forms of
weakening and contraction). Third, we provide an answer to the open problem
of [25] to a large degree, giving a straightforward procedure for transforming
axioms (viz. HSLs) into propagation/logical rules.
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We have organized this paper accordingly: In Sect. 2, we define the intuition-
istic modal logics considered, along with their axiomatizations and semantics. In
Sect. 3, we introduce fundamental concepts in grammar theory that are needed
for the definition of our propagation rules. We then introduce Simpson’s labelled
sequent calculi for intuitionistic modal logics in Sect. 4, and show how to struc-
turally refine them in Sect. 5. Last, in Sect. 6, we translate the refined labelled
systems of the previous section into sound and cut-free complete nested sequent
systems admitting the hp-admissibility of certain structural rules.

2 Logical Preliminaries

In this section, we introduce the language, semantics, and axiomatization for
the intuitionistic modal logic IK [28].1 Moreover, we also introduce extensions of
IK (referred to as intuitionistic modal logics more generally) with the seriality
axiom D and axioms that we refer to as Horn-Scott-Lemmon Axioms (HSLs).

We define our intuitionistic modal language L to be the set of formulae
generated via the following BNF grammar:

A ::= p | ⊥ | A ∨A | A ∧A | A ⊃ A | ♦A | �A

where p ranges over the set of propositional atoms Φ := {p, q, r, . . .}. We use
A, B, C, . . . (occasionally annotated) to range over formulae in L, and define
∼A := A ⊃ ⊥ and A ≡ B := (A ⊃ B) ∧ (B ⊃ A). For n ∈ N, we use ♦nA
and �nA to represent the formula A prefixed with a sequence of n diamonds or
boxes, respectively. We interpret such formulae on bi-relational models [28, 31]:

Definition 1 (Bi-relational Model [28]). We define a bi-relational model to
be a tuple M := (W,≤, R, V ) such that:

– W is a non-empty set of worlds w, u, v, . . . (potentially annotated);
– The intuitionistic relation ≤ ⊆W ×W is reflexive and transitive;
– The accessibility relation R ⊆W ×W satisfies:

(F1) For all w, v, v′ ∈W , if wRv and v ≤ v′, then there exists a w′ ∈W such
that w ≤ w′ and w′Rv′;

(F2) For all w,w′, v ∈ W , if w ≤ w′ and wRv, then there exists a v′ ∈ W
such that w′Rv′ and v ≤ v′;

– V : W → 2Φ is a valuation function satisfying the monotonicity condition:
For each w, u ∈W , if w ≤ u, then V (w) ⊆ V (u).

Formulae from L may then be interpreted over bi-relational models as spec-
ified by the semantic clauses below.

Definition 2 (Semantic Clauses [28]). Let M be a bi-relational model with
w ∈W of M . The satisfaction relation M,w 
 A is defined recursively:

1 See Simpson’s 1994 PhD Thesis [31] for a detailed introduction and discussion of IK.
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– M,w 
 p iff p ∈ V (w), for p ∈ Φ;
– M,w 6
 ⊥;
– M,w 
 A ∨B iff M,w 
 A or M,w 
 B;
– M,w 
 A ∧B iff M,w 
 A and M,w 
 B;
– M,w 
 A ⊃ B iff for all w′ ∈W , if w ≤ w′ and M,w′ 
 A, then M,w′ 
 B;
– M,w 
 ♦A iff there exists a v ∈W such that wRv and M, v 
 A;
– M,w 
 �A iff for all w′, v′ ∈W , if w ≤ w′ and w′Rv′, then M, v′ 
 A.

We say that a formula A is globally true on M , written M 
 A, iff M,u 
 A
for all worlds u ∈ W of M , and we say that a formula A is valid, written 
 A,
iff A is globally true on all bi-relational models.

As shown by Plotkin and Stirling in [28], the validities of IK are axiomatizable:

Definition 3 (Axiomatization [28]). We define the axiomatization HIK as:

A0 All theorems of propositional intu-
itionistic logic

A1 �(A ⊃ B) ⊃ (�A ⊃ �B)
A2 �(A ⊃ B) ⊃ (♦A ⊃ ♦B)
A3 ∼♦⊥

A4 ♦(A ∨B) ⊃ (♦A ∨ ♦B)
A5 (♦A ⊃ �B) ⊃ �(A ⊃ B)

R0
A A ⊃ B

(mp)
B

R1
A (nec)
�A

We define IK to be the smallest set of formulae closed under substitutions of
the above axioms and applications of the inference rules, and define A to be a
theorem of IK iff A ∈ IK.

We also consider extensions of HIK with sets A of the following axioms:

D : �A ⊃ ♦A HSL : (♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A)

The above left axiom is referred to as the seriality axiom D and axioms of the
form above right are referred to as Horn-Scott-Lemmon axioms (HSLs), which
we use φ(n, k) to denote.2 For the remainder of the paper, we use A to denote
an arbitrary set of the above axioms, that is:

A ⊆ {D} ∪ {(♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A) | n, k ∈ N}

The set of HSLs includes well-known axioms such as:

T : (A ⊃ ♦A) ∧ (�A ⊃ A) 4 : (♦♦A ⊃ ♦A) ∧ (�A ⊃ ��A)

B : (♦�A ⊃ A) ∧ (A ⊃ �♦A) 5 : (♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)

The work of Simpson [31] establishes that any extension of HIK with a set A of
axioms is sound and complete relative to a subclass of the bi-relational models.

2 We note that the term Horn-Scott-Lemmon axiom arises from the fact that such
axioms form a proper subclass of the well-known Scott-Lemmon Axioms [20] and are
associated with frame conditions that are expressible as Horn formulae [31, Sect. 7.2].
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Axiom Frame Condition

�A ⊃ ♦A ∀w∃u(wRu)

(♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A) ∀w, u, v(wRnu ∧ wRkv ⊃ uRv)

Fig. 1. Axioms and their related frame conditions. We note that when n = 0, the
related frame condition is ∀w, v(wRkv ⊃ wRv), when k = 0, the related frame condition
is ∀w, u(wRnu ⊃ uRw), and when n = k = 0, the related frame condition is ∀w(wRw).

In particular, the extension of HIK with a set A of axioms is sound and complete
relative to the set of bi-relational models satisfying the frame conditions related
to the axioms of A, as specified in Fig. 1.3 We define axiomatic extensions of
HIK along with their corresponding models below:

Definition 4 (Extensions, Bi-relational A-model, A-valid). The axioma-
tization HIK(A) is defined to be HIK extended with the axioms from A, and we
define the logic IK(A) to be the smallest set of formulae closed under substitu-
tions of the axioms of HIK(A) and applications of the inference rules. Also, a
theorem of IK(A) is a formula A such that A ∈ IK(A). Moreover, we define a
bi-relational A-model to be a bi-relational model satisfying each frame condition
related to an axiom A ∈ A (as specified in Fig. 1). Last, a formula A is A-valid
iff it is globally true on all A-models.

Remark 1. We note that HIK = HIK(∅) and that a bi-relational ∅-model is a
bi-relational model.

Theorem 1 (Soundness and Completeness [31]). A formula is a theorem
of HIK(A) iff it is valid in all A-frames.

Proof. Follows from Thm. 6.2.1 and Thm. 8.1.4 of [31]. ut

3 Grammar Theoretic Preliminaries

As will be seen later on (viz. in Sect. 5 and 6), a central component to our refine-
ment methodology—i.e. the extraction of nested calculi from labelled—is the use
of inference rules whose applicability is determined on the basis of strings gen-
erated by a formal grammar. We therefore introduce grammar-theoretic notions
that are essential to the functionality of such rules.

We let Σ be our alphabet consisting of the characters ♦ and �, that is,
Σ := {♦,�}. The symbols ♦ and � will be used to encode information about
the accessibility relation R of a bi-relational model in certain inference rules of
our calculi. In particular, ♦ will be used to encode information about what is

3 We note that the axioms we consider do not characterize the set of frames satisfying
the frame properties related to the axioms as they do in the classical setting. For
more details concerning this point, see [31, p. 56], and for details concerning the
proper characterization results of the above axioms, see [28].
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happening in the future of the accessibility relation, and � will be used to encode
information about what is happening in the past of the accessibility relation.
We note that such symbols have been chosen due to their analogous meaning
in the context of tense logics [17, 19]. Also, following [17], we let 〈?〉 ∈ Σ and

〈?〉−1 ∈ Σ \ {〈?〉}, i.e. ♦−1 := � and �−1 := ♦; we refer to ♦ and � as converses
of one another. We may define strings over our alphabet Σ accordingly:

Definition 5 (Σ∗). We let · be the concatenation operation with ε the empty
string. We define the set Σ∗ of strings over Σ to be the smallest set such that:

– Σ ∪ {ε} ⊆ Σ∗

– If s ∈ Σ∗ and 〈?〉 ∈ Σ, then s · 〈?〉 ∈ Σ∗

For a set Σ∗ of strings, we use s, t, r, . . . (potentially annotated) to repre-
sent strings in Σ∗. Also, the empty string ε is taken to be the identity element
for the concatenation operation, i.e. s · ε = ε · s = s for s ∈ Σ∗. Furthermore,
we will not explicitly mention the concatenation operation in practice and let
st := s · t, that is, we denote concatenation by simply gluing two strings to-
gether. Beyond concatenation, another useful operation to define on strings is
the converse operation, adapted from [33].

Definition 6 (String Converse). We extend the converse operation to strings
as follows:

– ε−1 := ε;
– If s = 〈?〉1 · · · 〈?〉n, then s−1 := 〈?〉−1n · · · 〈?〉

−1
1 .

We let 〈?〉n denote a string consisting of n copies of 〈?〉, which is ε when
n = 0. Making use of such notation, we can compactly define the notion of an
A-grammar, which encodes information contained in a set A of axioms, and
which will be employed in the definition of certain inference rules (see Sect. 5).

Definition 7 (A-grammar). We define an A-grammar to be a set g(A) such
that:

(♦ −→ �n♦k), (� −→ �k♦n) ∈ g(A) iff (♦n�A ⊃ �kA) ∧ (♦kA ⊃ �n♦A) ∈ A.

We call rules of the form 〈?〉 −→ s production rules, where 〈?〉 ∈ Σ and s ∈ Σ∗.

An A-grammar g(A) is a type of Semi-Thue system (cf. [29]), i.e. it is a string
re-writing system. For example, assuming that 〈?〉 −→ s ∈ g(A), we may derive
the string tsr from t〈?〉r in one-step by applying the mentioned production rule.
As usual, through successive applications of production rules to a string s ∈ Σ∗,
one obtains derivations of new strings, the collection of which, determines a
language. We make such notions precise by means of the following definition:

Definition 8 (Derivation, Language). Let g(A) be an A-grammar. The one-
step derivation relation −→g(A) holds between two strings s and t in Σ∗, written
s −→g(A) t, iff there exist s′, t′ ∈ Σ∗ and 〈?〉 −→ r ∈ S such that s = s′〈?〉t′
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and t = s′rt′. The derivation relation −→∗g(A) is defined to be the reflexive and
transitive closure of −→g(A). For two strings s, t ∈ Σ∗, we refer to s −→∗g(A) t
as a derivation of t from s, and define its length to be equal to the minimal
number of one-step derivations needed to derive t from s in g(A). Last, for
a string s ∈ Σ∗, the language of s relative to g(A) is defined to be the set
Lg(A)(s) := {t | s −→∗g(A) t}.

4 Labelled Sequent Systems

We introduce equivalent variants of Simpson’s labelled sequent systems for in-
tuitionistic modal logics [31], which are uniformly presented in Fig. 2. We use
the name L�♦(A) to denote a labelled system as opposed to Simpson’s name
L�♦(T ) since we define each system relative to a set A of axioms (cf. [31]). The
sole difference between Simpson’s original systems and the systems presented
here is that we copy principal formulae into the premises of some rules. This
minor change will facilitate our work in the subsequent section.

Simpson’s systems make use of a denumerable set Lab := {w, u, v, . . .} of
labels (which we sometimes annotate), as well as two distinct types of formulae:
labelled formulae, which are of the form w : A with w ∈ Lab and A ∈ L, and
relational atoms, which are of the form wRu for w, u ∈ Lab. We define a labelled
sequent to be a formula of the form R, Γ ` w : A, where R is a (potentially
empty) multiset of relational atoms, and Γ is a (potentially empty) multiset
of labelled formulae. Also, we define a sequence of relational atoms wRnu :=
wRw1, w1Rw2, . . . , wn−1Ru, for n ∈ N, and note that wR0u := (w = u).

We refer to the (id) and (⊥l) rules as initial rules, to the (d) and (Sn,k) rules
as structural rules, and to the remaining rules in Fig. 2 as logical rules. Our use
of the term structural rules in reference to (d) and (Sn,k) is consistent with the
use of the term in the literature on proof systems for modal and related logics [2,
6, 16, 17] and is based on the fact that such rules manipulate the underlying data
structure of sequents as opposed to introducing more complex logical formulae.
Also, we point out that the (Sn,k) rules form a proper subclass of Simpson’s (Sχ)
geometric structural rules (see [31, p. 126]) used to generate labelled sequent
systems for IK extended with any number of geometric axioms. When n = 0
or k = 0 in an HSL, i.e. when φ(0, k) ∈ A, φ(n, 0) ∈ A, or φ(0, 0) ∈ A, the
structural rules (S0,k), (Sn,0), and (S0,0) are defined accordingly:

R, wRkv, wRv, Γ ` z : A
(S0,k)

R, wRkv, Γ ` z : A

R, wRnu, uRw, Γ ` z : A
(Sn,0)R, wRnu, Γ ` z : A

R, wRw, Γ ` z : A
(S0,0)R, Γ ` z : A

Let us now define the semantics for our labelled sequents, and then we state
the soundness and completeness theorem for L�♦(A).
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(id)
R, w : p, Γ ` w : p

(⊥l)R, w : ⊥, Γ ` u : A

R, Γ, w : A ` u : C R, Γ, w : B ` u : C
(∨l)R, Γ, w : A ∨B ` u : C

R, Γ ` w : Ai
(∨r) i ∈ {1, 2}R, Γ ` w : A1 ∨A2

R, Γ, w : A,w : B ` u : C
(∧l)RΓ,w : A ∧B ` u : C

R, Γ ` w : A R, Γ ` w : B
(∧r)R, Γ ` w : A ∧B

R, Γ, w : A ⊃ B ` w : A R, Γ, w : B ` u : C
(⊃l)R, Γ, w : A ⊃ B ` u : C

R, Γ, w : A ` w : B
(⊃r)R, Γ ` w : A ⊃ B

R, wRu, Γ, u : A ` v : B
(♦l)†R, Γ, w : ♦A ` v : B

R, wRu, Γ ` u : A
(♦r)R, wRu, Γ ` w : ♦A

R, wRu, Γ ` u : A
(�r)†R, Γ ` w : �A

R, wRu, Γ,w : �A, u : A ` v : C
(�l)R, wRu, Γ,w : �A ` v : C

R, wRu, Γ ` v : A
(d)†R, Γ ` v : A

R, wRnu,wRkv, uRv, Γ ` z : A
(Sn,k)

R, wRnu,wRkv, Γ ` z : A

Fig. 2. The labelled calculi L�♦(A). We have (d) as a rule in the calculus, if D ∈ A,
and (Sn,k) as a rule in the calculus, for each φ(n, k) ∈ A. The side condition † states
that u must be an eigenvariable, i.e. u may not occur in the conclusion.

Definition 9 (Labelled Sequent Semantics). Let M := (W,≤, R, V ) be a bi-
relational A-model with I : Lab 7→W an interpretation function mapping labels
to worlds. We define the satisfaction of relational atoms and labelled formulae:

– M, I |= wRu iff I(w)RI(u);
– M, I |= w : A iff M, I(w) 
 A.

A labelled sequent Λ := R, Γ ` v : B is satisfied in M with I, written
M, I |= Λ, iff if M, I |= wRu for all wRu ∈ R and M, I |= w : A for all
w : A ∈ Γ , then M, I |= v : B. A labelled sequent Λ is falsified in M with I iff
M, I 6|= Λ, that is, Λ is not satisfied by M with I.

Last, a labelled sequent Λ is A-valid, written |=A Λ, iff it is satisfiable in
every bi-relational A-model M with every interpretation function I. We say that
a labelled sequent Λ is A-invalid iff 6|=A Λ, i.e. Λ is not A-valid.

Theorem 2 (L�♦(A) Soundness and Completeness). R, Γ ` w : A is
derivable in L�♦(A) iff R, Γ ` w : A is A-valid.

Proof. Follows from Thm. 7.2.1 and Thm. 8.1.4 of [31]. ut

5 Structural Refinement

We show how to structurally refine the labelled systems introduced in the previ-
ous section, that is, we implement a methodology introduced and applied in [6,
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21–23] (referred to as structural refinement, or refinement more simply) for sim-
plifying labelled systems and/or permitting the extraction of nested systems.
The methodology consists of eliminating structural rules (viz. the (Sn,k) rules
in our setting) through the addition of propagation rules (cf. [4, 10, 31]) to the
labelled calculi, begetting systems that are translatable into nested systems.

The propagation rules we introduce are based on those of [6, 17, 22, 23, 33],
and operate by viewing a labelled sequent as an automaton, allowing for the
propagation of a formula (when applied bottom-up) from a label w to a label
u given that a certain path of relational atoms exists between w and u (corre-
sponding to a string generated by an A-grammar). We note that Simpson like-
wise introduced a variation of these rules, named (♦R)TH and (�L)TH (see [31,
p. 126]), by closing the relational atoms of a sequent under the frame conditions
related to each HSL φ(n, k) ∈ A. We opt to use propagation rules based on
formal grammars however because such rules permit the formulation of nested
systems outside the class of HSL extensions of IK, thus setting the stage for the
construction of nested systems for even broader classes of logics in future work.4

The definition of our propagation rules is built atop the notions introduced
in the following two definitions:

Definition 10 (Propagation Graph). The propagation graph PG(R) of a
multiset of relational atoms R is defined recursively on the structure of R:

– PG(∅) := (∅, ∅);
– PG(wRu) := ({w, u}, {(w,♦, u), (u,�, w)});
– PG(R1,R2) := (V1 ∪ V2, E1 ∪ E2) where PGx(Ri) = (Vi, Ei).

We will often write w ∈ PG(R) to mean w ∈ V , and (w, 〈?〉, u) ∈ PG(R) to
mean (w, 〈?〉, u) ∈ E.

Definition 11 (Propagation Path). We define a propagation path from w1

to wn in PG(R) := (V,E) to be a sequence of the following form:

π(w1, wn) := w1, 〈?〉1, w2, 〈?〉2, . . . , 〈?〉n−1, wn

such that (w1, 〈?〉1, w2), (w2, 〈?〉2, w3), . . . , (wn−1, 〈?〉n−1, wn) ∈ E. Given a prop-
agation path of the above form, we define its converse as shown below top and
its string as shown below bottom:

π−1(wn, w1) := wn, 〈?〉−1n−1, wn−1, 〈?〉
−1
n−2, . . . , 〈?〉

−1
1 , w1

sπ(w1, wn) := 〈?〉1〈?〉2 · · · 〈?〉n−1

Last, we let λ(w,w) := w represent an empty path with the string of the empty
path defined as sλ(w,w) := ε.

4 For instance, we could define our propagation rules relative to the formal gram-
mar {♦ −→ ♦�}, which would give a calculus for a logic outside the class of HSL
extensions of IK.
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R, Γ ` u : A
(p♦) only if ∃π(w, u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))

R, Γ ` w : ♦A

R, Γ, w : �A, u : A ` v : B
(p�) only if ∃π(w, u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))

R, Γ, w : �A ` v : B

Fig. 3. Propagation rules.

We are now in a position to define the operation of our propagation rules
(p♦) and (p�), which are displayed in Fig. 3. Each propagation rule (p♦) and
(p�) is applicable only if there exists a propagation path π(w, u) from w to u in
the propagation graph PG(R) such that the string sπ(w, u) is in the language
Lg(A)(♦). We express this statement compactly by making use of its equivalent
first-order representation:

∃π(w, u) ∈ PG(R)(sπ(w, u) ∈ Lg(A)(♦))

We provide further intuition regarding such rules by means of an example:

Example 1. Let R := vRu, uRw. We give a graphical depiction of PG(R):

v

♦
%%
u

♦
&&

�

ee w
�

ff Λ := vRu, uRw,w : �p, u : p ` v : p ⊃ q

Let A := {(♦2�A ⊃ �1A) ∧ (♦1A ⊃ �2♦A)}, so that the corresponding
A-grammar is g(A) = {♦ −→ ��♦,� −→ �♦♦}. Then, the path π(w, u) :=
w,�, u,�, v,♦, u exists between w and u. The first production rule of g(A) im-
plies that sπ(w, u) = ��♦ ∈ Lg(A)(♦). Therefore, we are permitted to (top-
down) apply the propagation rule (p�) to Λ to delete the labelled formula u : p,
letting us derive vRu, uRw,w : �p ` v : p ⊃ q .

Remark 2. The (♦r) and (�l) rules are instances of (p♦) and (p�), respectively.

Definition 12 (Refined Labelled Calculus). We define the refined labelled
calculus IK(A)L := L�♦(A) + {(p♦), (p�)} − {(Sn,k) | φ(n, k) ∈ A}.

We show that each calculus IK(A)L is complete by means of a proof transfor-
mation procedure. That is, we show that through the elimination of structural
rules we can transform a proof in L�♦(A) into a proof in IK(A)L. We note that
Simpson proved a similar result, showing that labelled derivations with struc-
tural rules are transformable into derivations with his propagation rules (♦R)TH
and (�L)TH (see [31, Sect. 7.2]). In our context, the proof of structural rule
eliminability requires more complex methods however due to the use of our new
propagation rules that are parameterized with formal grammars. We first prove
two crucial lemmata, and then show the elimination result.
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Lemma 1. Let R1 := R, wRnu,wRkv, uRv and R2 := R, wRnu,wRkv. Sup-
pose we are given a derivation in L�♦(A) + {(p♦), (p�)} ending with:

R, wRnu,wRkv, uRv, Γ ` z : A
(p♦)

R, wRnu,wRkv, uRv, Γ ` x : ♦A
(Sn,k)

R, wRnu,wRkv, Γ ` x : ♦A

where the side condition ∃π(x, z) ∈ PG(R1)(sπ(x, z) ∈ Lg(A)(♦)) holds due to
(p♦). Then, ∃π′(x, z) ∈ PG(R2)(sπ′(x, z) ∈ Lg(A)(♦)), that is to say, the (Sn,k)
rule is permutable with the (p♦) rule.

Proof. We have two cases: either (i) the relational atom uRv is not active in the
(p♦) inference, or (ii) it is. Since (i) is easily resolved, we show (ii).

Let us suppose that the relational atom uRv is active in (p♦), i.e. uRv oc-
curs along the propagation path π(x, z). To prove the claim, we need to show
that ∃π′(x, z) ∈ PG(R2)(sπ′(x, z) ∈ Lg(A)(♦)). Therefore, we construct such a
propagation path by performing the following operations on π(x, z):

– replace each occurrence of u,♦, v in PG(R1) with

u,�, u1, . . . , un−1,�, w,♦, w1, . . . , wk−1,♦, v;

– replace each occurrence of v,�, u in PG(R1) with

v,�, wk−1, . . . , w1,�, w,♦, un−1, . . . , u1,♦, u.

We let π′(x, z) denote the path obtained by performing the above operations on
π(x, z), and note that first half of the first propagation path and the second half of
the second propagation path correspond to the edges (u,�, u1), . . . , (un−1,�, w) ∈
PG(R1) and (w,♦, un−1), . . . , (u1,♦, u) ∈ PG(R1), respectively, obtained from
the relational atoms wRnu ∈ R1, whereas the second half of the first propaga-
tion path and the first half of the second propagation path correspond to the
edges (w,♦, w1), . . . , (wk−1,♦, v) ∈ PG(R1) and (v,�, wk−1), . . . , (w1,�, w) ∈
PG(R1), respectively, obtained from the edges wRkv ∈ R1 (by Def. 13). Since
the sole difference between PG(R1) and PG(R2) is that the former is guaran-
teed to contain the edges (u,♦, v) and (v,�, u) obtained from uRv, while the
latter is not, and since π′(x, z) omits the use of such edges (i.e. u,♦, v and v,�, u
do not occur in π′(x, z)), we have that π′(x, z) is a propagation path in PG(R2).

To complete the proof, we need to additionally show that sπ′(x, z) ∈ Lg(A)(♦).
By assumption, sπ(x, z) ∈ Lg(A)(♦), which implies that ♦ −→∗g(A) sπ(x, z)

by Def. 8. Since (Sn,k) is a rule in L�♦(A), it follows that ♦ −→ �n♦k and
� −→ �k♦n ∈ g(A) by Def. 7. If we apply ♦ −→ �n♦k to each occurrence of
♦ in sπ(x, z) corresponding to the edge (u,♦, v) (and relational atom uRv), and
apply � −→ �k♦n to each occurrence of � in sπ(x, z) corresponding to the edge
(v,�, u) (and relational atom uRv), we obtain the string sπ′(x, z) and show that
♦ −→∗g(A) sπ′(x, z), i.e. sπ′(x, z) ∈ Lg(A)(♦). ut

Lemma 2. Let R1 := R, wRnu,wRkv, uRv and R2 := R, wRnu,wRkv. Sup-
pose we are given a derivation in L�♦(A) + {(p♦), (p�)} ending with:
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R, wRnu,wRkv, uRv, x : �A, y : A,Γ ` z : C
(p�)

R, wRnu,wRkv, uRv, x : �A,Γ ` z : C
(Sn,k)

R, wRnu,wRkv, x : �A,Γ ` z : C

where the side condition ∃π(x, y) ∈ PG(R1)(sπ(x, y) ∈ Lg(A)(♦)) holds due to
(p�). Then, ∃π′(x, y) ∈ PG(R2)(sπ′(x, y) ∈ Lg(A)(♦)), that is to say, the (Sn,k)
rule is permutable with the (p�) rule.

Proof. Similar to the proof of Lem. 1 above. ut

To improve the comprehensibility of the above lemmata, we provide an ex-
ample of permuting an instance of the structural rule (Sn,k) above an instance
of a propagation rule.

Example 2. Let A := {(♦�A ⊃ �A) ∧ (♦A ⊃ �♦A)} so that the A-grammar
g(A) = {♦ −→ �♦,� −→ �♦}. In the top derivation below, we assume that
(p♦) is applied due to the existence of the propagation path π(u, v) = u,♦, v in
PG(wRu,wRv, uRv), where sπ(u, v) = ♦ ∈ Lg(A)(♦) by Def. 8. The propagation
graph PG(wRu,wRv, uRv) corresponding to the top sequent of the derivation
shown below left is shown below right:

(id)
wRu,wRv, uRv, u : p ` u : p

(p♦)
wRu,wRv, uRv, u : p ` v : ♦p

(S1,1)
wRu,wRv, u : p ` v : ♦p

w

♦

��

♦

��
v

�

ZZ

�oou

�

XX

♦
//

If we apply ♦ −→ �♦ ∈ g(A) to sπ(u, v) = ♦, then we obtain the string
�♦. Hence, ♦ −→∗g(A) �♦, i.e. �♦ ∈ Lg(A)(♦), meaning that a propagation path

π′(u, v) (= u,�, w,♦, v) exists in PG(wRu,wRv) such that sπ′(u, v) = �♦ ∈
Lg(A)(♦). We may therefore apply (a1,1) and then (p♦) as shown below left; the
propagation graph PG(wRu,wRv) is shown below right:

(id)
wRu,wRv, uRv, u : p ` u : p

(S1,1)
wRu,wRv, u : p ` u : p

(p♦)
wRu,wRv, u : p ` v : ♦p

w

♦

��

♦

��
v

�

ZZ

u

�

XX

Theorem 3. Every derivation in L�♦(A) can be algorithmically transformed
into a derivation in IK(A)L.

Proof. We consider a derivation in L�♦(A), which is a derivation in L�♦(A) +
{(p♦), (p�)}. By Remark 2, each instance of (♦r) and (�l) can be replaced by
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a (p♦) or (p�) instance, respectively, meaning we may assume our derivation
in L�♦(A) + {(p♦), (p�)} is free of (♦r) and (�l) instances. We show that the
derivation can be transformed into a derivation in IK(A)L by induction on its
height, that is, we consider a topmost occurrence of a structural rule (Sn,k) and
show that it can be eliminated. We obtain a derivation in IK(A)L by successively
eliminating topmost instances of (Sn,k) rules.

Base case. Observe that any application of (Sn,k) to (id) or (⊥l) yields an-
other instance of the rule.

Inductive step. It is straightforward to verify that any instance of (Sn,k)
freely permutes above instances of all rules in L�♦(A) + {(p♦), (p�)} with the
exception of (Sn,k), (p♦), and (p�) (this follows from the fact that all other rules
do not have active relational atoms in their conclusion). Since we are considering
a topmost application of (Sn,k), we need not consider the permutation of (Sn,k)
above another instance of (Sn,k). The last two cases of permuting (Sn,k) above
(p♦) and (p�) follow from Lem. 1 and 2, respectively. ut

Theorem 4 (IK(A)L Soundness and Completeness). R, Γ ` w : A is deriv-
able in IK(A)L iff R, Γ ` w : A is A-valid.

Proof. The forward direction (soundness) is shown by induction on the height
of the given derivation, and the backward direction (completeness) follows from
Thm. 2 and 3. ut

6 Nested Sequent Systems

In our setting, nested sequents are taken to be trees of multisets of formulae
containing a unique formula that occupies a special status. We utilize the nested
sequents of [32], but note that the data structure underlying such sequents was
originally used in [13], and is similar to the nested sequents for classical modal
logics employed in [2]. Following [32], we mark the special, unique formula with
a white circle ◦ indicating that the formula is of output polarity, and mark the
other formulae with a black circle • indicating that the formulae are of input
polarity. A nested sequent Σ is defined via the following BNF grammars:

Σ ::= ∆,Π ∆ ::= A•1, . . . , A
•
n, [∆1], . . . , [∆k] Π ::= A◦ | [Σ]

We assume that the comma operator associates and commutes, implying
that such sequents are truly trees of multisets of formulae, and we let the empty
sequent be the empty multiset ∅. We refer to a sequent in the shape of ∆ (which
contains only input formulae) as an LHS-sequent, a sequent in the shape of Π
as an RHS-sequent, and a sequent Σ as a full sequent. We use both Σ and ∆ to
denote LHS- and full sequents with the context differentiating the usage.

As for classical modal logics (e.g. [2, 17]), we define a context Σ{ } · · · { }
to be a nested sequent with some number of holes { } in the place of formulae.
This gives rise to two types of contexts: input contexts, which require holes to
be filled with LHS-sequents to obtain a full sequent, and output contexts, which
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require a single hole to be filled with an RHS-sequent and the remaining holes
to be filled with LHS-sequents to obtain a full sequent. We also define the output
pruning of an input context Σ{ } · · · { } or full sequent Σ, denoted Σ↓{ } · · · { }
and Σ↓ respectively, to be the same context or sequent with the unique output
formula deleted. We note that all of the above terminology is due to [32].

Example 3. Let Σ1{} := p•, [♦q•, { }], Σ2{} := p•, [♦q◦, { }], ∆1 := ⊥•, [q ⊃ r◦],
and ∆2 := ⊥•, [q ⊃ r•]. Observe that neither Σ1{∆2} nor Σ2{∆1} are full
sequents since the former has no output formula and the latter has two output
formulae. Conversely, both Σ1{∆1} and Σ2{∆2} are full sequents.

Our nested sequent systems are presented in Fig. 4 and are generalizations of
those for the the logics of the intuitionistic modal cube given in [32]. For example,
a nested sequent system for the intuitionistic modal logic IK+{(♦0�A ⊃ �3A)∧
(♦3A ⊃ �0♦A)} incorporating the 3-to-1 transitivity axiom, which falls outside
the intuitionistic modal cube, is obtained by employing the A-grammar g(A) =
{♦ −→ ♦♦♦,� −→ ���} in the propagation rules (p♦) and (p�). As in the
previous section, our propagation rules (p♦) and (p�) rely on auxiliary notions
(e.g. propagation graphs and paths), which we define for nested sequents.

Definition 13 (Propagation Graph/Path). Let w be the label assigned to
the root of the nested sequent Σ. We define the propagation graph PG(Σ) :=
PGw(Σ) of a nested sequent Σ recursively on the structure of the nested sequent.

– PGu(∅) := (∅, ∅, ∅);
– PGu(A) := (∅, ∅, {(u,A)}) with A ∈ {A•, A◦};
– PGu(∆1, ∆2) := (V1 ∪ V2, E1 ∪ E2, L1 ∪ L2) where PGu(∆i) = (Vi, Ei, Li);
– PGu([Σ]) := (V ∪{u}, E∪{(u,♦, v), (v,�, u)}, L) where PGv(Σ) = (V,E, L)

and v is fresh.

We will often write u ∈ PG(Σ) to mean u ∈ V , and (u, 〈?〉, v) ∈ PG(Σ) to
mean (u, 〈?〉, v) ∈ E. Also, we define propagation paths, converses of propagation
paths, and the string of a propagation path as in Def. 11.

For input or output formulae A and B, we use the notation Σ{A}w{B}u to
mean that (w,A), (u,B) ∈ L in PG(Σ). For example, if Σ := p ⊃ q◦, [p•, [�p•]]
with PG(Σ) := (V,E, L) and (v, p ⊃ q◦), (u, p•), (w,�p•) ∈ L, then both Σ{p ⊃
q◦}v{�p•}w and Σ{p•}u{p ⊃ q◦}v are valid representations of Σ in our notation.

We now prove that proofs can be translated between our refined labelled
and nested systems. In order to prove this fact, we make use of the following
definitions, which are based on the work of [18, 21].

Definition 14 (Labelled Tree Sequent/Derivation). We define a labelled
tree sequent to be a labelled sequent Λ := R, Γ ` w : A such that R forms a
tree and all labels in Γ,w : A occur in R. We define a labelled tree derivation
to be a proof containing only labelled tree sequents. We say that a labelled tree
derivation has the fixed root property iff every labelled sequent in the derivation
has the same root.
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(⊥•)
Σ{⊥•}

(id)
Σ{p•, p◦}

Σ{A•, B•}
(∧•)

Σ{A ∧B•}
Σ{A◦} Σ{B◦}

(∧◦)
Σ{A ∧B◦}

Σ{A•} Σ{B•}
(∨•)

Σ{A ∨B•}
Σ{A•, B◦}

(⊃◦)
Σ{A ⊃ B◦}

Σ{A◦i }
(∨◦) i ∈ {1, 2}

Σ{A1 ∨A◦2}

Σ↓{A ⊃ B•, A◦} Σ{B•}
(⊃•)

Σ{A ⊃ B•}
Σ{[A◦]}

(�◦)
Σ{�A◦}

Σ{[A•]}
(♦•)

Σ{♦A•}
Σ{[∅]}

(d)
Σ{∅}

Σ{∆1}w{A◦,∆2}u
(p♦) only if ∃π(w, u) ∈ PG(Σ)(sπ(w, u) ∈ Lg(A)(♦))

Σ{♦A◦,∆1}w{∆2}u

Σ{�A•,∆1}w{A•,∆2}u
(p�) only if ∃π(w, u) ∈ PG(Σ)(sπ(w, u) ∈ Lg(A)(♦))

Σ{�A•,∆1}w{∆2}u

Fig. 4. The nested sequent calculi NIK(A). The (d) rule occurs in a calculus iff D ∈ A.

We now define our translation functions which transform a full nested sequent
into a labelled tree sequent, and vice-versa. Our translations additionally depend
on sequent compositions and labelled restrictions. If Λ1 := R1, Γ1 ` Γ ′1 and Λ2 :=
R2, Γ2 ` Γ ′2, then we define its sequent composition Λ1⊗Λ2 := R1,R2, Γ1, Γ2 `
Γ ′1, Γ

′
2. Given that Γ is a multiset of labelled formulae, we define the labelled

restriction Γ � w := {A | w : A ∈ Γ}, and we note that if w is not a label in
Γ , then Γ � w := ∅. Moreover, for a multiset A1, . . . , An of formulae, we define
(A1, . . . , An)∗ := A∗1, . . . , A

∗
n and (∅)∗ := ∅, where ∗ ∈ {•, ◦}.

Definition 15 (Translation L). We define Lw(Σ) := R, Γ ` u : A as follows:

– Lv(∅) := ∅ ` ∅
– Lv(A

•) := v : A ` ∅
– Lv(A

◦) := ∅ ` v : A

– Lv(∆1, ∆2) := Lv(∆1)⊗ Lv(∆2)
– Lv([Σ]) := (vRu ` ∅)⊗Lu(Σ) with
u fresh

We note that since Σ is a full sequent, the obtained labelled sequent will
contain a single labelled formula in its consequent.

Example 4. We let Σ := p ⊃ q◦, [p•, [�p•]] and show the output labelled sequent
under the translation L.

Lw(Σ) = wRv, vRu, v : p, u : �p ` w : p ⊃ q

Definition 16 (Translation N). Let Λ := R, Γ ` w : A be a labelled tree
sequent with root u. We define Λ1 ⊆ Λ iff there exists a labelled tree sequent
Λ2 such that Λ = Λ1 ⊗ Λ2. Let us further define Λu to be the unique labelled
tree sequent rooted at the label u such that Λu ⊆ Λ. We define N(Λ) := Nu(Λ)
recursively on the tree structure of Λ:

Nv(Λ) :=

{
(Γ � v)•, (w : A � v)◦ if R = ∅;
(Γ � v)•, (w : A � v)◦, [Nz1(Λz1)], . . . , [Nzn(Λzn)] otherwise.
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Σ (n)
[Σ]

Σ{∅}
(w)

Σ{∆}
Σ{A•, A•}

(c)
Σ{A•}

Σ{[∆1], [∆2]}
(m)

Σ{[∆1,∆2]}

Fig. 5. Height-preserving (hp-)admissible structural rules.

In the second case above, we assume that vRz1, . . . vRzn are all of the relational
atoms occurring in the input sequent which have the form vRx.

Example 5. We let Λ := wRv, vRu, v : p, u : �p ` w : p ⊃ q and show the output
nested sequent under the translation N.

N(Λ) = Nw(Λ) = p ⊃ q◦, [p•, [�p•]]

Lemma 3. Every proof in IK(A)L of a labelled tree sequent is a labelled tree
proof with the fixed root property.

Proof. The lemma follows from the observation that if any rule of IK(A)L is
applied bottom-up to a labelled tree sequent, then each premise is a labelled
tree sequent with the same root. ut
Theorem 5. Every proof of a labelled tree sequent in IK(A)L is transformable
into a proof in NIK(A), and vice-versa.

Proof. Follows from Lem. 3, and the fact that the rules of IK(A)L and NIK(A)
are translations of one another under the N and L functions. ut
Theorem 6 (NIK(A) Soundness and Completeness). A formula A is deriv-
able in NIK(A) iff A is A-valid.

Proof. Follows from Thm. 4 and 5. ut

Theorem 7. The rules (n), (w), (c), and (m) are hp-admissible in NIK(A).

Proof. By induction on the height of the given derivation; the proofs are sim-
ilar to those of [2, Lem. 1] and [32, Lem. 6.4]. For the (m) rule, we note that
propagation paths are preserved from premise to conclusion (cf. [17, Fig. 12]),
showing that the rule can be permuted above (p♦) and (p�). ut

7 Conclusion

In this paper, we employed the structural refinement methodology to extract
nested sequent systems for a broad class of intuitionistic modal logics. The at-
tainment of such systems answers the open problem of [25] to a large extent by
showing how to transform axioms (namely, HSLs) into propagation/logical rules
as well as how to obtain nested sequent systems for logics outside the intuitionis-
tic modal cube. We aim to write proof-search algorithms in future work based on
our nested systems which utilize saturation conditions and loop-checking (cf. [11,
22, 33]) to provide decision procedures for logics within the class considered. Our
primary concern will be to establish the decidability of transitive extensions of
IK, which has remained a longstanding open problem [15, 31].
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