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Abstract-Recently, Graphene as two dimensional (2D) 

carbon based-material has been interesting because it has 

been greatly used to be scaled to smaller channel lengths 

and higher speeds. In this research, an analytical model 

for the resistance of tow dimensional bilayer graphene 

(BLG) is reported. Also, the conductance model of BG is 

improved  by Landauer formula which includes the 

correction for a smaller size device . Furthermore, 

proposed model indicates that resistance model of BLG 

is a dependence of  thermal energy near the neutrality 

point that thermal energy is a function of temperature. 

Finally, it is shown that with increasing of temperature, 

the resistance of BLG will be declined. 

 

I.          Introduction 

As silicon was pushed to their theoretical limit, 

researcher change their interest non-silicon 

material, hoping that someday next generation 

electronic device will be based [1-2]. It turns out 

Carbon nano –material such as Graphene are the 

best candidate to replace silicon [1, 3-4]. Carbon 

base material with one dimensional behavior has 

been explored by many researchers for it has been 

widely used to accommodate nowadays technology 

[5-7]. Recent research on the stability of few-layer, 

multilayer and even single layer graphene  has been 

a brilliant founding[8-9]. Graphene is a single layer 

of carbon atom that being arranged into a 

hexagonal lattice (honeycomb lattice) in two-

dimensional (2D) forms as shown in fig.1[10-11]. 

 
Fig. 1. Different structures if Graphene 

 Each carbon atom is tied to its three nearest 

neighbours via σ bonds[12-13]. Graphene 

demonstrates many unusual electronic and 

transport properties, such as the half-integer 

quantum Hall Effect [14], the weak localization 

phenomena. The possibility, in the case of the 

GNRFETs, to pattern the nanoscale strip of 

graphene (which has a definite orientation relative 

to the substrate) is a possible means of overcoming 

the CNT chirality control problems[13, 15]. Bilayer 

Graphene (BLG) with a gate-tunable band gap is 

the well-known material system to semiconductor 

application[16]. The AA-stacked of BLG (in 

figure1) shows metallic properties whereas BLG 

with AB-stacked has a gate-tunable band gap (0.02 

EV) and role as a semiconductor material as shown 

in figure 2[17-18]. 

 
Fig.2. Bilayer graphene with AB stacked. 

In this paper the resistance of BLG is modelled and 

also, its resistance as a function of gate voltage  

relevant to 2D structure is applied. 

 

II.     Model 

Because of the suitable band gap of BLG between 

the conduction and valence bands as a result of 

applying an external voltage between layers of 

BLG it is accepted as a flexible material in the 

nanoscale applications. 

 The energy dispersion for V≠0 can be written 

as[19-20] 
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Where t  is the hopping energy parameter 

between equivalent carbon atoms inside the two 

layers. The form of Fermi surface for (V≠0) is 

unlike than (V = 0). For the smallest band gap 

wave vector of BLG which is in our focus is given 

by[21] 
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And  also the energy dispersion of BLG near kg 

becomes[21] 
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Where m
*
 is the effective mass that it is a function 

of apply voltage to two layers and can be defined as 
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The Density of states (DOS) in each  state of 

energy defines the number of states that are 

available to be occupied by electrons in any energy 

interval so that  can be written as  
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Where 
^ ^

x xk k i k j  . Also, number of  Modes 

M (E) at an applied energy near the wave vector 

which is dependent on the sub band's position can 

be considered. By attractive the derivatives wave 

vector k over the energy E (dk/dE) The number of 

the mode M(E) as a summation over k space is 

written as  
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Where L is the length of the BLG channel, ∆K ( 

wave vector variation) is obtained as 
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and also The directions of wave 

vectors in x and y are 
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. Because of spin degeneracy in BLG, the number 

of BLG conducting channels is given as 
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Constituting the energy dispersion in Eq (3) and the 

effective mass of Eq (4), we can write

 

*
( )gE k k k

m
   

                             (8)                                                                      

And 

1
* 2

2

2 ( )c
g

m E E
k k

 
  
                              (9)                                                       

Considering the wave vector in the equation (9)  

We have 
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A district of lowest G with regards to gate voltage 

as a basic constant proportional to the Planck’s 

constant and electron charge in bulk graphene is 

defined and calculates for the minimum 

conductivity by the following formula  
2

0

2q
G

h
        (11)                                                              

Where h is Plank constant and q is the electron 

charge. Although the minimum conductance of 

BLG is two times bigger than this quantity 

(equation10) and is equal to 2G0 because the levels 

of up spin and down spin which are located in the 

small channels naturally have the same energy like 

a degenerate level. The conductance of large 

channel in graphene materials will be obtained in 

the ohmic scaling law by the Landauer formula 

however the conductance in nanoscale material can 

be written by two parameters, firstly conductance 

related to the width nonlinearly which depends on 

the number of modes that called quantizing 

parameter, Secondly interface resistance which 

independent of the length. 
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Where T (E) is the average probability of 

transmission electron in channel from  one 

electrode to the other electrode, because of 

assumed ballistic channel this parameter is equal to 

one[22]. 
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According to the number of sub bands (number of 

modes) in equation (10) And Fermi–Dirac 

distribution function conductance in equation (13) 

BLG conductance model of 2D graphene is 

presented in equation 14. 
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resistance of BLG as bellow. 
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As shown in figure 4, resistance increasing is 

obtained wit high values of gate voltage.

 

 
Fig.4. Resistance changing respect to gate voltage 

In the other words, because of band gap increasing 

respect to gate voltage, conductance of BLG will 

be dramatically decreased.

  

 
 

Fig.5. I-R Characteristic of BLG with different of temperature. 

  

Finally,  it is notable that the resistance will be 

decreased with increasing of temperature (is shown 

in figure 5) same as other metallic materials, 

because the perfect graphene role as e metallic but 

it's both conductance and resistance will be 

controlled by vertical external voltage. 

 

III.      Conclusion 

 

Graphene become a promising new material in 

different of electronic application because of its 

unique electronic properties. In this paper the 

resistance of BLG  respect to gate voltage is 

applied and it is seen that the declining of 

resistance is achieved for higher values of gate 

voltage. Also, in order to more study about 

electronic properties of BLG, the temperature 

effect on the resistance of the BLG is considered, 

and it is notable that decreasing of resistance can be 

obtained with the high values of temperature. 
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