
EasyChair Preprint

№ 685

Emulating Software Defined Network Using

Mininet and OpenDaylight Controller Hosted on

Amazon Web Services Cloud Platform to

Demonstrate a Realistic Programmable Network.

Lindinkosi Zulu, Kingsley A. Ogudo and Patrice Umenne

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 19, 2018

Emulating Software Defined Network Using Mininet

and OpenDaylight Controller Hosted on Amazon

Web Services Cloud Platform to Demonstrate a

Realistic Programmable Network.

Lindinkosi L. Zulu

College of Science, Engineering and

Technology

University of South Africa

Florida, Johannesburg, South Africa

61366935@mylife.unisa.ac.za

Kingsley A. Ogudo

Department of Electrical and

Electronic Engineering Technology

University of Johannesburg

Johannesburg, South Africa

kingsleyo@uj.ac.za

Patrice O. Umenne

Department of Electrical and Mining

Engineering

University of South Africa

Florida, Johannesburg, South Africa

umennpo@unisa.ac.za

Abstract— In this paper, a Software Defined Network was

created in Mininet using python script. An external interface was

added in the form of an OpenDaylight controller to enable

communication with the network outside of Mininet. The

OpenDaylight controller was hosted on the Amazon Web Services

elastic computing node. This controller is used as a control plane

device for the switch within Mininet. The OpenDaylight controller

was able to create the flows to facilitate communication between

the hosts in Mininet and the webserver in the real-life network. In

order to test the network, a real life network in the form of a

webserver hosted on the Emulated Virtual Environment – Next

Generation (EVE-NG) software was connected to Mininet.

Keywords—SDN; Mininet; OpenDaylight; Amazon AWS, Cloud

networking

I. INTRODUCTION

Traditional networking is currently very decentralized with
each network device having its own control plane. It requires
individual manual configuration of each device on the network
if there are changes to be implemented. The hardware and the
software of the traditional networking architecture are
proprietary and specifically designed to work together. This
current setup makes it difficult for the network to be flexible
and scalable to meet the high demand of modern applications
and requirements. Software Defined networking (SDN) was
developed to address these challenges the current network
model is failing to address and OpenFlow was developed as the
first standard communications interface defined between the
control and forwarding planes of an SDN architecture [1].

Open Networking Foundation (ONF) defines Software
Defined Networking as the physical separation of the network

control plane from the forwarding plane, whereby the control
plane controls several devices externally. It is an architecture
that decouples the network control and forwarding functions.
This allows the network to be dynamic, adaptable, cost-
effective, software programable and easily manageable [2]. The
advent of cloud computing allows the control plane to be
logically centralized and distributed in cloud platforms.

This paper begins by looking at the literature covering
Software Defined Networking, Mininet, OpenDaylight
controller and cloud networking. The methodology section
follows which describes the network used and its components.
On the results section, the test results such as throughput are
documented. The conclusion summarizes key points and is
followed by the references.

II. BACKGROUND STUDY

The control plane is the centrally located control unit called
SDN controller acting as the Network Operating Systems
(NOS). The data plane resides inside the network core devices
and is only responsible for forwarding data packets controlled
by the central SDN controller. These separated planes use
protocols and an Application Programmable Interface (API) to
communicate [3].

OpenFlow is one of the protocols used by Software defined
networks and was started by Stanford University in 2008 [4].
Different companies came together in 2011 and formed Open
Networking Foundation (ONF) to further develop OpenFlow
and Software Defined Networking [5]. With the separation of
the control and data planes, the data plane only performs the
data packet forwarding action and it resides in the network

device. The control plane is logically positioned on top of the
data plane and acts as the brains of the network [6]

Software Defined networks makes it possible to consolidate
in one place complex software used to configure and control
several devices making the process less expensive. A
centralized controller gives a benefit of having a view of the
network, which then enables it to make decisions on how data
planes must move the traffic [7-10].

SDN makes it possible to dynamically provision the
network. It improves network resources utilization and
simplifies traffic engineering [11]. It makes it possible to use
external applications to program the network. Communication
between the devices in SDN uses open interfaces making it to
be vendor neutral [12]. To test Software Defined Networks, an
emulator called Mininet is amongst the popularly used tools
[13].

A. Mininet

Mininet is the container-based emulator [14]. It allows the
running of unmodified code interactively on virtual hardware
on a regular computer. It provides convenience and realism at
low cost compared to running on a hardware. Programs run on
emulators require none or minimum modification when applied
to real live networks [15]. Mininet runs unmodified code of
network applications in lightweight Linux containers to achieve
its scalability and accuracy.

Mininet supports OpenFlow-based Software-defined
Networking (SDN). It provides a flexible and cost-efficient
experimental platform to develop, test, and evaluate OpenFlow
applications. In Mininet, the processes of the virtual hosts and
their application processes run inside the container. This allows
them to have an independent view of system resources but still
share the kernel with other containers [16].

Mininet supports five built-in network topologies. These
built-in topologies are Minimal, Single, Linear, Tree and
Reversed. Network topologies in Mininet can be modified using
the command-line interface (CLI) [17].

The study by Keti and Askar in [18] highlights Mininet’s
characteristics as being flexible, applicability, interactivity,
scalability, realistic and share-able. This is because in Mininet,
new topologies and new features can be set in software using
programming languages and common operating systems.
Networks emulated in Mininet are usable with real life
networks based on hardware without the need to make changes
in source codes. To manage and run the simulated network in
Mininet occurs in real time as it happens in a real-life network.
Mininet can be scaled to large networks with hundreds or
thousands of nodes. Networks implemented on Mininet can be
easily shared as it is share-able [19].

Software Defined Networking switches, hosts, controllers
and links can be created by typing commands through Mininet’s
command line interface. The command line interface (CLI) in
Mininet supports most Linux commands. The most commonly
used commands are-: nodes: which lists all created nodes,
dump: which displays the information about the network and
created nodes, net: which shows how network elements are
connected to each other. The CLI also support the day-to-day

troubleshooting commands used in computer networking.
These commands include “pingall”, which output the results of
the connectivity test among all nodes. “Ifconfig” is also
supported which displays the internet protocol (IP) information
of the node. “Iperf” is also supported which is a tool used to test
network performance. It uses a client/server model, where
traffic is initiated from the client and traverses the network to
the server. Iperf creates data test streams supported by the
network with a time-stamp and report the amount of data
transferred and the throughput measured. Iperf supports two
types of transport protocols: Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). Many applications
like File Transfer Program (FTP), Simple Mail Transfer
Protocol (SMTP) and Hypertext Transfer Protocol (HTTP) use
TCP as the transport protocol. Using TCP mode, Iperf tests the
maximum TCP bandwidth at the transport layer. In UDP mode,
Iperf tests the jitter, packet loss and bandwidth. UDP mode is
ideally for testing quality of service for applications like voice
and video streaming.

To see the list of all available commands, one can use help
command, which is also supported in Mininet [20].

Mininet Python API can also be used to create custom
network topologies [21]. Python is an interpreted, interactive,
object-oriented programming language. It provides high-level
data structures. Python is modular by nature. The kernel is very
small and can be extended by importing extension modules. A
python program is compiled automatically by the interpreter
and can be installed in any computer running any operating
system [22].

B. OpenDaylight Controller

OpenDaylight (ODL) controller is the Software Defined
Networking controller used in this project. It is based on
Services Abstraction Layer (SAL), which allows it to support
other protocols and not only OpenFlow. It is implemented in
Java and can be deployed in any system supporting Java.
OpenDaylight controller was developed by the OpenDaylight
consortium in 2013. OpenDaylight project is supported by
Cisco, Juniper, VMWare and many other vendors and
companies operating in the networking environment. This
support by many organizations enables OpenDaylight to be
vendor neutral [23]

Fig 1 shows the OpenDaylight controller architecture. The
controller uses Application Programable Interfaces (API) like
Representational State Transfer (REST) technology to
communicate with the Network Applications orchestrations and
services layer. This can include OpenStack Neutron, Virtual
Tenants Network (VTN) coordinator [24-25]. The controller
layer itself run several services which includes service
abstraction layer (SAL), OpenStack service, base network
service and many more. To communicate with data plane
elements, the controller uses southbound interfaces and
protocol plugins such as OpenFlow, the Open vSwitch
Database Management Protocol (OVSDB) [26], the Network
Configuration Protocol (NETCONF) [27] and many more [28].

https://netbeez.net/blog/tcp-traceroute-tools/
https://netbeez.net/blog/tcp-traceroute-tools/

Fig. 1 OpenDaylight controller architecture

C. Cloud Computing

The centralization of control plain and other SDN features
has made cloud computing to be the essential part for most
companies. It is one of the fastest emerging business for Internet
Service Providers (ISP) [29]. A cloud can be described as a
large-scale environment that can consists of many physical
hosts and virtual machines (VMs). Each host in the cloud
environment can serve multiple virtual machines. Services on
the cloud network are provided on-demand bases. Virtual
machines in a physical host can be dynamically provisioned as
per the need. They can be added, removed or even migrated
dynamically [30].

Amazon Web Services (AWS) is the leading cloud provider
that offers computing, storage, and content delivery platforms.
Amazon cloud services includes Elastic Compute Cloud (EC2)
[31] and Simple Storage Service (S3), with “CloudFront”, the
Content Delivery Network (CDN). Amazon through AWS
offers a large set of computing resources, such as storing and
processing where capacities can be split, assigned dynamically
as per customer’s needs. Companies like Netflix and Dropbox
are among the companies that uses Amazon Web Services
(AWS) [32].

III. METHODOLOGY (NETWORK DESIGN)

The network used in this paper consist of a web server,
OpenDaylight controller and Software Defined Network
emulated on Mininet as seen in Fig 2.

A. Web Server

The web server uses Ubuntu 17 as the operating system. We
have configured Apache 2, which enabled us to host a simple
html page as the website. This webserver is hosted on the
Emulated Virtual Environment – Next Generation (EVE-NG)
software. EVE-NG is the Emulated Virtual Environment for
networking. It provides tools to be able to model a real-life
network as virtual devices and interconnect them with other
virtual or physical devices.

Fig. 2. Logical network used on this paper

B. OpenDaylight Controller

In this project we used the eighth release of the
OpenDaylight controller, which is called Oxygen. We
downloaded the software from the OpenDaylight software
download page and installed the controller on the Ubuntu 17
server. To install and enable required features that the
OpenDaylight controller must use, an open source application
called Apache Karaf is used. Karaf as it is normally called is a
modular Open Services Gateway Initiative (OSGI) that
provides tools and features required to deploy an application.
An Open Services Gateway Initiative (OSGI) is a set of
specifications for developing and deploying modular software
programs and libraries, which are packed in bundles. Karaf
enables modules to be installed, started, stopped, updated, and
uninstalled without requiring a reboot.

By default, the OpenDaylight controller has no features
enabled. We have installed and enabled the following features
in this project on the controller (but there are many features,
which can be installed and enabled)-:

 odl-restconf – Representational State (REST) like
protocol that provides a programmatic interface over
Hyper Text Transfer Protocol (HTTP) for accessing
data on port 8080 for HTTP requests.

 odl-l2switch-all – Layer2 switch functionality.

 odl-mdsal-apidocs - Model Driven Service
Abstraction Layer (MD-SAL) Application
Programmable Interface (API) Documentation.

 odl-dlux-all - Graphical user interface for
OpenDaylight based on the AngularJS Framework.

The OpenDaylight controller used on this paper is hosted on
Amazon Web Services (AWS) cloud platform. We have used
the Elastic Compute Cloud (EC2), which is a secure and
resizable compute node. It allowed us to obtain and configure
capacity in minutes.

The Elastic Compute Cloud (EC2) can scale both up and
down allowing us to increase or decrease capacity as per our
need. Wireshark, the network packet analyzer was used to
analyze communication between the Open Virtual Switch in
Mininet and the OpenDaylight controller.

When the communication between the switch and the
controller is established. The controller adds flows to enable the
switch to behave like a learning switch. When the switch
receives a packet, it starts by performing a table lookup in the
first flow table called table 0. In pipeline, each flow table
contains one or more flow entries. Matching starts with the first
flow table. If a Match is found, instructions associated with
flow entry are executed. Instruction may direct the packet to
next flow table in pipeline. When processing stops, the
associated action set is applied, and packet forwarded.
Instructions describe packet forwarding, packet modification,
group table processing and pipeline processing. The summary
flow chart is shown in Fig 3.

Fig. 3. Open Virtual Switch packet processing flow chart

C. Mininet

The Mininet Virtual Machine (VM) used in this paper is
hosted on Oracles’ Virtual Box. Mininet was installed on
Ubuntu 17 operating system. The emulated Software Defined
Network in Mininet was created using a Python script. The
three main functions used in this script are Topo, Switch and
Controller. Topo: This is the base class for Mininet topologies.
It creates Data center network representation for structured
multi-trees.

A function, which is used to create a custom network was
created using Python. For this function to create the network,
Mininet was prevented from creating the network using the
default values. This was achieved by setting the topo class to
none and the build class to false. Using the controller class, a
remote controller was defined and given values for the name
and an IP address, which in this case is the IP address of the

OpenDaylight controller hosted on Amazon cloud. The
connection port was set to port 6633.

Using OVSKernelSwitch sub class, an Open Virtual Switch
(OVS) was created. Two (2) network hosts were also defined
and given networking properties. The script defines the network
subnet that the controller must use together with the links
between the switch and the hosts. As part of the program, the
script programs the controller to add the external interface to
the switch after creating the network. This interface is used by
Mininet to reach the Linux server inside the company domain.

To start the program, we loaded the saved python script
from the directory that it was saved on. Mininet created the
network as defined by the script. The created network consists
of two (2) hosts and the Open Virtual Switch (OVS). The
created switch has a control channel, which it uses to
communicate with the controller. It has the pipeline, which
consists of flow tables. There is also data path, which is the
forwarding plane as seen in Fig 4.

Fig. 4. Open Virtual Switch

D. Application Program Interface (API)

An application program interface (API) is a set

of routines, protocols, and tools for building software
applications. It specifies how software components should
interact. They are used when programming graphical user
interface (GUI) components. API makes it easier to develop
a program by providing all the building blocks. One of the
commonly used API in the field of networking is REST API.

Representational State Transfer (REST) API is an
architectural style and an approach for communication used in
the development of Web Services. It enables users to connect
and interact with cloud services efficiently. To test the API, the
program called Postman can be used. Postman is an application
for testing APIs by sending request to the web server and
getting the response back. Postman makes it easy to test,
develop and document APIs. It allows users to set up all the
headers and cookies the API expects and checks the response.
“Postman” was used to send RESTCONF GET API to retrieve
node inventory and topology as created by Mininet and seen by
OpenDaylight controller.

https://www.webopedia.com/TERM/R/routine.html
http://www.webopedia.com/TERM/P/protocol.html
https://www.webopedia.com/TERM/A/application.html
https://www.webopedia.com/TERM/A/application.html
https://www.webopedia.com/TERM/G/Graphical_User_Interface_GUI.html
https://www.webopedia.com/TERM/P/program.html

RESTCONF is an Internet Engineering Task Force (IETF)
draft that describes how to map a YANG specification to a
RESTful interface. The REST-like API provide an additional
simplified interface that follows REST-like principles and is
compatible with a resource-oriented device abstraction.
RESTCONF uses HTTP methods to provide CRUD (Create,
read, update and delete) operations on a conceptual datastore
containing YANG-defined data, which is compatible with a
server that implements NETCONF datastores.

IV. RESULTS

“Iperf” is a tool used to test the maximum bandwidth that
can be achieved between two (2) network devices. “Iperf” sends
test data between the defined network devices and measures the
throughput, bitrate, loss and other parameters. To test the
functionality of the created network, an TCP “Iperf” test
between the host and the Linux server was performed.

Using Wireshark, communication between the switch and
the controller was captured. In the beginning of the
communication, OpenFlow Channel messages between the
switch and the controller are observed. The OpenDaylight
requested the identity and basic capabilities of the switch. The
switch responded with the requested information as seen with
the OFPT_HELLO, OFPT_FEATURES_REQUEST and
OFPT_FEATURES_REPLY packets as seen in Fig 5.

Fig. 5. OpenFlow channel messages

Once the flows were added, the TCP “Iperf” test between
host and the Linux server was successful. With the server using
default TCP window size of 85.3 KBytes and the host using the
default window size of 391 KByte, we were able to transfer 896
MBytes at a rate of 751 Mbits/sec from host to Linux server.
From Linux server to host, 1.32 GBytes was transferred at a rate
of 1.13 Gbits/sec as seen in the TCP “Iperf” results in Fig 6.

Fig. 6 Iperf test results

Another way of representing the Iperf test results using
Wireshark is seen in Fig 7. Fig 7 shows the average throughput
that will be the maximum bandwidth during the 90 ms period
of the “Iperf” test for the uplink and downlink connections.

Fig. 7 Average throughput over 90ms

“Postman” was used to verify that indeed the created
network in Fig. 8 is controlled by the OpenDaylight controller.

Fig. 8. ODL-DLUX network topology

To ensure reliability of the communication between the
switch and the OpenDaylight controller, Transmission Control
Protocol was used as seen in Fig. 9. The handshaking
commands in the figure ensure reliability of the data
transferred.

Fig. 9. TCP communication

V. CONCLUSION

In conclusion, Mininet was used to design a Software
Defined Network. The SDN network was integrated to a real-
life network using EVE-NG software via an OpenDaylight
controller. OpenFlow protocol was modelled and used to
facilitate communication between a virtual switch in Mininet
and the OpenDaylight controller hosted in a cloud network. The
OpenDaylight controller controls the flow of data from Mininet
to the real-life network. The results showed the throughput and
bandwidth measured in the communication process.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, & J. Turner. “Openflow: enabling innovation in
campus networks.” ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

[2] Open Networking Foundation (ONF). Software defined networking: The
new norm for networks. White Paper. From
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf. 2012

[3] A. Lara, A. Kolasani, & B. Ramamurthy. “Network innovation using
openflow: A survey”. IEEE Communications Surveys and Tutorials, Vol
16 No 1 pp 1-20. 2013.

[4] H. Shimonishi, Y. Takamiya, Y. Chiba, K. Sugyo, Y. Hatano, K. Sonoda,
K. Suzuki, D Kotani, & I. Akiyoshi. “Programmable network using
OpenFlow for network researches and experiments”. Proceedings of the
Sixth International Conference on Mobile Computing and Ubiquitous
Networking (pp.164-171). Okinawa, Japan. 2012

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, & J. Turner, J. “OpenFlow: Enabling innovation in
campus networks”. ACM SIGCOMM Computer Communication
Review, 38(2), 69–74. 2008

 [6] A. Lara, A. Kolasani, & B. Ramamurthy. “Network innovation using
OpenFlow: A survey”. IEEE Communications Surveys and Tutorials,
16(1), 493–512. 2014

[7] C. C. Machado, L. Z. Granville, A. Schaeffer-Filho, & J. A. Wickboldt,
“Towards SLA Policy Refinement for QoSManagement in Software-
Defined Networking”. IEEE 28th International Conference on Advanced
Information Networking and Applications. 2014

[8] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J.
Finnegan,N. Viljoen, M. Miller, & N. Rao. “Are we ready for sdn?
Implementation challenges for software-defined networks”.
Communications Magazine, IEEE, vol. 51, no. 7, pp. 36–43, 2013.

[9] O. W. Paper. “Software-Defined Networking: The New Norm for
Networks”. Open Networking Foundation, Tech. Rep., April 2012.

[10] D. Thomas & N. K. Gray. “SDN: Software Defined Networks”,
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472, First Edition, August 2013.

[11] J. Mambretti, J. Chen & F. Yeh. “Software-Defined Network Exchanges
(SDXs): Architecture, Services, Capabilities, and Foundation
Technologies”. Proceedings of the 2014 26th International Teletraffic
Congress (ITC). 2014

[12] B. Astuto, A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, & T
Turletti. “A Survey of Software-Defined Networking: Past,Present, and
Future of Programmable Networks”. hal-00825087, version 5- 19 Jan.
2014.

[13] I. Z. Bholebawa & U. D. Dalal. “Design and Performance Analysis of
OpenFlow-Enabled Network Topologies Using Mininet”. International
Journal of Computer and Communication Engineering. Volume 5,
Number 6, November 2016.

[14] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz & N. McKeown.
“Reproducible Network Experiments Using Container-Based
Emulation”. CoNEXT’12, December 10–13, Nice, France. 2012

[15] Y. Huang, V. Jeyakumar, B. Lantz, B. O’Connor, N. Feamster, K. Winstein
& A. Siyaraman. “Teaching Computer Networking with Mininet”. Wi-Fi:
HHonors, SGC. 2014

[16] J. Yan & D. Jin. “VT-Mininet: Virtual-time-enabled Mininet for Scalable
and Accurate Software-Define Network Emulation”. SOSR2015, Santa
Clara, CA, USA. June 17–18, 2015.

[17] R. Kharga, P. Bholebawa, I. Satyarthi, S. Gupta, & S. Kumari. “OpenFlow
technology: Ajourney of simulation tools”. International Journal of
Computer Network and Information Security, 6(11), 49–55. 2014

[18] F. Keti & S. Askar. “Emulation of Software Defined Networks Using
Mininet in Different Simulation Environments”. 6th International
Conference on Intelligent Systems, Modelling and Simulation, Kuala
Lumpur, 2015, pp. 205-210. 2016

[19] B. Lantz, B. Heller, & N. McKeown. “A network in a laptop: rapid
prototyping for software-defined networks”. in Proceedings of the
9thACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[20] K. K. Sharma & M. Sood. “Mininet as a Container Based Emulator for
Software Defined Networks”. International Journal of Advanced
Research in Computer Science and Software Engineering. Volume 4,
Issue 12, December 2014

[21] Python at https://www.python.org/

[22] M. Sanner. Python: “A Programming Language for Software Integration
and Development”. Article in Journal of Molecular Graphics and
Modelling · November 1998

[23] OpenDaylight Consortium. http://www.opendaylight.org.

[24] W. Zhou, L. Li, M. Luo & W. Chou. “REST API Design Patterns for
SDN Northbound API”. 28th International Conference on Advanced
Information Networking and Applications Workshops, Victoria, BC,
2014, pp. 358-365. 2014

[25] L. Li, W. Chou, W. Zhou & M. Luo. “Design Patterns and Extensibility
of REST API for Networking Applications”. IEEE Transactions on
Network and Service Management, vol. 13, no. 1, pp. 154-167, March
2016.

[26] M. Brandt, R. Khondoker, R. Marx & K. Bayarou. “Security analysis of
software defined networking protocols - OpenFlow, OF-Config and
OVSDB”. Paper presented at Fifth IEEE International Conference on
Communications and Electronics, ICCE 2014, July 30 - August 1, 2014

[27] J. Schonwalder, M. Bjorklund & P. Shafer. “Network configuration
management using NETCONF and YANG”. IEEE Communications
Magazine, vol. 48, no. 9, pp. 166-173, Sept. 2010

[28] Z. K. Khattak, M. Awais & A. Iqbal. “Performance evaluation of
OpenDaylight SDN controller”. 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), Hsinchu, 2014, pp. 671-676.
2014

[29] A. Mayoral, R. Vilalta, R. Muñoz, R. Casellas, R. Martínez & J. Vílchez.
“Integrated IT and Network Orchestration using OpenStack
OpenDaylight and Active Stateful PCE for Intra and Inter Data Center
Connectivity”. ECOC 2014.

[30] S. Shin & G. Gu. CloudWatcher: “Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?)”. 20th IEEE International Conference
on Network Protocols (ICNP), Austin, TX, 2012, pp. 1-6. 2012

[31] E. Walker. “Benchmarking Amazon EC2 for High-Performance Scientic
Computing”. USENIX login: Magazine, October 2008.

[32] I. Bermudez, S. Traverso, M. Mellia & M. Munafò, “Exploring the cloud
from passive measurements: The Amazon AWS case”. Proceedings IEEE
INFOCOM, Turin, 2013, pp. 230-234. 2013

