ﬁ EasyChair Preprint

Ne 8564

Formal Specification for Learning-Enabled
Autonomous Systems

Saddek Bensalem, Chih-Hong Cheng, Xiaowei Huang,
Panagiotis Katsaros, Adam Molin, Dejan Nickovic and Doron Peled

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 3, 2022

Formal Specification for Learning-Enabled
Autonomous Systems*

Saddek Bensalem!, Chih-Hong Cheng?**, Xiaowei Huang?, Panagiotis
Katsaros*, Adam Molin®, Dejan Nickovic®, and Doron Peled”

! University Grenoble Alpes, VERIMAG, Grenoble, France
2 Fraunhofer IKS, Munich, Germany
3 University of Liverpool, Liverpool, L69 3BX, U.K
4 Aristotle University of Thessaloniki, Thessaloniki, Greece
® DENSO AUTOMOTIVE Deutschland GmbH, Eching, Germany
6 AIT Austrian Institute of Technology, Vienna, Austria
" Bar Ilan University, Ramat Gan, Israel

Abstract. The formal specification provides a uniquely readable de-
scription of various aspects of a system, including its temporal behavior.
This facilitates testing and sometimes automatic verification of the sys-
tem against the given specification. We present a logic-based formalism
for specifying learning-enabled autonomous systems, which involve com-
ponents based on neural networks. The formalism is based on first-order
past time temporal logic that uses predicates for denoting events. We
have applied the formalism successfully to two complex use cases.

Keywords: Learning-enabled systems - Formal specification - Neural
networks - First-order LTL.

1 Introduction

The application of formal methods to software artefacts requires the use of for-
mal specification. A specification formalism defines the permitted behaviors or
the intended architecture of a system in a uniquely readable manner. It can
be used as a contract between different project stakeholders, including the cus-
tomers, designers, developers and quality assurance teams. Common formalisms
include temporal logics and various graph structures or state machines. Different
formalisms can be combined together to describe different aspects of the system,
such as in UML [16]. In addition, some formalisms, such as state-charts, employ
visual notation in order to better demonstrate the specification.

The challenge we are undertaking here is to adopt a formalism that can de-
scribe systems with, possibly, timing and cyber-physical components, that are
learning-enabled, or, in other words, include components that involve neural

* Supported by the european project Horizon 2020 research and innovation programme
under grant agreement No. 956123.
** The work is primarily conducted during his service at DENSO.

networks (NNs), trained using deep learning. NNs have strongly impacted on
the computer applications in the last decade, including object recognition and
natural language processing. The structure of a NN is quite simple: layers of com-
ponents called “artificial neurons”, which have some numerical values, feeding
values to the next layer through some linear transformation and then applying
an activation function, which is a nonlinear transformation. Specifying systems
that include components based on NNs is challenging, since a NN has different
characteristics from the usual state-transition model.

For example, classifying objects in a picture is commonly performed using a
NN. If one considers the values of the individual neurons and the constants used
to calculate the transformation between the layers, then the number of possible
states is astronomical; moreover, there is no known direct connection between
the states and the results associated with the NN. Then it is hardly reasonable
to specify directly the connection between the values of the different components
of the NN and the classification result, e.g., identifying the object that appears
in the picture as a pedestrian or bicycle rider.

Learning-enabled systems appear nowadays in a growing number of appli-
cations. This stems from the ability of NNs to provide new identification ca-
pabilities, e.g., related to vision and speech recognition. Such systems are often
intended to interact with people and the environment, most notably, autonomous
driving. This makes these applications highly safety-critical.

We introduce a specification formalism that is based on abstracting away
the internal structure of the NN, including the internal values of the different
neurons; instead, inspired by [4], our specification asserts about objects that
are represented using the NN and related values they stand for. We aim to
an intuitive yet expressive formal language, which will match the specification
requirements for learning enabled autonomous systems. The adequacy of our
formalism has been tested against different requirements for the use cases in the
FOCETA EU2020 project®.

The rest of the paper is structured as follows. Section 2 introduces the syntax
and semantics of the specification language. Section 3 presents representative
formal specifications from two learning-enabled autonomous systems from the
FOCETA project. Section 4 reviews the related work and finally, we provide our
concluding remarks, most notably the rationale behind the proposed formalism.

2 Formal Specifications

2.1 Event-Based Abstraction

Given the difficulty of specifying a system that includes a NN based on its set
of states, we propose an event-based abstraction that hides the details of the
NN structure [4]. The specification is defined over relations or predicates of the
form p(ai, ..., a,) over domains Ds, ..., D,, where for 1 < i < n, a; € D;
is a value from the domain D;. These domains can be, e.g., the integers, the

8 http://www.foceta-project.eu/

Formal Specification for Learning-Enabled Autonomous Systems 3

reals or strings. One can also use (state-dependent) Boolean variables, which are
degenerate predicates with 0 parameters. Formally, let p C D;, x ... xD; be a
relation over subsets of these domains. An event-based state or eb-state is a set
of tuples from these relations. We can restrict each relation to contain exactly
or at most one tuple, or do not restrict them, depending on the type of system
that is modeled. An ezxecution is a finite or infinite sequence of eb-states. A trace
is a finite prefix of an execution.

Examples of some conventions one can adopt for modeling of systems include:

— For runtime-verification, each relation consists of at most one tuple. In some
cases, there is only one tuple of one relation in a state.

— Representing real-time can be achieved by equiping each state with a single
unary relation time(t), where ¢ corresponds to time.

— The output of an object recognition NN can be the following tuples:
object_type(ob), accurracy(pr), bounding_box(x1,y1,x2,y2), where ob is the
object type, e.g., ‘road-sign’, ‘car’; 0 < pr < 1 is the perceived probability of
recognition by the NN, and (z1,y1), (z2,y2) are the bottom left and top right
point of the bounding box around the identified object. Object recognition
systems can include multiple objects that are recognized in a single frame.

— One can use different units of measurements when referring to time or other
physical components, e.g., distance or energy level.

When modeling a system, the assumed conventions, e.g., the number of tuples
per relation allowed in a state and the unit of measurements need to be presented
separately from the specification formulas.

Syntax. The formulas of the core logic, which is based on a first-order exten-
sion [17] of the past portion of Linear Temporal Logic (LTL) [19] are defined
by the following grammar, where a; is a constant representing a value in some
domain D, and x; denotes a variable over the same domain domain(x;). The
value of x; must be from the domain associated with this variable.

@ u= true | false | p(x1,...,20) | (P V) | (P A)|
oS¢ CplIzp|Vzple~e

where ~€ {<, <, >, > = #}andeux=z|alet+e|e—e|exe|e/e We
read (pS) as ¢ since .

Semantics. Let v be an assignment to the variables that appear free in a formula
¢, with () returning the value of the variable x under the assignment . Then
(v,0,1) E » means that ¢ holds for the assignment v, and the trace o of length
i. We denote the ith event of o by oli]. Note that by using past operators, the
semantics is not affected by states s; with j > ¢ that appear in longer prefixes
than o of the execution. Let vars(p) be the set of free variables of a subformula
¢ (i.e., z is not within the scope of a quantifier ¥V or 3, as in Va ¢, Jx¢). We
denote by 7|yars(,) the restriction (projection) of an assignment vy to the free
variables appearing in (.

Let v(e,v) be the value assigned to an expression e under the assignment ~:

4 Bensalem et al

— v(a,vy) = a, when a is a constant.
— v(z,7) = v(v), when z is a varaible.
— v(er + ea,v) = v(e1,y) + v(ea,7), and similarly for ‘—’, ‘x’ and ‘/’.

Let € be an empty assignment. In any of the following cases, (vy,0,1) E ¢ is
defined when + is an assignment over vars(y), and i > 1.

€,0,1) E true.

v,0,9) FE (W, -, yn) I p(0(y1), -5 v(Yn)) € old].

v,0,4) | (p A1) if ('Y|var5(<p)707 i) F ¢ and (V‘Uam(w)aaai) .

v, 0)): - if not (7?0—77:) ': P-

o,i) E (¢ S ¥) if for some 1 < j <4, (Y|vars(y),05J) = 1 and for all
<

1)

)

< k Z (V‘UGTS a k)): 90

)z@gplfz>1and (v,0,i — 1) = .
7v,0,4) = 3 ¢ if there exists a € domain(z) such that® (vy [z +— a],0,i) = .

v,0,1) |E e1 < e if v(er,y) < v(es,7), and similarly for the relations ‘<’,
>77 c27, ‘—’ and ¢7é)

(€,
(
(
= (
(7,
j
(7,
(
(

The rest of the operators are defined as syntactic sugar using the operators
defined in the above semantic definitions: false = —true, Voo = =Jz—p, (pVih) =
—(=p A —p). We can also define the following useful operators: Py = (true S ¢)
(for “Previously”) and Hy = (false R) (for “always in the past”).

The specification needs to appear in a context that includes the interpreta-
tions of the relations that are used. For clarity, we sometimes denote the domain
within the formula during quantification. For example, 3z € Obj ¢ specifies ex-
plicitly the domain name Obj for values of the variable x, which may otherwise
be understood from the context where the formula appears.

Intended interpretation. We restrict ourselves to safety properties [1], and
the interpretation of a formula ¢ is over every prefix of the execution sequence.
To emphasize that the interpretation is over all the prefixes, we can use the G
modality from future LTL, writing G, where ¢ is a first-order past LTL formula.
There are several reasons for this. First, and foremost, safety properties are most
commonly used; in many cases, a non-safety property, which guarantees some
progress “eventually” as in the future LTL operator ¢ [19], without specifying
a distinct time, can be replaced with a fixed deadline; then it becomes a safety
property. For example, instead of expressing that every request is eventually
followed by an acknowledge, specifying that any request must be followed by an
acknowledge within no more than 10ms is a safety property. In addition, safety
properties are often more susceptible to the application of formal methods; a
notable example for our context is the ability to perform runtime verification on
linear temporal logic with data with specification formalisms similar to the one
used here [7,17].

Dealing with Quantitative Progress of Time Temporal logic specification
often abstracts away from using real time, where the intended model uses discrete

9 v [z + a] is the overriding of v with the binding [z + a].

progress between states. We make use of time predicates, in particular, time with
a single integer or real parameter, which can be part of the events in an execution.
For example, the term time(t1) can refer to a timer that reports a value of ¢1.
By comparing different values of such terms, one refers to the amount of time
elapsed between related events.

Examples of specifications.

— Vz (closed(x) — ©(—closed(x)Sopen(x))). [For each file, if we closed a file,
its the first time we close it since it was opened.|

— VoVt 3te ((t1 — t2 < 90 A time(t1) A closed(z)) — ©(closed(x)S(open(z) A
time(t2)))) [Every file, cannot remain opened before it is closed more than
90s. Note that the interpretation of 90 as a meausre of seconds and of time(t)
as a predicate that holds if ¢ is the current time is a matter of choice.]

— Vt1((time(t1) A —stopped(carl)) — —3t2(—stopped(carl)S(id(stop_sign, pr)
Atime(t2) Apr > 0.9At1—t2 > 0.3))) [At any time, if car! is not stopped, no
stop sign has been identified in the last 0.3 seconds with probability > 0.9.]

3 Use Case Specifications from Learning-Enabled
Autonomous Systems

In this section, we will show how the specification formalism we proposed allows
describing the properties of two challenging use cases:

1. A safe and secure intelligent automated valet parking (AVP) system. This is
an L4 autonomous driving system with a fixed Operational Design Domain
(ODD) on a given set of parking lots. A user owning a vehicle equipped with
the AVP functionality stops the car in front of the parking lot entry area.
Whenever the user triggers the AVP function, the vehicle communicates with
the infrastructure and parks the car at designated regions (assigned by the
infrastructure). The system is expected to operate under mixed traffic, i.e.,
the parking lot will have other road users including pedestrians and vehicles.

2. A life-critical anaesthetic drug target control infusion system. This use case
concerns with the manipulation of hypnotic sedative drugs, and the ability
to provide new and breakthrough technology to cope with a better control
of sedation status in the patient. Since each patient is unique, no single
dosage of an anesthetic is likely to be appropriate for all patients. In addition,
providing an under or over-dosage of an anesthetic is highly undesirable. The
development of this autonomous controller would facilitate the work of the
anaesthesiologists and increase patient safety through better control of the
depth of anesthesia. For this development, the verification and validation of
the controller prior to any clinical investigation with real patients is essential,
so a virtual testbench platform with a complete test plan is required for this.

3.1 Automated Valet Parking System

Object detection Object detection is a key component that aims at recognising
objects from sensory input. The sensory input can be understood as a sequence of

6 Bensalem et al

single inputs such as images. Usually, a deep learning system (such as YOLO [23])
is applied to return a set of detected objects from a single image, although the
result may also depend on the detection results of a sequence of images. We
consider an object detection component (ODC), for which there are three major
classes of specifications:

1. Functional specifications, concerning whether the object detector exhibits
the expected behaviour in normal circumstances on a single image frame.

2. Temporal specifications, for the expected behaviour in sequential inputs.

3. Robustness specifications, concerning whether and how the expected be-
haviour may be affected by perturbations to the input.

Functional Specifications While there may be various specifications, we consider
the following as a typical one:
For every object y in the world, if y is a pedestrian that stands within X meters
of range, then the ODC will detect some object z as a pedestrian at almost the
same position as y (within €).

This can be expressed as the following formula:

Yy € Obj ((pedestrian(y) A range(y)) — detect(y)) (1)

where: Obj is assumed to be the set of all objects occupying the world (this refers
to the ground truth); pedestrian(y) is a predicate that is true iff y is a pedestrian
(this refers to the ground truth); range(y) is defined as distance_ego(y) < X
where X is the “X meters” parameter of the English spec, and distance_ego(y)
returns the distance of y from the ego vehicle (this also refers to the ground
truth); detect(y) is defined as ¢- as follows

3z € ODC_0bj (ODC _pedestrian(z) A |ODC _position(z), position(y)| < €)

where: ODC_Obj is the set of objects detected by the ODC (i.e., “the system”
that this spec refers to), ODC _pedestrian(z) is a predicate which is true iff z
is classified as a pedestrian by ODC; ODC position(z) is the position of z as
returned by ODC; |a, b| is a function that returns the distance between positions
a and b; € is a parameter that represents how “close” two positions are.

Temporal Specifications While the specification in (1) considers whether the
ODC performs correctly in a single frame of the video stream, it is possible that
the overall functionality of the ODC may not be compromised by the failure of
a single frame. Therefore, we may consider temporal specifications such as

Gy ()

Besides, we may consider other temporal specifications such as:
In a sequence of images from a video feed, any object to be detected should not
be missed more than 1 in X frames.

Formal Specification for Learning-Enabled Autonomous Systems 7

This property can be formalised with the following formula:

X-1
™= G(‘!Qﬁl — /\ @t(bl). (3)
t=1

which, intuitively, guarantees that once there is an incorrect detection at time ¢,
the outputs at previous X — 1 steps should be all correct.

Robustness Specifications The aforementioned classes of specifications do not
consider the possible perturbations to the input. However, perturbations such as
benign/natural noises or adversarial/security attacks can be typical to an ODC,
which works with natural data. We consider the following specification:
For any input x, which contains a pedestrian y, the detection will be the same
within certain perturbation 0 with respect to the distance measure d.

This can be expressed as follows (Input is the set of possible image frames):

GVz, 2" € Input, Jy,y' € ODC_0bj,0DC pedestrian(y)A
d(z,2") < § — pedestrian(y’)

(4)

Planning and Control Planning refers to the task of making decisions to
achieve high-level goals, such as moving the vehicle from a start location (e.g.
drop-off space for a parking system) to the goal location, while avoiding obstacles
and optimizing over some parameter (e.g. shortest path). Control is responsible
to execute the actions that have been generated by the higher-level planning
tasks and generate the necessary inputs to the autonomous system, in order to
realize the desired motions.

Planning is usually further decomposed into mission planning and path plan-
ning. Mission planning represents the highest level decisions regarding the route
(sequence of way-points on the map) to be followed, whereas the task of path
planning refers to the problem of generating a collision-free trajectory based on
the high-level mission plan and the current location of the vehicle.

Mission planning The mission planner must ensure that (i) traffic rules are
followed (e.g., wait at stop sign) and (ii) obstacles are avoided.

Traffic rule:
At any time, if ego is not stopped, it is not the case that a red_light was sensed
within the last second.

GVt (time(t,) A —stopped(ego)) — ()
—3ta(—stopped(ego) S sensed(red_light) A time(ta) Aty —ta > 1)

where stopped(ego) abstracts the respective signal activated by the mission plan-
ner and sensed(red_light) abstracts the output of the perception system.

Collision avoidance:

8 Bensalem et al

The planner shall calculate a reference trajectory that keeps a distance dy. (ttc:
time-to-collision) [or dsqfety] to obstacles, e.g., (1s) [or (1.0m).

GVY(p,v) € trajres, Vo € Obj (distance(p,v, position(0)) > dg.) (6)
or
GY(p,v) € trajres, Vo € Obj (|p, position(0)| > dsafety) (7)

where p is the position and v is the velocity of the ego vehicle on a waypoint of
the reference trajectory trajes (a finite set of way point / velocity tuples) and
position(o) is the position of object o.

Path planning involves requirements for the computed path to some (interme-
diate) goal location that may refer to the current location of the system.

Feasible path to the parking lot:
At time C (some constant), the latest, the parking lot (goal) is reached.

G~ (time(C) A H position(ego) # goal) (8)

Path constraint:
The path to parking lot follows the center line of the driving lane with max.
deviation devmagz,st 1 straight road segments and devpqz,cu 0 curves.

G((straight — d < devmaz,st) A (curve = d < devmag,cu)) 9)

with: straight, curve boolean variables, true iff the road segment is straight
(resp. curve); d is the distance from the center of the lane.

Control The controller receives the reference path/trajectory from the path plan-
ner, and computes the steering and acceleration/deceleration commands, so that
the vehicle moves along the path/trajectory. Vehicle should be kept within its
dynamical limits with respect to its velocity, acceleration, jerk steering angle etc.

Vehicle moves along the reference path / trajectory:
The tracked path/trajectory shall not diverge from the reference path / trajectory
more than dyaq, e.g9., 0.2m, for any operating condition defined in the ODD.

GVt(time(t) A odd(in)) = (dercor(t) < dinax) (10)

where: odd(in) states that the condition in is in the ODD; deyror (f) is the maximal
deviation between pathcontrolled(t) up to time ¢ and the reference path pathes.
The vehicle is within its dynamical limits:

The ego vehicle velocity v shall be bounded by Vimaz, and Vmagz rew for any oper-
ating condition in the ODD.

G(odd(in) = (—Vmaz.rer <V < Upmaz)) (11)

3.2 A medical autonomous system

In this section, we focus on the formalization of requirements, for an anaesthetic
drug target control infusion system.

A patient’s model is a component that predicts the future patient status of
depth of anesthesia (site-effect concentration) based on the drug delivered. A
model of the patient helps describing what has happened and what will hap-
pen with a planned dose for him/her. For intravenous drugs, the plasma con-
centration will be determined by the dose given (in weight units of drug), the
distribution to different tissues in the body and the elimination from the body.

Let x € R be the site effect concentration and

L:= {Minimal-sedation7 Sedation, Moderate-sedation, Deep-sedation, General-anaesthesia}

be the set of all possible levels in sedation in discretized form. The values “none”,
“less”, “more” denote the amount of medicine to be used.
Formulas (12-14) prescribe the level of injection for the required sedation level:

GVl € L, (sedation_req(l) A x < low_level(l)) — inject(more) (12)
GVi € L, (sedation_req(l) AN x > upper_level(l)) — inject(none) (13)
)
(

GVi € L, sedation_req(l) Alowlevel(l) < x < upper_level(l) — inject(less
14)

where: sedation_req(l) is the required sedation level; low_level(l) and upper_level(l)
are the lowest (resp. upper) level of drug for sedation level .

The following formula describes how the site-effect concentration z dimin-
ishes over time when (via “inject(none)”) not injecting medicine.

GVt t', ((time(t) A concentration(z)A
(inject(none) S (time(t') A concentration(x')))) —
z=2a xe"0/T) (15)

where concentration(x) refers to the anaesthetic drug concentration at the cur-
rent state and 7 is a constant characterizing the speed of decay.

Equation (16) specifies how site-effect concentration z is raised over time for
the required sedation level [, while further anaesthetic material is injected.

GVi € L, Vt,t', Yinj_type, ((time(t) A concentration(z) A (inject(inj_type) A
(inj_type = less \V inj_type = more) S (time(t") A concentration(z'))))
— x = a' + (saturation_level(l,inj_type) — x') x e’ ~D/T) " (16)

where saturation_level(l,inj_type) is the desired saturation level of sedation [
when injection is of type inj_type.

4 Related Work

In [28], the formalization of requirements for the runtime verification of an au-
tonomous unmanned aircraft system was based on an extension of propositional
LTL [29], where temporal operators are augmented with timing constraints. The
Timed Quality Temporal Logic (TQTL) [4] has been proposed for expressing
monitorable [27] spatio-temporal quality properties of perception systems based
on NNs. TQTL is more limited in scope than our specification formalism, which
has also the potential to express system-level requirements. The typed first-order
logic [25] is an alternative, whose main difference from traditional first-order
logic [26] is the explicit typing of variables, functions and predicates. This allows
to reason about the domain of runtime control at the abstract level of types,
instead of individual objects, thus reducing the complexity of monitoring.

5 Concluding Remarks

We presented a specification approach and a formalism for learning-enabled au-
tonomous systems. To simplify the approach, yet make it general enough, we
adopted the past first-order LTL, together with the first-order logic capabili-
ties to use variables, functions, predicates and quantification over the domains
of variables. We demonstrated the use of formalism on two safety-critical use
cases.

Our approach abstracts away from the internals of the involved NNs, since
the actual values of neurons, and the relations between them, are not part of
the specification. Instead of these values, inspired by [4], we refer to the values
and objects they represent. Research on how a NN actually maintains its ability
to classify objects or perform other typical tasks is still undergoing, therefore
abstracting away from it is a useful feature rather than a handicap.

A notable tradeoff in selecting the specification formalism exists (often re-
lated also to the model of execution) between the expressiveness and the ability
to utilize it within different formal methods: testing, automatic (model-checking)
and manual (theorem-proving) verification and monitoring (i.e., runtime verifi-
cation). An important case of gaining decidability for scarifying the generality
of the model and the formalism is that of the ability to perform automatic veri-
fication for propositional LTL (also for Computational Tree Logic CTL) of finite
state systems [10,21]. Models for automatic verification hence often abstract
the states as a Boolean combination. This helps achieving decidability and also
taming down the complexity. Nevertheless, for actual systems, it is often desired
to include data in both the specification and the model. For cyber-physical sys-
tems, and for learning-enabled autonomous systems in particular, the use of data
and parametric specification are often essential. While comprehensive automatic
verification needs then to be abandoned, it is still desired to apply testing and
monitoring. These methods provide a weaker guarantee for correctness, but are
still highly important in the system development process. The formalism that
we proposed has the advantage to allow testing and runtime verification [7,17].

10

Formal Specification for Learning-Enabled Autonomous Systems 11

A common constraint on specification that we undertook is focusing on safety
properties. Essentially, safety properties assert that “something bad never hap-
pens”, whereas liveness properties assert, intuitively, that “something good will
happen”. A formal definition and proof that every property of linear execution
sequences can be expressed as a conjunction of a safety and a liveness property
appears in [1]. While temporal logic allows expressing safety and liveness proper-
ties, recently, there is a growing concentration on safety properties, abandoning
liveness. One reason is that safety properties are monitorable in the sense that
their violation can be detected within finite time. On the other hand, liveness
properties may often be non-monitorable [8]: the fact that something “good”
will happen can exist forever, not violated, yet that event or combination of
states may be deferred forever. It turns out that automatic testability and mon-
itorability for execution sequences with data exist for the kind of specification
suggested here [7,17]. Furthermore, for cyber-physical systems, the requirement
often involves setting some actual deadlines: the “good” thing to happen must
occur within some given time (physical time or some virtual units of progress).
Then, the property becomes a safety property: when that time is expired, a fail-
ure of the property happens, and by keeping up with the progress of time, one
can monitor the failure after a finite amount of time.

References

1. B. Alpern, F. B. Schneider, Recognizing safety and liveness. Distributed Comput-
ing 2(3): 117-126, 1987.

2. M. Alshiekh, R. Bloem, R. Ehlers, B. Konighofer, S. Niekum, U. Topcu, Safe
Reinforcement Learning via Shielding. AAAI 2018: 2669-2678

3. K. R. Apt, D. Kozen, Limits for Automatic Verification of Finite-State Concurrent
Systems. Information Processing Letters 22(6), 307-309 (1986).

4. A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh, H. Ben
Amor, G. Fainekos, Specifying and Evaluating Quality Metrics for Vision-based
Perception Systems, DATE 2019, 1433-1438.

5. E. Bartocci, R. Bloem, B. Maderbacher, N. Manjunath, D. Nickovic: Adaptive
Testing for CPS with Specification Coverage. ADHS 2021

6. E. Bartocci, Y. Falcone, A. Francalanza, G. Reger: Introduction to Runtime Veri-
fication. Lectures on Runtime Verification 2018: 1-33

7. D. A. Basin, F. Klaedtke, S. Miiller, E. Zalinescu, Monitoring Metric First-Order
Temporal Properties, Journal of the ACM 62(2), 45, 2015.

8. A. Bauer, M. Leucker, C. Schallhart, The good, the bad, and the ugly, but how
ugly is ugly?, RV’07, LNCS Volume 4839, Springer, 126-138, 2007.

9. R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Ko&nighofer, M. Roveri,
V. Schuppan, R. Seeber: RATSY - A New Requirements Analysis Tool with Syn-
thesis. CAV 2010: 425-429

10. E. M. Clarke, E. A. Emerson, Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic, Logic of Programs 1981, 52-71.

11. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban
scene understanding. CoRR, abs/1604.01685, 2016.

12

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bensalem et al

A. Donzé, O. Maler: Robust Satisfaction of Temporal Logic over Real-Valued Sig-
nals. FORMATS 2010: 92-106

G. Fainekos, G. Pappas: Robustness of Temporal Logic Specifications. FATES/RV
2006: 178-192

Y. Falcone, L. Mounier, J. -C. Fernandez, J. -L. Richier: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst.
Des. 38(3): 223-262 (2011)

T. Ferrere, D. Nickovic, A. Donzé, H. Ito, J. Kapinski: Interface-aware signal tem-
poral logic. HSCC 2019: 57-66

M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage, Addison—Wesley.

K. Havelund, D. Peled, D. Ulus, First order temporal logic monitoring with BDDs,
FMCAD 2017, 116-123.

H. S. Hong, I. Lee, O. Sokolsky, H. Ural: A Temporal Logic Based Theory of Test
Coverage and Generation. TACAS 2002: 327-341

Z. Manna, A. Pnueli, Completing the Temporal Picture, Theoretical Computer
Science 83, 91-130, 1991.

T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta, G. Pappas:
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid
systems. HSCC 2010: 211-220

J. -P. Queille, J. Sifakis, Specification and verification of concurrent systems in
CESAR. Symposium on Programming 1982, 337-351.

P. Prabhakar, R. Lal, J. Kapinski: Automatic Trace Generation for Signal Temporal
Logic. RTSS 2018: 208-217.

J. Redmon, S. Divvala, R. Girshick, A. Farhadi: You only look once: Unified, real-
time object detection. CVPR 2016: 779-788.

H. Roehm, T. Heinz, E. C. Mayer: STLInspector: STL Validation with Guarantees.
CAV (1) 2017: 225-232

B. Beckert, R. Hahnle, P. H. Schmitt: Verification of Object-Oriented Software.
The KeY Approach. Lecture Notes in Computer Science 4334, Springer, 2007

R. R. Smullyan: First-Order Logic. Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 2. Folge, Springer Science & Business Media, 2012

A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, G. Fainekos: PerceMon:
Online Monitoring for Perception Systems. RV 2001: 297-308

A. Dutle, C. A. Munoz, E. Conrad. A. Goodloe, L. Titolo, I. Perez, S. Balachan-
dran, D. Giannakopoulou, A. Mavridou, T. Pressburger: From Requirements to
Autonomous Flight: An Overview of the Monitoring ICAROUS Project, Proc. of
2nd Workshop on Formal Methods for Autonomous Systems (FMAS), EPTCS,
Vol. 329, 2020: 23-30

R. Koymans: Specifying real-time properties with metric temporal logic, Real-Time
Systems. 2 (4): 255-299 (1990)

