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Abstract. In this paper we present a novel extension to the parallax feature based
bundle adjustment (BA). We take parallax BA into a manifold form (PMBA)
along with an observation-ray based objective function. This formulation faith-
fully mimics the projective nature in a camera’s image formation, resulting in
a stable optimization configuration robust to low-parallax features. Hence it al-
lows use of fast Dogleg optimization algorithm, instead of the usual Levenberg
Marquardt. This is particularly useful in urban SLAM in which diverse outdoor
environments and collinear motion modes are prevalent. Capitalizing on these
properties, we propose a global initialization scheme in which PMBA is sim-
plified into a pose-graph problem. We show that near-optimal solution can be
achieved under low-noise conditions. With simulation and a series of challenging
publicly available real datasets, we demonstrate PMBA’s superior convergence
performance in comparison to other BA methods. We also demonstrate, with the
“Bundle Adjustment in the Large” datasets, that our global initialization process
successfully bootstrap the full BA in mapping many sequential or out-of-order
urban scenes.

Keywords: Bundle adjustment, Global SfM, Monocular SLAM

1 Introduction

Visual SLAM as well as Structure from Motion (SfM) estimate camera poses and 3D
scene geometry simultaneously from 2D images. Bundle adjustment is the gold stan-
dard back-end method in these activities that it finds the optimal pose and map in the
least squares sense [1] to best explain the data. Solving such a non-linear least squares
problem typically requires iterative Newton-based methods [2]: start with an initial
guess, repetitively add increments by solving a normal equation until convergence. As

Table 1. Three types of Newton-based methods

GN LM DL
4x = H−1e(x) 4x = (H+ λI)−1e(x) 4x = (λ1H

−1 + λ2I)e(x)

shown in Table 1, this approach comes in three forms: original Gauss-Newton (GN)
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when the equation is easy to solve (the Hessian matrix H has a small condition num-
ber), Levenberg Macquardt (LM) as a damped GN if Hessian is near singular, and Dog-
Leg (DL) as a combination of GN and the steepest descent method for fast convergence
[7, 6]. Although all three methods can benefit from a sparse implementation, the overall
convergence performances are different. Within each iteration step, LM tries to repeti-
tively solve an augmented equation with newly adjusted damping term λ until error is
reduced. In comparison, DL only performs Hessian inversion once for all retries, it is
therefore more efficient than LM. However, GN and DL are both considered risky due
to the large step size and are often avoided in practice. LM is a favourite of the robotics
and computer vision communities for its safe handling despite its slowness [6].

Problematic Features In many modern BA systems [4, 11, 24], a 3D feature point is
parameterized either as Euclidean coordinates (XYZ) or by the direction and inverse of
depth from the first observing camera (IDP) [9]. A well-known problem for these repre-
sentations is that existence of low parallax features during motion causes singularity in
the Hessian matrix, a main contribution to GN divergence and numerical instability [9,
10]. A small change in error function leads to a large jump in the state variable, mak-
ing it difficult to specify a consistent stop criterion. To avoid singularity, slow LM is
commonly used for safe increment [7, 10] in place of GN or DL, efficiency is compro-
mized for stability but could easily result in local minimum. These problematic features
manifest in outdoor scenes as far away features and in street view scenes as features
collinear to the observing camera motion. IDP can elegantly handle far features [9] but
fail to cope with collinear ones [10]. Figure 1 illustrates the failure modes in possible
BA forms.

Robustness to problematic features is a major issue in urban SLAM. Several reme-

Fig. 1. Compare BA for “Malaga dataset”: existence of collinear features (yellow dots) cause
IDP (brown) and XYZ (green) to differ significantly from Ground Truth (red); PMBA (blue) and
PBA (the original parallax-based BA [10], orange) do not encounter this issue. PMBA has fastest
convergence, see Fig. 8(a).

dies are adopted to address it, with the common principle of separate treatment for
problematic features and good ones. In ORB-SLAM [25], a prudent feature selection
strategy is applied where features with in-sufficient parallax angles are discarded al-
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though they do contain certain information. A hybrid method was proposed in [23],
that first estimates camera orientations with remote features then optimises with poses
and near features. The vision smart factor proposed in [26] (implemented in GTSAM
[24]) shares the same approach of [23]. It avoids degeneracy by using a flexible-sized
error function. Recently [27] proposed a solution in which less weighting is given to the
error terms for problematic features.

Our proposed solution in this paper takes a totally different viewpoints. After re-
thinking the difference between state and state uncertainty, we argue that the root cause
for degeneracy is that the uncertainty of conventional feature forms is not uniformly
bounded. In our previous work [10], we presented the parallax angle based bundle ad-
justment (PBA) algorithm where a feature is represented by 3 highly observable angles
without involving depth: a direction confining azimuth and elevation angles and a depth
related parallax angle. [10] demonstrated that PBA is more robust and efficient com-
pared to XYZ or IDP form BA’s. Our proposed manifold formulation – PMBA is a
continuation along this approach and leads to even better convergence properties.

Initialization Methods. BA due to its highly non-convex nature [2], requires good
initial estimates to converge to global minimum. The common initialization methods
are incremental or global. In incremental methods, with a simple start, many mid-level
BAs are performed on each new pose insertion. This strategy draws the criticism that
it is slow and relies heavily on picking good initial image pairs to progress. Example
systems are VisualSFM [22], Bundler [12] and ORB-SLAM [25]. The alternative is the
global strategy where all camera poses are initialised simultaneously. Global SfM thus
bootstrapped shows higher efficiency and accuracy. The global strategy exposes many
research challenges, and has been studied carefully in [17–19]. Our previous work [10]
involved a simple initialization method that unfortunately is vulnerable to complicated
camera motions and is only targeted at sequential inputs. The proposed initialization
scheme in this paper addresses this issue.

Contributions and Paper Structure. This paper provides a novel BA formulation and
initialization method robust to problematic features. First, we present (in Sect. 2) a
novel BA formulation using parallax feature paramterization on manifold, its retraction
method and an observation ray based error function. Next we show that the under-
lying optimization exhibits non-singular Hessians and bounded error functions, fully
suppressing degeneracy due to problematic features. These good convergence prop-
erties allow fast DL optimization and is robust to urban scenes. In Sect. 3, we pro-
pose a global initialization strategy in which the PMBA problem is simplified into an
easy-to-solve position registration problem. We show that the simplification leads to
near-optimal solution under low-noise condition. We develop theorems and analysis for
both contributions. In Sect. 4, we verify our claims through simulation and a series of
large-scale publicly available datasets, all including low-parallax features. We present
theorem proofs and reconstruction results in the supplementary material [3].

Notations. Throughout this paper, bxc× denotes a skew symmetric matrix from vector
x ∈ R3. ξ(·) is the normalization operator: ξ(x) = x

‖x‖ gives vector x’s direction. π(·)
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is the homogeneous normalization operator: π(
[
x, y, z

]T
) =

[
x/z, y/z, 1

]T
. We use

the calligraphic font and roman font to represent manifold and Euclidean variable re-
spectively. For example, the i’th camera pose is represented as Ti = (Ri,Pi) ∈ SE(3).
For the j’th feature, Fj and Fj denote its PMBA parameter and 3D coordinates respec-
tively. We use subscript (l) to indicate the reference frame is local.

2 Parallax Bundle Adjustment on Manifold

In this section, we introduce the PMBA formulation. We first define its feature param-
eterization in manifold domain, then show a retraction method and its compatible error
function. Next we give a thorough theoretical analysis on the boundedness of its in-
formation matrix, hence proves its smooth convergence without singularity. All these
factors lead to the possibility of using faster DL optimization method, which is a sig-
nificant improvement over previous work [10].

2.1 Feature parameterization

A feature’s depth information can be computed from the parallax between observations
from different viewpoints.

pi

ξ(Nj,i)

Pmj Paj

Fj

Pmj −Paj

R
m
j nj

αj

θj

αj
−
θj

Fig. 2. Feature point Fj anchored by Pmj

and Paj with parallax angle θj . An arbi-
trary observing camera is shown at posi-
tion Pi. Directions of ray from Pmj and
Pi are labeled as Rmjnj and ξ(Nj,i) re-
spectively, all in global frame.

For a 3D feature point Fj , amongst the set of
observing cameras Tj , we choose a main an-
chor Tmj and an associate anchor Taj that
form the best parallax angle from their obser-
vation rays. This geometric relationship for
feature j is illustrated in Fig. 2.

In manifold domain, we denote the fea-
ture as Fj and over-parameterize it by its
unit observation ray vector nj in main-anchor
frame, and the parallax angle θj ,

Fj = (cos θj , sin θj ,nj) (1)

This parameterization only defines the
relative structure of the feature with respect
to its two anchors. The scale of point Fj is

implicitly defined by the relative translation of the two anchors, and is computed as

Fj(Fj) =
#              »

PajPmj + Pmj =
sin(αj − θj)

sin(θj)
‖Pmj

−Paj‖Rmj
nj + Pmj (2)

where

• nj ∈ R3 is the direction of observation ray from Pmj
to Fj , local in Tmj

frame.
• sin(αj−θj)

sin(θj)
‖Pmj

−Paj‖ is the distance between the two, from sine rule.
• Rmj

is the rotation for main anchor frame Tmj
.
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• αj is the angle between vector (Pmj
−Paj ) and Rmj

nj , see (11) for derivation

Remark 1. In the original PBA parameterization [10], ray direction nj was defined by
an elevation and azimuth angle in the global frame, camera’s orientation {Ri} in Euler
angles. When a feature’s elevation angle is π

2 , its azimuth angle becomes irrelevant. Ex-
pressing directions in sinusoids of angles is a potential source of singularity. In PMBA,
both nj and Ri are in the manifold domain. Moreoever, nj is newly defined to be in
Tmj

’s local frame, for ease of multi-camera system application.

2.2 State variable retraction in manifold

pm

n⊕ δn

n

Aδn
A1

A2Tangent space

Fig. 3. Retraction of ray n in main anchor

Optimization in manifold follows a three
step procedure [8]: lift a manifold vari-
able to its tangent space, solve a normal
equation to obtain the Euclidean incre-
ment, and retract back to manifold. We
use the pose retraction method described
in [20]. For feature ray direction, we give
a natural definition of uncertainty as a
normally distributed rotational perturba-
tion to the directional vector as shown in
Fig. 3. The rotation’s axis constitutes a
plane normal to the ray passing through

the observing camera, the plane is the tangent space. We can express the perturbed ray
direction as:

ñj = Exp(Anj
δnj)nj , δnj ∈ N (0, Σ). (3)

where δnj ∈ R2, Anj
∈ R3×2 is the left null-space of nj and [Anj

nj ] ∈ SO(3),
Exp() is the exponential map for SO(3). The optimal perturbation is the increment for
retraction:

Fj � δFj = (cos(θj + δθj), sin(θj + δθj),Exp(Anjδnj)nj). (4)

where the total increment δFj =
[
δθj , δnj

]
∈ R3 has same dimensionality as conven-

tional parameterization.

2.3 Error function and optimization formulation

In PMBA, we estimate camera poses T = {(Ri,Pi)}i=1,··· ,M and feature parameters
F = {Fj ∈ M3}j=1,··· ,N from a set of images {Ii}. When the feature j is observed
from the pose Ti, the monocular sensor intercepts the light ray Nj,i that passes through
its centre to the feature point at the image pixel umj,i

.
In conventional bundle adjustment, pixel imprints are used directly as measurements

to estimate feature set F = {Fj ∈ R3}j=1,··· ,N together with poses. As a maximum a
posterior (MAP) problem, the conventional BA is formulated as:

min
T ,F

∑
i∈Tj ,j

‖eij(Ti,Fj)‖2 = min
T ,F

∑
i∈Tj ,j

‖K ◦ π(Rᵀi (Fj −Pi))− umj,i‖2, (5)
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where K represents the camera calibration matrix and π is the homogeneous normal-
ization operator. The error function eij(·) ∈ R2 does not give clue to cheirality property
(lies in front of or behind a given camera).

On the other hand, the observation ray Nj,i ∈ R3 includes directional information
and should provide a better measurement for feature source than its 2D pixel counter-
part. From (2), we express Nj,i (in global frame) as:

Nj,i = sin(θj)(Fj −Pi)

= sin(αj − θj)‖Pmj −Paj‖Rmjnj + sin(θj)(Pmj −Pi)
(6)

Note that we have applied a factor of sin(θj) for convenience of mathematical ma-
nipulation. The variable forms the observation ray appears in this paper is in Table 2.

Table 2. Various forms of observation ray in this paper

Global ray
Global ray
direction

Local ray
Local ray
direction

Nj,i = Fj −Pi ξ(Nj,i) =
Fj−Pi

‖Fj−Fi‖
N

(l)
j,i = Rᵀi (Fj −Pi) ξ(N

(l)
j,i) =

R
ᵀ
i (Fj−Pi)

‖Rᵀ
i (Fj−Pi)‖

We now define the ray direction based error function, essentially a ”chordal dis-
tance” of bearing vectors (on the sphere):

eij(N
(l)
j,i) := vj,i − ξ(N(l)

j,i) ∈ R3, (7)

where vj,i = ξ(K−1umj,i
) ∈ R3 is the observation ray’s measured direction.

Moving this measurement to the global frame, expressing all states in manifold, we
come to the final non-linear least squares problem for PMBA:

min
X
‖f(X )‖2 = min

T ,F

∑
i∈Tj ,j

‖ξ(N(l)
j,i)−Rivj,i‖2, X = (T ,F) (8)

Im
age

Pi

Fmj

Fj

um
u

Conventional error
eij(Fj) = u − um

Rivj,i

ξ(N
j,i
)

Ray direction error:
eij(ξ(Nj,i)) ≈ β

2

β

Fig. 4. Camera measurement error

The difference between pixel and ray-
direction error forms are shown in Fig. 4.

Remark 2. The conventional 2D error func-
tion (5) shows ambiguity for frontal or hin-
der feature positions, the non-uniqueness of
function values brings many local minimums
and saddle points. In comparison, the pro-
posed 3D error function (7) leads to improved
monotonicity with fewer local minima. Its
magnitude can be modelled with the angle β
between the estimated and measured ray di-
rection : ‖eij‖ = 2 sin(β2 ) ∈ [0..2]. This cov-
ers the entire range of small error (β → 0)

to behind-scene error (β → π). Further, (5) employs homogeneous normalization π(·)
which prevents feature’s local Z-ordinate from approaching zero, causing BA disconti-
nuity. Eq. (7) employs vector normalization ξ(·) instead, is almost totally continuous.
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With the above discussion, the new optimization (8) should exhibit significantly in-
creased convergence region and the ability to correct feature state from many erroneous
estimates through successive iterations, including behind the camera case.

2.4 Theoretical analysis on convergence properties

We now give an analysis on PMBA’s convergence properties.
Consider the Hessian matrix of the problem (8)

H = JᵀJ =

[
HTT HTF

HᵀTF HFF

]
, (9)

where J := ∂f(X�∆X )
∂∆X |∆X=0 andX�∆X := (T �∆T ,F�∆F). Like the Hessian

matrix in conventional BA, HFF is block diagonal. Applying the Schur’s omplement
method, the dominant computation in each Newton method’s iteration boils down to
solving the following normal equation:

(HTT −HTFH
−1
FFH

ᵀ
TF)∆T = −

[
I HTFH

−1
FF

]
f(X ), (10)

In conventional BA, existence of problematic features causes the matrix HTT −
HTFH

−1
FFH

ᵀ
TF and the block matrix HFF (with slight abuse of notation) to be ill-

conditioned at the neighborhood of global minimum. The global minimum locates at
a “long flat valley” [10] such that solvers fail or require large number of iterations to
converge, see Fig. 8(a) for illustration.

In comparison, PMBA’s formulation (8), thanks to the re-defined retraction (4) and
the compatible error function (7), faithfully complies with projective geometry in im-
age formation, is therefore well-posed with significantly improved local observability
despite of “problematic” features.

Theorem 1. Under the formulation (8), HFF is consistently non-singular for any X
and HFF ≥ I.

Proof. See [3] for proof.

Theorem 1 completely suppresses all ill-conditioned HFF so normal equations
(GN) are always solvable. With increased convergence region, the DL trust-region
method can be safely applied to increase iteration step size (a sum of GN step plus
steepest descent), and minimize iteration time (cheap retries). Theorem 1 can also be
appreciated from an Information Theory perspective: the Hessian matrix at global min-
imum is the inverse of the covariance matrix (up to a scale) and thus the uncertainty of
the parallax angle θj and the direction nj is uniformly bounded.

Remark 3. The original PBA [10] cannot guarantee non-singularity in HFF due to use
of standard addition retraction for feature, Euler angles for orientation and the error
function (5).

Remark 4. Although the matrices HTT and HTF are denser, compared to those in
XYZ or IDP, HTT − HTFH

−1
FFH

ᵀ
TF shows same sparsity. Thus the computational

time for each iteration in PMBA is comparable to conventional BA, see [10].
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3 Global Initialization

In this section, we derive a initialization strategy compatible to PMBA. The goal is
to derive camera poses from a set of essential matrices. We do this in three steps. We
first identify well-matched image pairs to obtain their epipolar geometry’s (EG). From
the EG-pairs we then initialize rotations and features. Finally we simplify the original
PMBA problem into a pose-graph problem and estimate camera positions with two
optimization stages: constrained least square (CLS) and non-linear (NLS) optimisation.
We show that near-optimal solution can be obtained under low-noise conditions. This
pipeline of global initialization and PMBA are illustrated in Fig. 5.

1. Identify EG-pairs

2. Preprocessing

• Initialise {Ri}
• Initialise {fj}
• Improve EG-pairs

3. Initialize Position

• CLS pose-graph

• NLS pose-graph

4. Full PMBA

Fig. 5. Full Global Initialization + PMBA pipeline.

3.1 Orientation and feature initialization

Following the approach in [16–18], we first obtain an initial guess for orientations.
This requires a maximal set of EG-pairs (relative rotation and translation) be formed
from two-view matches. We use Kneip’s 5-point algorithm [14] to calculate each EG’s
essential matrix. Next we build a maximum spanning tree from EG-pairs and discard
bad pairs thus establishing accurate image connectivity. We choose the tree root as our
reference frame, and use tree branches to help form prior rotation estimates. This is
especially useful with out-of-order image inputs. We use the state-of-art chordal initial-
ization [13] for rotation averaging. We found the output rotations very reliable and can
feed them back to the tree for outlier-pruning and relative translation fine-tuning [15].

With accurate rotation estimates, we are ready for feature initialization. We adopt
the default anchor selection strategy in [10], with the small change that co-visible poses
that participate in anchor selection have to be part of an EG-pair. This step ensures best
as-can-be parallax angle be given to each feature point. We stress that any problematic
features corresponding to low parallax angles do stay in the state and do not affect
convergence under PMBA. Good features together with problem ones work together to
shape the final solution.

Remark 5. In PMBA, feature paramterization does not require scale information. Their
initialization therefore relies only on camera rotations [10] and are very accurate. We
thus completely avoid unreliable/expensive linear triangulation.

3.2 Position initialization

Rotations and features initialized above are highly accurate, they can be assumed fixed
thus do not participate in the subsequent optimization. This way PMBA is transformed
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Pmj Paj

Fj

Rmj nj

Pmj −Paj
αj

θj

αj
−
θj

nzj

pi

Rivj,i

Nj,i

Nj,i × (Rivj,i)

(a) Linearize ray function: rotate (Paj −Pmj ) by
(π − αj) about nzj becomes ‖Pmj −Paj‖Rmjnj .

(b) PMBA reformatted as a constrained
-LS problem: minimize cross product

Fig. 6. Simplification of PMBA into position only problem

into a pose-graph problem where the unknown variables are positions only. This pose-
graph problem it not convex but can be further simplified. We do so first by approximat-
ing the ray Nj,i from a non-linear function of poses to a linear combination of positions.
Specifically, the non-linear term ‖Pmj

− Paj‖Rmj
nj in (6) can be seen as a rotation

of (Paj −Pmj
) to Rmj

nj about axis nzj by angle π − αj , as illustrated in Fig. 6(a).
Both nzj and αj are locally observable and are computed as,

αj = arccos(ξ(Pmj
−Paj )ᵀ(Rmj

nj)), nzj = ξ(Paj −Pmj
)× (Rmj

nj) (11)

We now give the linearized expression for the observation ray, denoted N̄j,i:

N̄j,i(Pmj ,Paj ,Pi) =

sin(ᾱj − θ̄j) exp(n̄zj(π − ᾱj))(Paj −Pmj ) + sin(θ̄j)(Pmj −Pi)
(12)

After substituting N̄j,i into (8), we establish a “position only” optimization,

min
P

h(P, R̄, F̄) := min
{Pi}

∑
i∈Tj ,j

‖ξ(N̄j,i(Pmj
,Paj ,Pi))− R̄ivj,i‖2. (13)

This approach of position registration from unitized direction vectors is inspired by
the non-linear method from [18]. The cost-function in [18] is essentially an algebraic
difference of inter-pose directions. Whereas ours is based on pose-feature directions
without solving for the features, and can directly handle collinear motions by virtue of
parallax structure (see Sect. 3.3).

Remark 6. Considering (13) is still a nonlinear problem, an initial guess is needed by its
iterative solver. We obtain the initial values by computing the optimum of a constrained
least squares problem. The objective is to minimize the cross-product between ray Nj,i
(linear to positions) and Rivj,i as shown in Fig. 6(b). Due to sign ambiguity in cross-
products, we add the linear constraint to ensure cheirality condition. The overall CLS
problem is:

min
{Pi}

∑
i∈Tj ,j

‖
⌊
R̄ivj,i

⌋
×N̄j,i(Pmj

,Paj ,Pi)‖2, z(R̄iN̄j,i) >= 0. (14)
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3.3 Theoretical analysis

Theorem 2. With accurate initial estimate for orientation, the formulation (13) can
always converge to a near-optimal solution for the BA problem (8).

Proof. See [3] for proof.

Theorem 2 proves the correctness and robustness of the proposed initialization.
Moreover, from the viewpoint of computational complexity the pose-graph problem
(13) exhibits much reduced variable size than (8) and the expensive feature retraction
operation is also avoided.

It is interesting that Theorem 2 provides a theoretical assurance that partitioning the
BA problem into a pose-graph initialization step and a full BA step is a sound approach.
In fact, the separation strategy is well known in SLAM systems. In [29] a SLAM prob-
lem with range and bearing observations is shown to exhibit a separable structure: given
orientation, robot and feature positions are linear in the corresponding error function.
The separable structure is further exploited in [30] to form an efficient iterative solver
with better convergence. Undoubtedly, visual SLAM is far more complex where depth
information is not readily observable. Our proposed initialization as well as other algo-
rithms [17–19] all intrinsically apply the separation strategy to simplify the complex
BA problem.

Remark 7. Here we do not claim the proposed global initialization is the best one but
it is very compatible to PMBA. The pose-graph problem includes all feature observa-
tions in its objective function, hence contain sufficient information to handle collinear
motions. Further, it does not require strong triplet image association as in [17].

Remark 8. Note that the proposed method is friendly to robust methods such as pseudo
Huber, L1-norm or outlier detection technique. Further, the non-linear model is still
formulated in a probabilistic framework, different from the “Linear Global Translation
Estimation” reported in [19].

4 Evaluation on PMBA performance

4.1 Simulation

We demonstrate PMBA’s ability to handle problematic features with a simple simula-
tion test. The scene consists of 4 poses and 10 features, two of which are problematic,
as shown in Fig. 7(a). One problematic feature is a far feature, the other initialized with
values that would cause singularity in the original PBA algorithm. The BAs under com-
parison are: XYZ-BA, PBA and PMBA. We run 4 iterations for each BA and collect
their Hessian’s. At the end we gather BA estimates deviation from ground truth. The re-
sults are listed in Table 3. One can see that PMBA has good Hessian condition numbers
and accurate optimized estimates, PBA and XYZ-BA show consistently large condition
numbers and high errors. This confirms Theorem 1 that This can be explained by our
Theorem 1 that the Hessian in PMBA does not exhibit Hessian singularity yet other
BAs can.
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(a) Simulation with
problem features

(b) Comparison of the error
from PMBA, PBA and XYZ-BA

Fig. 7. Compare three BA forms in a simulated scene with problem features

Table 3. Comparison of HFF’s condition number during optimization and final state error for
PMBA, PBA and XYZ-BA

Convergence Properties PMBA PBA XYZ-BA
Iter-0 cond(HFF) 9.74 1.46E+4 1.22E+94
Iter-1 cond(HFF) 5.68 1.46E+4 1.22E+94
Iter-2 cond(HFF) 8.80 1.46E+4 1.22E+94
Iter-3 cond(HFF) 5.74 1.46E+4 3.53E+95

Final χ2
error 2.58E-3 5.37E-2 3.43E-2

4.2 Large dataset test

We conducted a series of real datasets to compare performance of the proposed PMBA
(8) and original PBA, IDP and XYZ, aiming to address following questions:

• Robustness. With degeneracy scenario disappearing, can DL be safely used in
PMBA implementation?

• Efficiency. If DL were applied for PMBA, how fast can the optimization be?
• Accuracy. Since the PMBA formulation employs a different error function (7). Is

the global minimum accurate?

All methods are tested against six very challenging datasets, which are also acces-
sible from OpenSLAM3. In particular,

• Fake-pile is collected by the Google tango tablet in normal lab environment with a
fake bridge pile in the middle, showing close and far features.

• Malaga [21] is a classic street view dataset. It is collected using an electric car
equipped camera facing the road, consisting of many collinear features.

• Village and College are aerial photogrammetric datasets. The low feature to obser-
vation ratio implies existence of many small parallax features

• Usyd-Mainquad-2 and Victoria-cottage are collected at University of Sydney cam-
pus, full of far features. See [3] for reconstruction results.

3 https://svn.openslam.org/data/svn/ParallaxBA/
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Table 4. Comparison of convergence performance for PMBA, PBA, XYZ-BA, IDP-BA

Dataset Type
# Pose
/ # Feat
/ # Obsv

# Equation solve
/ # Iteration

Final
Chi2

Time
[sec]

Fake-pile PMBA 135 9 / 9 1.7E+2 0.7
PBA /12,741 23 / 23 1.7E+2 1.9
IDP /53,878 104 / 102 1.7E+2 6.0
XYZ 116 / 108 1.2E+3 4.7

Malaga PMBA 170 44 / 31 9.1E+3 21.6
PBA /305,719 64 / 47 9.1E+3 35.4
IDP /779,268 230 / 170 5.8E+5 93.8
XYZ 110 / 85 3.3E+5 39.0

Village PMBA 90 12 / 12 3.3E+4 31.8
PBA /305,719 13 / 13 3.3E+4 36.0
IDP /779,268 19 / 19 3.3E+4 35.2
XYZ 18 / 18 3.3E+4 26.3

College PMBA 468 33 / 33 1.1E+6 334.4
PBA /1,236,502 31 / 31 1.1E+6 370.5
IDP /3,107,524 34 / 34 1.1E+6 255.3
XYZ 295 / 193 1.0E+7 1361.0

Victoria PMBA 400 19 / 16 1.1E+6 70.5
cottage PBA /153,632 88 / 66 1.2E+6 301.4

IDP /890,057 49 / 48 1.1E+6 157.9
XYZ 47 / 44 1.2E+6 124.3

Usyd PMBA 424 25 / 25 2.4E+6 214.5
-Mainquad PBA /227,615 101 / 57 3.6E+6 642.6

IDP /1,607,082 301 / 191 4.6E+6 1994.7
XYZ 76 / 58 2.8E+6 423.7

We set all BAs from the same starting point use the imperfect initialization method
from [10] to observe iteration behaviour. We find that PBA, IDP and XYZ show unstable
behaviour under DL. PMBA, in comparison, has always worked well with DL. This
can be explained by our prediction that PMBA has a large convergence region and is
consistently well-posed. We therefore list DL results for PMBA and LM for all other
BA’s.

We implement all BAs in C++ and use Ceres-solver [4] as the optimization en-
gine. All BAs are tested on an Intel-i7 CPU running one thread. We use ray direction
cost function for PMBA, and compute its corresponding uv-based Chi2 error at each
iteration step with current estimate, to compare with other BAs on a common error
metric. This scheme is not fair for PMBA, yet is the only convincing way to evaluate
performance amongst all methods. Despite of this treatment, we found PMBA the best
performer in all tests, consistent with our expectation.

Selected convergence plots are shown in Fig. 8, more can be found in [3]. All col-
lected metrics are summarized in Table 4.

Further, for the Malaga dataset which is full of problematic features (Fig. 1), we
observe that the PMBA estimates and Ground Truth are very close, yet conventional
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(a) Malaga (b) Usyd-Mainquad-2

Fig. 8. Convergence plots for PMBA, PBA, IDP and XYZ

BA gives significant error. This is also seen in Table 4, conventional BAs converge
to a local minimum, whereas both PBA and PMBA can converge to their respective
global minimums. Figure 8 and Table 4 confirm that the error function (7) is practical,
consistent with the claim in [28]. In conclusion, these experiments all give positive
answers to the raised questions.

4.3 Evaluation of PMBA global initialization

Finally, we conduct tests to verify our initialization strategy. We use datasets from the
“Bundle Adjustment in the Large” (BAL) datebase4 [5] and the datasets in Sect. 4.2.
We implement a PMBA-based SfM pipeline complying to the procedure in Fig. 5 in
C++, using Ceres [4] as the optimization engine. For comparison, we run same tests on
an incremental pipeline similar to Bundler, also written in C++ using Ceres [4].

These datasets are selected for showing street scene (Ladybug-1370), diverse prox-
imity scene (Trafalgar-126, Venice-427) or photometric aerial scene (College), all ex-
posing challenges for conventional BA. Since camera calibration is beyond the scope of
this activity, we apply the reported optimal camera settings from BAL and PBA web-
sites and only test undistorted versions of these data. We stress that our initial pose and
feature values are purely generated from the rotation averaging and translation registra-
tion methods described in Sect. 3, without using the initial values provided by [5].

The performance comparison results are shown in Table 5. Here the column labeled
“Ours” is the proposed CLS-NLS-PMBA pipeline, the column labeled “Incremental”
refers to the incremental pipleline. Both incremental and our pipeline give similar out-
puts, we therefore only tabulate the timing information. Figure 9 illustrates our pipeline
results in blue, red color shows BAL results or PBA results from [10] for the College
dataset. The red and blue data are almost identical. We also give detailed reconstruction
results at various stages of our pipeline in [3].

4 http://grail.cs.washington.edu/projects/bal/
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Table 5. Complete pipleline comparison

number of BA’s time[min]
Dataset order num poses Ours Incremental Ours Incremental

Ladybug-1370 sequential 1370 1 394 3.33 65
Trafalgar-126 out-of-order 126 1 25 1.01 1.1
Venice-427 out-of-order 427 1 49 6.62 17.4

College sequential 468 1 238 9.63 85.43

The results in Table 5 shows that our global SfM pipeline uses less computation time
and BA invocations than the incremental method in all tests. This result together with
the pipeline output plots in [3] confirm our proposed initialization strategy is viable.

Fig. 9. Reconstruction results of full PMBA pipeline on test datasets

5 Conclusion

In this work, we proposed a new bundle adjustment formulation – PMBA which utilizes
parallax angle based on-manifold feature parametrization and observation-ray based
objective function. We proved that under the new formulation the ill-conditioned cases
due to problematic features can be avoided without any manual intervention, which
results in much better convergence and robustness properties.

Furthermore, motivated by the separable structure in the visual SLAM problem and
ease of parallax feature initialization, we derived a novel global initialization process for
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PMBA. We use a simplified pose-graph model that can guarantee a near-optimal solu-
tion to bootstrap the original BA problem. Experimental results show that the proposed
initialization can provide efficient and accurate estimates and is a viable global initial-
ization strategy for many challenging situations including sequential and out-of-order
images.

The promising results of the global initialization plus PMBA pipeline using pub-
licly available datasets demonstrate that the proposed technique can deal with different
challenging data. In the future, we are planning to integrate the proposed pipeline with
efficient visual SLAM front-end to develop a robust and efficient SfM system.
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