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Abstract. This paper concerns the analysis of information leaks in se-
curity systems. We address the problem of specifying and analyzing large
systems in the (standard) channel model used in quantitative information
flow (QIF). We propose several operators which match typical interac-
tions between system components. We explore their algebraic properties
with respect to the security-preserving refinement relation defined by
Alvim et al. and Mclver et al. [TI2].

We show how the algebra can be used to simplify large system spec-
ifications in order to facilitate the computation of information leakage
bounds. We demonstrate our results on the specification and analysis
of the Crowds Protocol. Finally, we use the algebra to justify a new
algorithm to compute leakage bounds for this protocol.

1 Introduction

Protecting sensitive information from unintended disclosure is a crucial goal for
information security. There are, however, many situations in which information
leakage is unavoidable. An example is a typical password checker, which must
always reveal some information about the secret password—namely whether or
not it matches the input provided by the user when trying to log in. Another ex-
ample concerns election tallies, which reveal information about individual votes
by ruling out several configurations of votes (e.g., in the extreme case of an
unanimous election, the tally reveals every vote). The field of Quantitative In-
formation Flow (QIF) is concerned with quantifying the amount of sensitive
information computational systems leak, and it has been extremely active in the
past decade [BI451GL7I89].

In the QIF framework, systems are described as receiving secret inputs from a
set of values X', and producing public, or observable, outputs from a set ). Typical
secret inputs are a user’s identity, password, or current location, whereas public
outputs are anything an adversary can observe about the behavior of the system,
such as messages written on the screen, execution time, or power consumption.
A system is, then, modeled as an (information-theoretic) channel, which is a
function mapping each possible pair z € X', y € ) to the conditional probability
p(y | x) of the system producing output y when receiving input x. Channels
abstract technicalities of the system, while retaining the essentials that influence
information leakage: the relation between secret input and public output values.



The QIF framework provides a robust theory for deriving security properties
from a system’s representation as a channel. However, obtaining an appropriate
channel to model a system is often a non-trivial task. Moreover, some channels
turn out to be so large as to render most security analyses unfeasible in practice.

In this paper we provide an algebra for describing (larger, more complex)
channels as compositions of other (smaller, simpler) channels. For that, we define
a set of operators, each corresponding to a different way in which components can
interact in a system—namely, parallel composition, visible choice composition,
and hidden choice composition. We prove a series of algebraic properties of
these operators, and use such properties to simplify system specifications so
that bounds on the information leakage of a compound system can be inferred
from the information leakage of its components. In this way, we allow for leakage
analyses of systems which would be intractable with traditional QIF techniques.

This compositional approach seems particularly natural for modeling secu-
rity protocols, which often involve interactions among various entities. Consider,
for instance, the well-known Dining Cryptographers anonymity protocol [10]. A
group of n cryptographers has been invited for dinner by the NSA (American
National Security Agency), who will either pay the bill, or secretly ask one of the
cryptographers to be the payer. The cryptographers want to determine whether
one among them is the payer, but without revealing which one. For that, they
execute the following protocol. In a first phase all participants form a circle,
and each tosses a coin and shares the result only with the cryptographer on
his right. In a second phase, each cryptographer computes the exclusive-or of
the two coins tosses he observed (interpreting heads as 0 and tails as 1), and
publicly announces the result. The only exception is the paying cryptographer
(if any), who announces the negation of his exclusive-or. In a third phase, the
cryptographers compute the exclusive-or of all announcements. One of them is
the payer if, and only if, the result is 1. It has been shown that, if all coins are
fair, no information is leaked about who the paying cryptographer is [10].

Despite the Dining Cryptogra-
phers relative simplicity, deriving its
channel can be a challenging task.
Since each of the n cryptographers
can announce either 0 or 1, the size of
the output set ), and, consequently, \M\) — U — NN Output\>
of the channel, increases exponentially / !
with the number of cryptographers.
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stituting the channel’s entries is not
trivial. The algebra we introduce in Fig.1. Schematic representation of the
this paper allows for an intuitive and Dining Cryptographers protocol as: (i) a
compositional way of building a pro- monolithic channel (top); (ii) a composition
tocol’s channel from each of its com- ©f two channels (middle); and (ii) a compo-
ponents. To illustrate the concept, sition of eight channels (bottom).



Figure [l depicts three alternative representations, using channels, for the Dining
Cryptographers with 4 cryptographers and 4 coins. In all models, the input is
the identity of the payer (one of the cryptographers or the NSA), and the out-
put are the public announcements of all cryptographers. The top model uses a
single (enormous) channel to represent the protocol; the middle one models the
protocol as the interaction between two smaller components (the coins and the
party of cryptographers); the bottom one uses interactions between even smaller
channels (one for each coin and each cryptographer).
The main contributions of this paper are the following.

— We formalize several common operators for channel composition used in the
literature, each matching a typical interaction between system components.
We prove several relevant algebraic and information-leakage properties of
these operators.

— We show that the substitution of components in a system may be subject to

unexpected, and perhaps counter-intuitive, results. In particular, we show

that overall leakage may increase even when the new component is more
secure than the one it is replacing (e.g., Theorems [5[ and @

We show how the proposed algebra can be used to simplify large system

specifications in order to facilitate the computation of information leakage

bounds, given in terms of the g-leakage framework [TITTIT212].

— We demonstrate our results on the specification and analysis of the Crowds
Protocol [13]. We use the proposed algebra to justify a new algorithm to
compute leakage bounds for this protocol.

Detailed proofs of all of our technical results can be found in an accompanying
technical report[I4].

Plan of the paper. The remainder of this paper is organized as follows. In Sec-
tion [2] we review fundamental concepts from QIF. In Section [3] we introduce
our channel operators, and in Section [ we provide their algebraic properties. In
Section 5] we present our main results, concerning information leakage in channel
composition. In Section [6] we develop a detailed case study of the Crowds proto-
col. Finally, in Section [7] we discuss related work, and in Section [§] we conclude.

2 Preliminaries
In this section we review some fundamentals from quantitative information flow.

Secrets, gain functions and vulnerability. A secret is some piece of sensitive
information that one wants to protect from disclosure. Such sensitive information
may concern, for instance, a user’s password, identity, personal data, or current
location. We represent by X the set of possible secret values the secret may take.

The adversary is assumed to have, before observing the system’s behaviour,
some a priori partial knowledge about the secret value. This knowledge is mod-
eled as a probability distribution 7 € DX, where DX denotes the set of all
probability distributions on X. We call 7w a prior distribution, or simply a prior.



To quantify how vulnerable a secret is—i.e., how prone it is to exploitation by
the adversary— we employ a function that maps probability distributions to the
real numbers (or, more in general, to any ordered set). Many functions have been
used in the literature, such as Shannon entropy [15], guessing-entropy [16], Bayes
vulnerability [I7], and Rényi min-entropy [6]. Recently, the g-leakage [1] frame-
work was proposed, and it proved to be very successful in capturing a variety of
different scenarios, including those in which the adversary benefits from guess-
ing part of secret, guessing a secret approximately, guessing the secret within a
number of tries, or gets punished for guessing wrongly. In particular, the frame-
work has been shown to be able to capture all functions mentioned above [12].
In this framework, a finite set W of actions is available to the adversary, and a
gain-function g:WxX—10,1] is used to describe the benefit g(w, x) an adversary
obtains when he performs action weW, and the secret value is z€X. Given an
appropriate gain-function g, the secret’s (prior) g-vulnerability is defined as the
expected value of the adversary’s gain if he chooses a best possible action,

and the greater its value, the more vulnerable, or insecure, the secret is.

Channels and posterior vulnerabilities In the QIF framework, a system is usually
modeled as an (information theoretic) channel taking a secret input z€X, and
producing a public, or observable, output y€). Each element of ) represents a
behaviour from the system that can be discerned by the adversary. Formally, a
channel is a function C: X' xY—R such that C(z, y) is the conditional probability
p(y|z) of the system producing output y€) when input is z€X.

A channel C together with a prior 7 induce a joint probability distribution p
on the set X'x), given by p(x,y) = w(x)C(x,y). From this joint distribution we
can derive, for every z€X and y€)), the marginal probabilities p(z) = Zy p(z,y)
and p(y) = >, p(z,y), and the conditional probabilities p(x|y) = r(=.¥)/p(y) and
p(ylz) = p(@9)/p(x). Note that p(x) = w(x) and, if p(x) # 0, p(y|lz) = C(z,y).

By observing the output produced by the system, the adversary can update
his knowledge about the secret value. More specifically, if the system outputs
y€Y, an adversary can update the prior 7w to a revised posterior distribution
Px|y € DX on X given y, defined for all zeX’ and y€) as px |, (z) = p(z|y).

Ezample 1. Let X = {x1,22,23} and YV = {y1,¥2,¥s3,ya} be input and output
sets. Let m = (1/2,1/3,1/6) be a prior, and C be the channel below. The combi-
nation of 7 and C' yield a joint probability p, according to the tables below.

Clyir Y2 ys a Plyi Y2 Y3 Ya
x1| Yo 2/3 e 0 I iz 1/3 /12 0
x2| Y2 Ya s 0 xa| Y6 /12 /12 0
x| Y2 Yz 0 e x3| /12 /18 0 1/36




By summing the columns of the second table, we obtain the marginal probabili-
ties p(y1)=1/3, p(y2)=17/36, p(y3)="/6 and p(y4)=1/36. These marginal probabili-
ties yield the posterior distributions px,, =(1/4,1/2,1/4), px|y,=(12/17,3/17,2/17),
Px|ys=(1/2,%/2,0), and px|,,=(0,0,1). a

The posterior g-vulnerability of a prior m and a channel C is defined as the
expected value of the secret’s g-vulnerability after the execution of the system:

Vi) €)= 3 max 3™ Cla, y)m(a)glo, w)

yey zeEX

The information leakage of a prior and a channel is a measure of the increase
in secret vulnerability caused by the observation of the system’s output. Leakage
is, thus, defined as a comparison between the secret’s prior and posterior vulner-
abilities. Formally, for a gain-function g, and given prior 7 and channel C, the
multiplicative and the additive versions of g-leakage are defined, respectively, as

Lg[m) C] = Valm) ClYv,[x], and L',;r[w) Cl =Vy[r) C] — Vy[m].
Since prior vulnerability does not depend on the channel, we have that
Lylm)Ci] > Ly[m) Co] & LF[m)Ci] > LI [r)Co] & Vylm) Ch] > Vylm) Ca,

and, hence, the posterior vulnerability of a channel is greater than that of another
if, and only if, both multiplicative and additive leakage also are.

Channel Ordering and the Coriaceous Theorem. We now define a common com-
position of channels, called cascading. This operation can be interpreted as the
result of a channel post-processing the output of another channel. Formally,
given two channels C: X' xY—R and D:Yx Z—R, their cascading is defined as

(CD)(x,2) =Y Clx,y)D(y, 2),

yey

for all z€X and z€Z. If we represent channels as tables, as we did in Example [T}
the cascading operation corresponds to a simple matrix multiplication.

An important question in QIF is to decide whether a channel Cs is always at
least as secure as a channel C7, meaning that Cs never leaks more information
than C7, for whatever choice of gain function g and of prior 7. Let us write
Cy C, Cs (read as Co refines C) to denote that there exists a channel D such
that C1 D = Cy. We write C7 ~ (s, and say that C; is equivalent to Cs, when
both C; T, Cy and Cy T, C hold. The Coriaceous Theorem [1I2] states that,
C1 T, Oy if, and only if, Vy[r) C1] > Vy[m) Cy] for all 7, g. This result reduces
the comparison of channel security to a simple algebraic test.

The refinement relation =, is a preorder on the set of all channels having the
same input set. This preorder can be made into a partial order by using abstract
channels [2], an equivalence relation that equates all channels presenting same
leakage for all priors and gain functions. This partial order coincides with how
much information channels leak, being the least secure channel (i.e., the “most
leaky” one) at its bottom, and the most secure (i.e., the “least leaky”) at its top.



3 Operators on channel composition

We shall say that two channels are compatible if they have the same input set.
Given a set X', we denote by Cx the set of all channels that have X as input set.
Two compatible channels with same output set are said to be of the same type.

In this section we introduce several binary operators—i.e., functions of type
(Cx xCx)—Cx—matching typical interactions between system components, and
prove relevant algebraic properties of these operators. We refer to the result of
an operator as a compound system, and we refer to its arguments as components.

3.1 The parallel composition operator ||

The parallel composition operator || models the composition of two independent
channels in which the same input is fed to both of them, and their outputs are
then observed. By independent, we mean that the output of one channel does not
interfere with that of the other. This assumption, while not universal, captures
a great variety of real-world scenarios, and is, hence, of practical interest.

For example, side-channel attacks occur when the adversary combines his
observation of the system’s output with some alternative way of inferring in-
formation about the secret (e.g., by observing physical properties of the system
execution, such as time elapsed [I8J19] or change in magnetic fields [20]). In such
attacks, the channel used by the adversary to infer information about the secret
can be modeled as the composition of a channel representing the program’s in-
tended behaviour in parallel with a channel modeling the relation between the
secret and the physical properties of the hardware.

Definition 1 (Parallel composition operator |). Given compatible chan-
nels Cp:XxY1—R and Co:XxYo—R, their parallel composition C; || Cy :
XX (V1 xV2)—R is defined as, for all t€X, y1 €V, and y2€Vs,

(C1 || C2)(z, (y1,y2)) = C1(x,y1)Ca(x, y2).

Notice that this definition comes from the independence property, as we have
Ci(z, y1)Ca(w,y2) = p(y1]x)p(yz|2) = p(y1, y2|2).

3.2 The visible choice operator Ll

The wisible choice operator pld models a scenario in which the system has a
choice among two different components to process the secret it was fed as input.
With probability p, the system feeds the secret to the first component, and, with
probability 1—p, it feeds the secret to the second component. In the end, the
system reveals the output produced, together with the identification of which
component was used (whence, the name “visible choice”).

As an example, consider an adversary trying to gain information about a
secret processed by a website. The adversary knows that the website has two
servers, one of which will be assigned to answer the request according to a



known probability distribution. Suppose, furthermore, that the adversary can
identify which server was used by measuring its response time to the request.
This adversary’s view of the system can be modeled as the visible choice between
the two servers, since, although the adversary does not know in advance which
server will be used, he learns it when he gets the output from the system.
Before formalizing this operator, we need to define the disjoint union of sets.
Given any sets A and B, their disjoint union is AU B = (A x {1}) U (B x {2}).

Definition 2 (Visible choice operator ,L1). Given compatible channels Cy :
XxY1—=R and Co:XxVo—R, their visible choice is the channel Cy pl Cy :
X x(Y1 UY2)—=R defined as, for all zeX and (y,1) € Y1 U Vs,

SO o (i) = dPCHE: ), ifi=1,
(Gt ) 02 0) {(1—p)02(x,y), ifi=2.

3.3 The hidden choice operator ,®

Similarly to the visible choice case, the hidden choice operator ,@® models a
scenario in which the system has a choice of feeding its secret input to one com-
ponent (with probability p), or to another component (with probability 1—p). In
the end, the system reveals the output produced, but, unlike the visible choice
case, the component which was used is not revealed. Hence, when the same obser-
vations are randomized between the two channels, the adversary cannot identify
which channel produced the observation (whence, the name “hidden choice”).
As an example, consider statistical surveys that ask some sensitive yes/no
question, such as whether the respondent has made use of any illegal substances.
To encourage individuals to participate on the survey, it is necessary to control
leakage of their sensitive information, while preserving the accuracy of statistical
information in the ensemble of their answers. A common protocol to achieve this
goal works as follows [2I]. Each respondent throws a coin, without letting the
questioner know the corresponding result. If the result is heads, the respondent
answers the question honestly, and if the result is tails, he gives a random re-
sponse (obtained, for example, according to the result of a second coin toss). If
the coins are fair, this protocol can be modeled as the hidden choice T"1/,& C
between a channel T representing an honest response (revealing the secret com-
pletely), and a channel C representing a random response (revealing nothing
about the secret). The protocol is, hence, a channel that masks the result of 7.

Definition 3 (Hidden choice operator ,$). Given compatible channels Cy :
XxY1—=R and Co: X xY,—R, their hidden choice is the channel C; @ Cs :
Xx(Y1UY2)—R defined as, for all x€X and yeY; U Vs,

pcl(x7y)+<1_p)02(may>7 nyeyl ﬁy?a
(C1p® C2)(z,y) =  pCi(z,y), ify € Vi\ e,
(1-p)Cs(z,y), ify € Yo\ V1.

Note that when the output sets of C7 and C5 are disjoint the adversary can
always identify the channel used, and we have C; 11 CoxC; ,@ Cs.



3.4 A compositional description of the Dining Cryptographers

We now revisit the Dining Cryptographers protocol example from Section
showing how it can be modeled using our composition operators.

We consider that there are 4 cryptographers and 4 coins, and denote the
protocol’s channel by Dining. The channel’s input set is X = {c1, ¢, c3, c4, 1},
in which ¢; represents that cryptographer ¢ is the payer, and n represents that
the NSA is the payer. The channel’s output set is Y = {0,1}%, i.e., all 4-tuples
representing possible announcements by all cryptographers, in order.

Following the scheme in Figure|l|(middle), we begin by modeling the protocol
as the interaction between two channels, Coins and Announcements, represent-
ing, respectively, the coin tosses and the cryptographers’ public announcements.
Since in the protocol first the coins are tossed, and only then the corresponding
results are passed on to the party of cryptographers, Dining can be described as
the cascading of these two channels:

Dining = (Coins)(Announcements).

To specify channel Coins, we use the parallel com-
position of channels Coiny, Coino, Coing and Coing,
each representing one coin toss. Letting p; denote the “ bi 1=pi
probability of coin ¢ landing on tails, these channels €2 % 1=ps
are defined as on Table [Il = b 1=pi

Besides the result of the tosses, Coins also needs to “ pi i_pi
pass on to Announcements the identity of the payer. L pi —Di
We then introduce a fifth channel, I:XxX—R, that Table 1. Channel repre-
simply outputs the secret, i.e., I(x1,22) = 1 if 1 = senting toss of coin Coin,.
9, and 0 otherwise. Hence, a complete definition of channel Coins is

Coin; | Tails Heads

Coins = Coiny || Coing || Coing || Coing || I.

As we will show in Section [4] parallel composition is associative, allowing us
to omit parentheses in the equation above.

We now specify the channel Announcements, which takes as input a 5-tuple
with five terms whose first four elements are the results of the coin tosses, and the
fifth is the identity of the payer. For that end, we describe each cryptographer as
a channel with this 5-tuple as input, and with the set of possible announcements
{0,1} as output set. Crypto, below describes the first cryptographer.

1,if ty =t; and x = ¢y, or t4 £ty and = # ¢

Cryptoq(t1,ts,t3,ts, ) =
yptor(tr, bz, ts, 4, ) {0, otherwise

Channels Cryptoy, Cryptos and Crypto, describing the remaining cryptog-
raphers are defined analogously. Channel Announcements is, hence, defined as

Announcements = Crypto, || Cryptoy || Cryptos || Crypto,.



Note that our operators allow for an intuitive and succinct representation
of the channel Dining modeling the Dining Cryptographers protocol, even when
the number of cryptographers and coins is large. Moreover, the channel is easy to
compute: we need only to first calculate the parallel compositions within channels
Crypto and Announcements, and then multiply these channels’ matrices.

4 Algebraic properties of channel operators

In this section we prove a series of relevant algebraic properties of our channel
operators. These properties are the key for building channels in a compositional
way, and, more importantly, for deriving information flow properties of a com-
pound system in terms of those of its components.

We begin by defining a notion of equivalence stricter than =, which equates
any two channels that are identical modulo a permutation of their columns.

Definition 4 (Channel equality). Let Cy : XxY1—R and Cy : X xYs—R be
compatible channels. We say that Cy and Cy are equal up to a permutation , and
write Oy = Cy, if there is a bijection ¥:Y1—Ys such that Cy(z,y)=Ca(x,1)(y))
for all xe X, ye).

Note that, if C} = Cy, then C1~Cs.
In remaining of this section, let C; : AxY1 =R, Cs : A%xYe—R and Cs :
X xY3—R be compatible channels, and p, ¢ € [0, 1] be probability values.

4.1 Properties regarding channel operators
We first establish our operators’ associativity and commutativity properties.

Proposition 1 (Commutative Properties).

C1]|Co = Co||C1, Oy pld O = Cy (1-pylt C1, and Cy & Ca = Cs (1)@ Ch.

Proposition 2 (Associative Properties).

(C1[|Ca) | C3=Cy || (Ca | Cs),  (CypliCy) gl C5 = Cy prlid (Cy o1 Cs),
and (C1 p® C2) @ C5=C1 p® (Coy @ C3), s.t. p'=pq and ¢'=(a-ra)/(1-pq).

We now turn our attention to two kinds of channels that will be recurrent
building blocks for more complex channels. A null channel is any channel O :
X xY—R such that, for every prior 7 and gain-function g, Vy[r ) 0] = Vy[x]. That
is, a null channel never leaks any information. A channel 0 is null if, and only
if, 0(z,y) = 0(a’, y) for all y€¥ and z,2’€X. On the other hand, a transparent
channel is any channel T : XxY—R that leaks at least as much information as

3 A complete, formal definition of such bijections can be found in an accompanying
technical report|14].



any other compatible channel, for every prior and gain-function. A channel I is
transparent if, and only if, for each y€)), there is at most one x€X such that

I(x, y)>9. The following properties hold for any null channel 0 and transparent
channel I compatible with C7, Cy and Cj.

Proposition 3 (Null and Transparent Channel Properties).
null channel:  (Cy || 0) = C1, C1 C, (Cy ,0), CiC, (Cy,®0).

transparent channel:  (Cy || 1) ~ 1, (C1 1 ) E, C.

Note that, in general, (C; ,@® I) Zo C1. To see why, consider the two trans-
parent channels I, and I, with both input and output sets equal {1,2}, given by
I (x,2") = 1if z=2', and 0 otherwise, and I5(x,2') = 0 if z=2', and 1 otherwise
Then, I; »® I is a null channel, and the property does not hold for C; = I,
I=1,.

We now consider idemptotency.

Proposition 4 (Idempotency).
¢y || C1 B, Ch, Cy 1 Cy = Ch, and C,® C1 =Ch.

Note that C1]|C;~C} holds only when C is deterministic or equivalent to a
deterministic channel.

Finally, we consider distributive properties. In particular, we explore inter-
esting properties when an operator is “distributed” over itself.

Proposition 5 (Distribution over the same operator).

(Cr [ C2) [| (Cr || C5) Eo C1 [ (C2 || C3),
1 pld (CQ gl 03) S (Cl pl CQ) g (Cl pld 03)7
Ch p® (Cs «® Cs) = (Cy p® Cs) «® (Ch p® Cs).

Proposition 6 (Distribution over different operators).

C1 || (Ca pld C3) = (Cy || Ca) it (Cy || C3),
C1 || (C2 p@ C3) = (C1 || C2) ,® (C1 || C3),
Cy pld (Cg D 03) = (01 pld CQ) ¢® (01 pld 03)

Unfortunately, the distribution of ,l1 over ||, ,& over ||, or ,&® over pl is not
as well behaved. A complete discussion is avaiable in the technical report[14]

4.2 Properties regarding cascading

We conclude this section by exploring how our operators behave w.r.t. cascad-
ing (defined in Section . Cascading of channels is fundamental in QIF, as it
captures the concept of a system’s post-processing of another system’s outputs,
and it is also the key to the partial order on channels discussed in Section

The next propositions explore whether it is possible to express a composition
of two post-processed channels by a post-processing of their composition.



Proposition 7. Let Dy : Y1 xZ; — R, Dy : YoxZ5 — R be channels. Then,
(C1D1) || (C2D3) = (C1 || C2)DV,

where DI (V1 x Vo) x(21% Z5) — R is defined, for all 1€Y1, y2€Va, 21€21,
and 22€Z2, as DI((y1,y2), (21, 22)) = D1(y1, 21)D2(y2, 22).

Proposition 8. Let Dy : Y1 xZ; = R, Dy : YoxZ5 — R be channels. Then,
(C1D1) pld (CoDg) = (Cy pU Co)D",

where D¥:(Q1UM) X (Z1UZ23)—R is defined as DY ((y,1),(z,5)) = D1(y,2) if
i=j=1, or Da(y,2) if i = j = 2, or 0 otherwise, for all y1 €Y1, Y2€Va, 21€21,
29€2Z5.

A similar rule, however, does not hold for hidden choice. For example, let C
and Cs be channels with input and output sets {1, 2}, such that Cy(z,z')=1 if
x=1z', or 0 otherwise, and Cs(x, 2")=0 if z=2’, or 1 otherwise. Let D; and D be
transparent channels whose output sets are disjoint. Then, (C1D1) 1/,® (C2Ds)
is a transparent channel, but C7 1/,® Cs is a null channel. Thus, it is impossible
to describe (C1D1) 1/,@ (C2Ds) as Cy 1/,® Cy post-processed by some channel.
However, we can establish a less general, yet relevant, equivalence.

Proposition 9. Let Cp : XxY—R and Cy : XxXY—R be channels of the same
type. Let D : Yx Z—R be a channel. Then, (C1D) ,® (C2D) = (Cy ,® C2)D.

5 Information leakage of channel operators

This section presents the main contribution of our paper: a series of results
showing how, using the proposed algebra, we can facilitate the security analysis
of compound systems. Our results are given in terms of the g-leakage framework
introduced in Section 2] and we focus on two central problems. For the remaining
of the section, let C; : X*x)Y; — R and Cy : Xx)s — R be compatible channels.

5.1 The problem of compositional vulnerability

The first problem consists in estimating the information leakage of a compound
system in terms of the leakage of its components. This is formalized as follows.

The problem of compositional vulnerability: Given a composition op-
erator x on channels, a prior teDX, and a gain function g, how can we estimate
Vglm) C1 % Cs] in terms of Vy[m) C1] and Vy[m) Cs)?

Theorem 1 (Upper and lower bounds for V, w.r.t. || ). For all gain
functions g and m € DX, let X' = {x€X | JweW s.t. n(z)g(w,x) > 0}. Then

Vylm) Cil|Co]> max(Vylm ) C1l, Vgl ) Col),  and

Vglm) C1]|C2]<min <Vg[7r> ] Z max Co(z,y2), Vy[m) Co) Z max Cy (x, y1)> .
Y2 Y1



Theorem 2 (Linearity of V, w.r.t. ,l1). For all gain functions g, 7 € DX
and p € [0, 1],

V9[77>C1 pl Cy] = Pvg[ﬂ> Ci]+ (1 —p)Vg[W>C2].

Theorem 3 (Upper and lower bounds for V, w.r.t. ,&). For all gain
functions g, m € DX and p € [0,1],

Vylm) Cr p@ Co] = max(pVy[m) Chl, (1 —p)Vy[m) Co),  and
Volm) Cr p® Co] < pV[m) Cil + (1 = p)Vy[m) Cal.

The three theorems above yield an interesting order between the operators

Corollary 1 (Ordering between operators). Let m € DX, g be a gain func-
tion and p € [0,1]. Then Vy[r) Cy || Co] > Vy[m) Cy pld Co] > Vy[m) Cy @ Col.

5.2 The problem of relative monotonicity

The second problem concerns establishing whether a component channel of a
larger system can be safely substituted with another component, i.e., whether
substituting a component with another can cause an increase in the information
leakage of the system as a whole. This is formalized as follows.

The problem of relative monotonicity: Given a composition operator
* on channels, a prior 1 € DX, and a gain function g, is it the case that
Vo) C1] < Vy[r) Co]l © VC € Cx. Vy[m) Cr x C] < Vy[m) Co x C] 7

We start by showing that relative monotonicity holds for visible choice. Note,
however, that because Vy[r)Cy L C] < Vy[n) Cy Lt C] is vacuously true if
p = 0, we consider only p € (0,1].

Theorem 4 (Relative monotonicity for ,l1). For all gain functions g, m €
DX and p € (0,1],

Vglm) C1] < Vglm) Co] & VC. Vg[m) C1 L C] < Vg[m) Cs 11 C.

Interestingly, relative monotonicity does not hold for the parallel operator.
This means that the fact that a channel C is always more secure than a channel
C5 does not guarantee that if we replace C7 for Cs in a parallel context we neces-
sarily obtain a more secure systemﬂ However, when the adversary’s knowledge
(represented by the prior 7) or preferences (represented by the gain-function g)
are known, we can obtain a constrained result on leakage by fixing only 7 or g.

4 As a counter-example, consider channels ¢, = (i g) and Cy = (é ?) Let m, =
{1/3,1/3,1/3} and gia : X X X — [0,1] s.t. gia(z1,22) = 1 if 1 = 22 and 0 otherwise.
Then, Vg, ,[mu) C2] < Vg, [mu) C1], but Vg, [mu) C2 || C1] > Vg, [mu) C1 || Cil.



Theorem 5 (Relative monotonicity for ||). For all gain functions g and
e DX

V?T’V[ ) Ci] < Vgln") Co] & V', C. V) Cy || Ol < V') C2 || €, and
Vg Vo lm) C1] < Vg [mr) Co] & Vyg', C. Vg [m) Cy || C] < Vg [m) Co || €.

Perhaps surprisingly, hidden choice does not respect relative monotonicity,
even when we only consider channels that respect the refinement relation intro-
duced in section

Theorem 6 (Relative monotonicity for ,®). For all p(0,1), there are
C1:XxY—=R and Cy: X xY—R such that

v, g. Vylm) C1]<Vy[r) Cs] and 3r',¢',C. Vy[n") C1 @ Cl>Vyx') Ca & C1,
The converse, however, is true.

Theorem 7 (Relative monotonicity for ,®, cont.). For all gain functions
g, m € DX and p € (0,1],

VCLVylm) 1 @ C1 < Vylir) Ca @ C] = Vylr) Ci < V[ ) Col.

6 Case study: the Crowds protocol

In this section we apply the theoretical techniques developed in this paper to the
well-known Crowds anonymity protocol [13]. Crowds was designed to protect the
identity of a group of users who wish to anonymously send requests to a server,
and it is the basis of the widely used protocols Onion Routing [22] and Tor [23].

The protocol works as follows. When a user wants to send a request to the
server, he first randomly picks another user in the group and forwards the request
to that user. From that point on, each user, upon receiving a request from another
user, sends it to the server with probability p € (0, 1], or forwards it to another
user with probability 1—p. This second phase repeats until the message reaches
the server.

It is assumed that the adversary controls the server and some corrupt users
among the regular, honest, ones. When a corrupt user receives a forwarded re-
quest, he shares the forwarder’s identity with the server, and we say that the
forwarder was detected. As no information can be gained after a corrupt user
intercepts a request, we need only consider the protocol’s execution until a de-
tection occurs, or the message reaches the server.

In Crowds’ original description, all users have equal probability of being
forwarded a message, regardless of the forwarder. The channel modeling such
a case is easily computed, and well-known in the literature. Here we consider
the more general case in which each user may employ a different probability
distribution when choosing which user to forward a request to. Thus, we can
capture scenarios in which not all users can easily reach each other (a common



problem in, for instance, ad-hoc networks). We make the simplifying assumption
that corrupt users are evenly distributed, i.e., that all honest users have the same
probability g€(0, 1] of choosing a corrupt user to forward a request to.

We model Crowds as a channel Crowds:Xx)Y—R. The channel’s input,
taken from set X={u1,uq, ..., u,,}, represents the identity u; of the honest user
(among a total of n. honest users) who initiated the request. The channel’s out-
put is either the identity of a detect user—i.e., a value from D={d;,ds,...,d,_},
where where d; indicates user u; was detected—or the identity of a user who for-
warded the message to the server—i.e., a value from S={s1, sa,...,s,,}, where
s; indicates user u; forwarded a message to the server. Note that D and S are
disjoint, and the channel’s output set is Y =D US.

To compute the channel’s entries, we model the protocol as a time-stationary
Markov chain M = (U, P), where the set of states is the set of honest users U,
and its transition function is such that P(u;,u;) is the probability of u; being
the recipient of a request forwarded by u;, given that u; will not be detected.

We then define four auxiliary channels. Transparent channels I;:U xD—R
and I;:UxS—R are defined as I4(u;, d;)=1if i=j, or 0 otherwise, and I (u;, s;) =
1 if i=j, or 0 otherwise; and two other channels P;:DxD—R and P;:SXS—R,
based on our Markov chain M, are defined as Py(d;, d;)=Ps(si, s;)=P(ui, u;).

We begin by reasoning about what happens if each request can be forwarded
only once. There are two possible situations: either the initiator is detected, or
he forwards the request to an honest user, who will in turn send it to the server.
The channel corresponding to the initiator being detected is I, since in this case
the output has to be d; whenever u; is the initiator. The channel corresponding
to the latter situation is I, Ps—i.e., the channel I postproccessed by Ps. This is
because, being Ps based on the transition function of M, the entry (I, Ps)(u;, s;)
gives us exactly the probability that user u; received the request originated by
user u; after it being forwarded once. Therefore, when Crowds is limited to one
forwarding, it can be modeled by the channel I; ;& I, P EL representing the fact
that: (1) with probability ¢ the initiator is detected, and the output is generated
by I4; and (2) with probability 1 — ¢ the output is generated by I Ps.

Let us now cap our protocol to at most two forwards. If the initiator is not
immediately detected, the first recipient will have a probability p of sending the
message to the server. If the recipient forwards the message instead, he may
be detected. Because the request was already forwarded once, the channel that
will produce the output in this case is I;P; (notice that, despite this channel
being equivalent to I4Ps, it is of a different type). On the other hand, if the
first recipient forwards the message to an honest user, this second recipient will
now send the message to the server, making the protocol produce an output
according to Iy Ps Py (or simply I, P?), since (I;P?)(u;, s;) is the probability that
user u; received the request originated by user u; after it being forwarded twice.
Therefore, when Crowds is limited to two forwardings, it can be modeled by the
channel Iy & (IsPs ,® (IaPy & IsP?)). Note the disposition of the parenthesis

5 To simplify notation, we assume cascading has precedence over hidden choice, i.e.,
AB ,® CD = (AB) ,® (CD).



reflects the order in which the events occur. First, there is a probability ¢ of the

initiator being detected, and 1 — ¢ of the protocol continuing. Then, there is a

probability p of the first recipient sending it to the server, and so on.
Proceeding this way, we can inductively construct a sequence {C;}ien-,

Ci =14 ¢® (IsPs y® (IaPy ¢® (... p® (IaPy " (® I,PY)..))),

in which each C; represents our protocol capped at ¢ forwards per request. We can
then obtain Crowds by taking lim;_, ., C;. From that, Theorem (3| and Proposi-
tion [2} we can derive the following bounds on the information leakage of Crowds.

Theorem 8. Let {t;}ien be the sequence in which to;=1—(1—q)" " (1—p)¢ and

t2it1) = 1—(1 — )" (1—p)*** for all i€N.
Let Kp=((-.. (14 to/t; D I Py) t1/,,D - ) tom—1/tom D ([dP(?L), Then, YmeN*,

Vlr) Jim Ci) > tomVylr) Ko, (1)
Vylr) Jim Ci) < tonVylr) Kon + (1= tam)Vy[m) LEZ VY, and  (2)
(1= ta)Vylm) LPI™HY) < (1= )™ (1= p)™ (3)

Equations and provide an effective way to approximate the g-leakage
of information of the channel Crowds with arbitrary precision, whereas Equa-
tion lets us estimate how many interactions are needed for that.

To obtain K,,, we need to calculate m matrix multiplications, which surpass
the cost of computing the m hidden choices (which are only matrix additions).
Thus, Theorem |8 implies we can obtain a channel whose posterior vulnerability
differs from that of Crowds by at most (1—¢)™(1—p™) in ~O(mn28°7) time
(using the Strassen algorithm for matrix multiplication [24]). Since p is typically
high, (1—¢)™*!(1—p)™ decreases very fast. For instance, for a precision of 0.001
on the leakage bound, we need m=10 when (1—¢)(1—p) is 0.5, m=20 when it is
0.7, and m=66 when it is 0.9, regardless of the number n. of honest users.

Therefore, our method has time complexity O(n?87) when the number of
users is large (which is the usual case for Crowds), and reasonable values of
forward probability p, and precision. To the best of our knowledge this method is
the fastest in the literature, beating the previous O(n3-87) that can be achieved
by modifying the method presented in [25]—although their method does not
require our assumption of corrupt users being evenly distributed.

7 Related work

Compositionality is a fundamental notion in computer science, and it has been
subject of growing interest in the QIF community.
Espinoza and Smith [26] derived a number of min-capacity bounds for dif-
ferent channel compositions, including cascading and parallel composition.
However, it was not until recently that compositionality results regarding
the more general metrics of g-leakage started to be explored. Kawamoto et al.



[27] defined a generalization of the parallel operator for channels with different
input sets, and gave upper bounds for the corresponding information leakage.
Our bounds for compatible channels (Theorem [1]) are tighter than theirs.

Recently, Engelhardt [28] defined the miz operator, another generalization
of parallel composition, and derived results similar to ours regarding the par-
allel operator. Specifically, he provided commutative and associative properties
(Propositions [1] and [2), and from his results the lower bound of Theorem [1] can
be inferred. He also proved properties similar to the ones in Proposition [3] albeit
using more restrictive definitions of null and transparent channels.

Both Kawamoto et al. and Engelhardt provided results similar to Theorem
but ours is not restricted to when one channel is refined by the other.

Just recently, Alvim et. al investigated algebraic properties of hidden and
visible choice operators in the context of game-theoretic aspects of QIF [29], and
derived the upper bounds of Theorems [2| and [3] Here we expanded the algebra
to the interaction among operators, including parallel composition, derived more
comprehensive bounds on their leakage, and applied our results to the Crowds
protocol.

8 Conclusions and future work

In this paper we proposed an algebra to express numerous component composi-
tions in systems that arise from typical ways in components interact in practical
scenarios. We provided fundamental algebraic properties of these operators, and
studied several of their leakage properties. In particular, we obtained new re-
sults regarding their motonicity properties and stricter bounds for the parallel
and hidden choice operators. These results are of practical interest for the QIF
community, as they provide helpful tools for modeling large systems and ana-
lyzing their security properties.

The list of operators we explored in this paper, however, does not seem to
capture every possible interaction of components of real systems. As future work
we wish to find other operators and increase the expressiveness of our approach.
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