EasyChair Preprint
Ne 4748

‘j“‘ 220

A Computational Model of Life Cycle of Game
Actions and Effect

Frank Appiah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 18, 2020

A COMPUTATIONAL MODEL OF
LIFE CYCLE OF GAME ACTIONS
AND EFFECTS.

FRANK APPIAH.

KING' COLLEGE LONDON, SCHOOL OF ENGINEERING, ENGLAND, UNITED
KINGDOM.

frank.appiah@kcl.ac.uk

appiahnsiahfrank @ gmail.com.

Extended Abstract®. Finite State Machine is employed in computationally
modeling the life cycle of Maiar game. The focus of this research is
computationally modeling the life cycle of a remote command in Maiar game.

Keywords. FSM, machine, computational, game, lifecycle, remote, command,
Maiar.

Year of Study: 2016 Year of Publication: 2020

1 *AFFILIATE. UNIVERSITY OF LONDON, KING'S COLLEGE LONDON,
DEPARTMENT OF ENGINEERING, LONDON, UK.

1 INTRODUCTION

The game engine is the heart of the Maiar game software and is developed
mainly on interfaces for easy extensibility of many actions and effects. It revolves
around actions and effects that show in the 2D graphical user interface with skinning

support. Based on a certain query of state of the room and an action inputted by the

mailto:frank.appiah@kcl.ac.uk

player/user will in turn then trigger an effect for the player like rendering a different

room in the sequence of procedure described in XML data.

Life Cycle of Remote Command

[r— g Ak up the reck >

(o "~ ((commandrerse:)

Start

faring take rock

Lud<Efect> Al of affects that must be reps ssemed visually

Anrg. teks rock

Un=<Efect>: A int o efects that munt be represected vauslly
-

-
[Dlu,.r try-l-;t-an] Flaver dueﬁvrtv]

LUt=Efect> : The st of efects extracted rom the Action

List= Effact>. The kst of aff acts extracted from the action

Arton: Action mapped to “take rock®

Finite State Machine is used in modeling the life cycle of the remote commands in the

game. This is discussed in the next section.

2 GAME MACHINE

A Finite State Machine is good model for computers in describing a regular
language in reference to a particular application. It is a mathematical theory of
finite automaton with reference to an abstract view. The diagram above is a state
diagram concerning a game application running on a computer. The language is a
formal definition. It has a set of states and rules for going from one state to

another, depending on the input symbol. A finite automaton is a list of five objects

: set of states, input alphabet, rules of moving, start state and accept states. The
input alphabet is indicated by input symbols.

A finite automaton[1] is a 5-tuple (Q, 2 , 6, q,F), where
1. Qs afinite set called the states,
2. 2 Is afinite set called the alphabet,
3. & Q x X — Q is the transition function,
4. g, € Q is the start state.
5. F < Q is the set of accept states.

In describing the Game Machine, the finite automaton GM is formally described

as:
. Q:=|GUI CP, PTA, PDE, PPA|
2.) :=|PV, TR, VE, EAPU |
3. 5.*{ transitionfunctions }
4. q():={GUI}
5. F:=|GUI| .

GUI : Graphical User Interface The next activity to do is to represent the transition

CP : Command Parser
PTA: Player Try-Action
PDE: Player do-Effects Transition Function Table. The input-ouput states are
PPA : Player Perform-Actions
PU : Pickup Rock

PV : Present Visual transition function is characterized as a transition
TR : Take-Rock Action
VE: Visual Effects

function in a tabulated form. This is called

entered into a table of rows and columns. The delta

function table shown below:

EA : Extract Action

States INPUT SIGNALS
PU TR VE EA PV
GUI CP PTA & & &
Cp & GUI & & &
PTA & PPA GUI PDE &

States INPUT SIGNALS
PU TR VE EA PV
PDE & & PTA & &
PPA & & & PTA &

The game controller moves from state to state depending on the input it

receives,

1.

10.

In the state GUI, the controller receiving an input signal PU will start to
parse commands.

In the state GUI, on receiving an input signal TR will move a state of
PTA.

In the state GUI, the controller receiving an input signal VE will move to
an empty state.

With an input signal EA, the controller will not move from the GUI state
to any other state.

In the state GUI, the controller receiving an input signal PV will move to
an empty state. AND

In the state CP, the controller receiving an input signal PU will move to
an empty state.

With an input signal TR in a state CP, the controller will move to a state
GUL

In the state CP, the controller on receiving an input signal, VE will not
move to any state.

In the state CP, the game controller on receiving an input signal, EA will
not move to any state, £ .

In the state CP, the game controller on receiving an input signal, PV will

not move to any state, £ . AND

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

In the state PTA, the controller receiving an input signal PU will move to
an empty state.

With an input signal TR in a state PTA, the controller will move to a
state PPA.

In the state PTA, the controller on receiving an input signal, VE will
move to a state, GUL.

In the state PTA, the game controller on receiving an input signal, EA
will move to a state, PPE.

In the state PTA, the game controller on receiving an input signal, PV
will not move to any state, £ . AND

In the state PDE, the controller receiving an input signal PU will move to
an empty state.

With an input signal PDE in a state CP, the controller will not move to a
state.

In the state PDE, the controller on receiving an input signal, VE will
move to a state, PTA.

In the state PDE, the game controller on receiving an input signal, EA
will not move to any state, & .

In the state PDE, the game controller on receiving an input signal, PV
will not move to any state, & AND

In the state PPA, the controller receiving an input signal PU will move to
an empty state.

With an input signal PPA in a state CP, the controller will not move to
any state.

In the state PPA, the controller on receiving an input signal, VE will not

move to any state, £ .

24. In the state PPA, the game controller on receiving an input signal, EA
will not move to a state, PTA.
25. In the state PPA, the game controller on receiving an input signal, PV

will not move to any state, & .

3 MACHINE PROCESSING

Mlustration 1 is a state transition diagram of the Game Automaton(GA) called
GM.,. It has five states labeled GUI, CP, PTA , PDE and PPA and five conditions
labeled PV, VE, PU, TR and EA. The start state of WFA is GUI and it is normally
indicated by a pointing arrow to the state GUI. The accept state is the GUI state and it
is normally indicated by double circle/round-shape around the state. The arrows
moving from one state to another is called transitions. When the automaton receives

an input string {GUI, CP, PTA , PDE, PPA}, it processes that string and produces an

output. The output is either accept or reject. The processing begins in GM; start state.
The automaton receives the symbols from the input string one by one from left to
right. After playing the symbols, GM; moves from one state to another along the
transition that has symbol as its label. When it plays the last symbol now it is in the

accept state. The processing of GM, as follows:

1. start in state GUI;

play PU, follow transition from GUI to CP;
play TR, follow transition from GUI to PTA;
play TR, follow transition from CP to GUI;
accept because GM, is in accept state GUI,

play TR, follow transition from PTA to PPA;

N oA e

play VE, follow transition from PTA to GUI;

10.
11.

accept because GM; is in accept state GUI;

play EA, follow transition from PTA to PDE;
play VE, follow transition from PDE to PTA;
play EA, follow transition from PPA to PTA.

4 TRANSITION FUNCTION

The transition function is used to define the rules of moving. The notation of

the trans

ition function is Oftate, input)=state. The transition functions for remote

commanding are as follows:

6(GUL, PU) = CP
6(GUL TR) = PTA
6(CP, TR) = GUI
6(GUI, PU) = CP
6(PTA, TR) = PPA
6(PTA, TR) = CP
6(PTA, VE) = GUI
6(PTA, EA) = PDE
6(PDE, VE) = PTA
6(PPA, EA) = PDA.

S CONCLUSION

This research is a computational model of a game automaton. This game automa-

ton is machine processed to simulate gameplay states. The Finite State Machine,

GM is defined formally and a transition function table of state movements in the

gameplay is tabulated in 5x5 row-column table. Finally, a rules of movement of
the gameplay is cleary enumerated in this work with a notation of transition

function.

Compliance with Ethical Standards

(In case of funding) Funding: This is research is funded by King's Alumni Group,
Association of Engineering with ISAreference grant number: 204424 20821845.

Conflict of Interest:

Author, Dr. Frank Appiah declares that he has no conflict of interest.

REFERENCES

1. Michael Sipser(1997). Introduction to Theory of Computations. PWS Publishing Company.

2. HopCroft, J. E. and Ulmann, J. D(1979). Introduction to Automata theory, Languages and
Computation. Addison Wesley.

3. Roche, E. and Schabes, Y(1997). Finite-State Language Processing. MIT Press.

