
EasyChair Preprint
№ 15403

Generative AI-Based Tool for Brute Forcing IoT
Devices’ Default Credentials

Anas Al Rawi, Nafaa Jabeur and Raja Waseem Anwar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2024

Generative AI-Based Tool for Brute Forcing IoT
Devices’ Default Credentials

Anas Al Rawi1, Nafaa Jabeur1, and Raja Waseem Anwar1

1Computer Science Department, German University of Technology in Oman, Oman

Abstract—This study beneficially uses the power of generative
AI to search for vendor-specific default credentials and uses them
to brute force IoT devices logins. IoT devices have a diverse set
of open ports used for accessing and configuration. With the
increased usage of IoT devices, keeping all devices’ ports well-
secured is overwhelming and costly, especially for SMEs. Using
a variety of methods to approach the problem, this research
studied IoT attacks, characteristics, IoT penetration tools, and
small to medium size enterprises (SMEs) requirements to produce
an automated solution. Findings indicated that a lot of IoT devices
are still configured with default credentials making the networks
they are connected to vulnerable attacks. The solution presented,
is a script that integrates OpenAI GPT to search for default
credentials, Nmap to scan for open ports, and Hydra to attack
the device. The tool is implemented to assess some specific widely
used ports. To detect vulnerable IoT devices and report them to
the user, the tool analyses login pages available on ports 80 and
443 to search for the brand and model of the IoT device. The
output is used for the default credentials GPT search. Despite its
ability to shortlist the dictionary for a brute force list, it should
be tested on an experiential environment that includes different
IoT simulators with several open ports on changed credentials
and default ones. Then verified its functionality on a real IoT
network. Further research could explore implementing machine
learning to thoroughly analyse IoT device firmware.

Index Terms—Generative AI, IoT Device, Default Credentials,
Brute Force, SMEs, Python Script

I. INTRODUCTION

Internet of Things or IoT are devices that communicate with
each other and with other systems using the internet. These
devices range from simple home appliances such as garage
door openers, smart refrigerators, and internet-connected door
locks to much more advanced manufacturer devices such as
sensors, and pipeline robots. IoT devices are also present in
smart cities, traffic control systems, and watering infrastruc-
ture. A lot of devices are considered as IoT devices even before
the introduction of the term IoT in 1999 [1] such as Wi-Fi
routers, access points, and surveillance cameras as they are
connected to the network and can be accessed through a client
that is connected to the same network as well. Classification of
IoT devices is based on the implementation field, to mention
a couple, there is the Internet of Medical Things (IoMT),
Industrial Internet of Things (IIoT), consumer and commercial
IoT devices, and much more. In general, IoT devices are
uncountable but in this paper, the focus will be specifically
on IoT devices in households and small to medium-sized
enterprises (SMEs). A very important characteristic of IoT
devices is their simplicity to ensure fast and uninterrupted

transaction of data. This approach leads to the main issue of
IoT devices which is their security aspects. They introduce
vulnerabilities to the networks they are connected to and are
considered easy targets to start with for any attack. The most
important vulnerability in IoT devices is the use of default
credentials to log into and manage them, and it is the problem
we are addressing in this report.

Default credentials are username and password combina-
tions that are similar across a brand or manufacturer and
can be found in the device’s manuals or documentation, out
of the box or online. These credentials are used to log in
to the device’s control panel or access its services. These
credentials can easily be found online by an attacker which
lets him get into the device control panel and start the network
intrusion from there. It is very important to change these
credentials after the initial setup of the device for the first
time. Some manufacturers force users to change the device
credentials upon setup. The very famous Mirai botnet used
this vulnerability to create a botnet of IoT devices controlled
to do specific tasks [2]. In SMEs, the IoT field being addressed
in this project, a lot of IoT devices are being neglected, either
because of their huge number or other reasons. Moreover,
SMEs need cost-effective security measures that can be done
by a single network admin, without the need to hire a full
cybersecurity team.

In the available scanning tools, attacks are using a list
of credentials to try with, namely a dictionary attack, while
others brute force every possible combination. Using these
methods increase the number of login attempts, leading to
several mitigation techniques used by the IoT manufacturer or
the network itself to stop the attack. The IoT device may have a
limited number of attempts in which it requires the user to wait
for a specific period of time after a number of failed attempts.
For example, after 3 failed attempts, the user should wait for
a minute before allowing him to try again. This period of time
increases for each failed attempt onwards. Another method that
maybe implemented in the network firewall is IP blockage.
IP address of the user trying to login can be blocked from
accessing the network after a number of failed login attempts.
The main issue is with the number of attempts used for the
attack. Limiting or reducing the number of combinations to
use for the attack would solve the case.

In this research, we develop a tool that is easy to be used by
the network administrator to scan the network for IoT devices
and checks the vulnerability of default credentials. The tool

automates the process of checking what ports are open on the
IoT device and attempting to log in with multiple combinations
of default credentials custom to the device’s brand or vendor,
limiting the number of trials. Default credentials specific to the
device’s vendor and used for the login attempts for several
ports will be fetched automatically by the tool using the
assistance of generative AI. It will robustly help in removing
the IP or time blockage issue. The full automation the tool
provides lets network administrators assess their networks with
ease and gives very clear information about which devices are
still on default credentials as well as solves the limitation in
the number of trials addressed. The tool alerts the user of any
devices that are still configured with default credentials and
on what port the attack succeeded. On top of that, the tool
shows safe devices that are not set with default credentials.

Generative Artificial Intelligence (AI) is the artificial intel-
ligence technology that generates content after training on a
huge dataset [3]. The project uses generative AI to analyse
the target IoT device and gives output that helps in narrowing
down the list used for the attack procedure. The reason behind
using AI for credentials retrieval and not using a dictionary
attack or a normal brute force is because of the enormous
credentials list used for the attempts these methods use,
causing the mentioned blockage problems. AI will search the
internet for availably online information about IoT devices
such as support pages, digital manuals, and troubleshooting
blogs to extract as much information as possible useful for
the attack. The main element that AI will be searching for
is the set of credentials used by the target IoT device vendor
across all of their devices’ line or model. To achieve this, a
prompt needs to be well engineered to use the full power of
generative AI and to get the best results.

II. LITERATURE REVIEW

Wi-Fi routers, access points, and IP cameras are very crucial
devices in any office or organisation. Therefore, researchers
did excessive security studies on them. Romana et al. created
a category for Small Office/Home Office routers called SOHO
and discussed the vulnerabilities of these routers. These SOHO
routers are vulnerable because the security configuration of
these devices is mostly left on the default settings, which
leads to the low-security posture of all IoT devices connected
to the routers. The researchers statically and dynamically
analysed the security of a Netis WF2411 router. The first
step of this analysis was to collect information about the
device such as firmware version, patches or updates, and
publicly reported issues. Moreover, network interfaces of the
device are noted such as WAN, LAN, and Wi-Fi. Later
the dynamic analysis with a live device starts by finding
open ports and performing VAPT on the network interfaces.
Dynamic analysis also included network monitoring during
several periods. Furthermore, the static analysis is done by
retrieving the firmware and unpacking it, then checking its
scripts, configuration, and database files. The results showed
that the router has the Telnet port open and is still on default
credentials and UDP port 53413 is open and vulnerable to

remote command execution [4]. Research was also conducted
by Rosihan et al. to list and recommend network security
measures to be implemented on MikroTik routers, which are
routers equipped with a MikroTik operating system that holds
numerous network functions and can be used as a router
or firewall. The resulting recommendations came from the
vulnerability assessment that was done by the researchers on
the routers. Assessing the routers included several penetration
testing methods such as DDoS, brute forcing, and exploiting.
The stages of this research are gathering information about
the target as a first step. Then scan the device for open ports
using the Nmap tool. Then the device is attacked based on the
scan results. Lastly, the analysis is only done if the attacker
gains access to the device. Using Routersploit, the device was
attacked with an FTP credentials brute force on port 21 and
was successful using MikroTik default credentials [5]. Another
experiment was done by Perone et al. where a Python script
was made to test the security of IP cameras, it was estimated
in 2017 that over 10% of IoT devices are still on default
credentials. Leading to the creation of repositories that are
filled with IoT default credentials, device make, and model.
The very famous Mirai malware is conducted by gaining
access to a huge number of IoT devices using these credentials
repositories and forcing them to form a botnet to eventually
start the DDoS attack, 10% of the IoT devices or bots used
in the attack were IP cameras. With a main focus on two
European IP camera models, a research proposed a Python
script that automates the process of identifying IP cameras
protected with default credentials. Using GitHub repositories
as a credentials pool and Shodan API to get IP cam details
such as open ports, the code mainly focuses on HTTP and
checks if the response code is 200. The research results show
the success of the script on 2 models, a widely used cheap
model, and a high-end security camera [6].

Tab. I summarises previous successful attacks that were
done on IoT devices. We can see that the attackers used
availably online default credentials of the IoT device brand
to construct the attack. Also, the range of IoT devices was
from home to enterprise level. Adding to that point, the attacks
were successful on different ports. The multiple successes
in attacking different kinds of IoT devices by utilising the
availability of their default credentials reveals how low the
security level of IoT devices is. This makes default credentials
vulnerability a very critical one to research and try to find
mitigating mechanisms.

Numerous types of attacks were also done on IoT devices
using several approaches and in different ports with attempts
to create mitigation techniques to protect networks that include
IoT devices. As many IoT devices use the SSH protocol, the
research focuses on the password authentication method used
to authorise SSH connections and how widely it is spread.
Performing an internet wide SSH scan and attempting to log
in with an empty password attribute returned “Authentication
(password) failed”, which reveals that millions of devices use
password authentication policy for SSH protocol. As per the
Censys service, there are about 16 million devices that use

TABLE I: Successful IoT Attacks

Authors Year Device Port Methodology
Romana
et al.

2020 SOHO Routers 23 Default credentials of
router vendor.

Rosihan
et al.

2022 MikroTik
Routers

21 MikroTik default
credentials
(admin/blank).

Perone
et al.

2023 IP Cameras 80 Dictionary attack using
GitHub repositories
containing default
credentials of different
IP cameras vendors.

password authentication for SSH. The Zmap test results show
that more than 65% of devices connected to the internet can be
accessed by SSH using a password authentication procedure
[7]. Moreover, another research demonstrates brute-forcing
Raspberry Pi because it is used by 90% of IoT devices,
to remotely log into their systems using SSH. The research
demonstration aims to reduce IoT device resource wastage in
the case of a brute force attack by detecting it and mitigating
it. The brute force was conducted using the Hydra command
with 2 wordlists one containing usernames and the other
containing passwords. The process of detection and mitigation
proceeds by capturing the network traffic during the brute
force attack and extracting information about successful and
failed login attempts. The detection is then done by spotting
the number of unsuccessful SSH connections. Failed SSH
connection attempts are spotted by limiting the number of
login attempts and by setting a time threshold for guessing the
password period (password input step). If a brute force notice
is raised, the connection is dropped which leads to successful
mitigation of the attack. This procedure was fed into an IDS
and after the experiment, researchers found out that resource
wastage was reduced by 10%, 25%, and 40% among different
resources [8].

Weak and default credentials is a very critical vulnerability
and research was done in this aspect. The objective of the
research [9] is to present a new authentication mechanism
to secure Telnet or SSH connections for IoT devices. The
weak credentials pairs that come default from the manufacturer
open the door for large-scale DDoS attacks on IoT devices
in which they are converted to bots after the capture. Shah
et al. proposed a procedure called “login puzzle”, a version
of the previous client puzzle that forces the user to solve
puzzles before reaching the login attempt phase, thus raising
the complexity of the login procedure. The difficulty of the
puzzle is increased, linearly or exponentially per failed login
attempt. They classified the login attempts into 3 states, each
differing in the complexity incrementing method of the puzzle.
Normal attempt where a user solves the puzzles and then
logs in successfully. If the user fails to log in after the
successful puzzle solution, the puzzle complexity will increase
exponentially. The second state was called the midway give-
up attempt where the user stops in the middle of the puzzle-
solving phase without reaching the login attempt phase. In this
case, the puzzle complexity will increment linearly. Lastly,

parallel login attempts state is when the user requests a new
login while still in a current login request. Firstly, the new log
in request has the same complexity as the still-going previous
request. If the previous request fails to log in, the difficulty of
the puzzle will be doubled [9].

The bachelor’s thesis report aims to examine the existence
of default credentials vulnerability in IoT devices used in
Sweden such as remote controls, NVRs, and controllers. The
research was conducted to check whether these IoT devices
can be used to create a botnet. Kim Quach collected details
from devices’ user manuals and categorised the security mech-
anism into 4 levels. A total of 273 devices were analysed
(excluding routers) and categorised into the levels. Starting
from the most secure at level one where the device has other
authentication methods than credentials, 127 devices are in
this category. Devices with default credentials that force the
consumer to change them are at level two, no devices were into
this level. 13 devices in level three which focuses on devices
that used default credentials with instructions to change them.
Level four, the riskiest is where the device is on default
username and password without instructions to change them,
this category had 7 devices in it [10].

Alladi et al. described common IoT attacks which con-
sumers faced with suggestions for protecting and securing
methods. These IoT devices include smart meters, garage door
openers, electric vehicle chargers and others. The type of
attack in EV chargers is device software failure where the
researchers showed how the authentication mechanism can be
bypassed in the debug mode. After the bypass procedure, a
root user can be created, and the attacker can manipulate the
operating system. To countermeasure this vulnerability, the
paper suggested changing the string function to a function
that accepts limited string length. Node tampering attack was
done on the smart meter. The attackers spoofed the Device
ID, found stored in the EEPROM, and changed it to another
meter’s ID. In the research, adding PUFs to the EEPROM was
suggested to protect the data and limit read or write access in
the EEPROM. A social engineering and brute forcing attack
was done on the garage door opener by the researchers. The
garage door opener didn’t force a difficult password policy
making it an easy target. Moreover, the researchers mentioned
that packets in transmission were easy to manipulate to open
and close doors. The usage of two-factor authentication and a
strong password-setting policy are some mitigation techniques
suggested by the paper [11].

Another research was done on IoT devices in home net-
works, Kumar et al. analysed 83 million different IoT devices
in homes, these include internet-connected televisions, security
cameras, and routers. The main objective of the research was
to look at the security postures of these devices, with a focus
on their open ports, default credentials, and whether they
are vulnerable to famous attacks. Based on the coordination
between the research team and Avast Antivirus software, more
than 50% of IoT devices in the Middle East still supported FTP
with weak credentials. The analysis output was that 88% of
IoT devices that still support FTP protocol use admin/admin

Fig. 1: Proposed Solution Phases

as username and password combination. The same credentials
combination was used in 36% of IoT devices that have Telnet
service open [12].

To conclude, the different studies presented outline how
vulnerable and weak IoT devices are, and that this new
technology, despite its widespread, still needs a tremendous
amount of improvement in the security aspects. The huge
variety of IoT devices and the different functionalities they
offer make securing them a serious challenge. Manufactur-
ers, organisations, regulation publishers, and users should
coordinate to increase the security of IoT devices. More
research efforts like exploring weaknesses, proposing enforce-
ment mechanisms such as the “login puzzle”, and developing
assessment frameworks need to be done, and this project will
hopefully contribute to creating more secure IoT networks.

III. PROPOSED SOLUTION

The proposed solution is created by developing a script
that goes through five phases, scanning, analysing, retrieving
then attacking and reporting. The first phase scans through
the given network for IoT devices and detects specific open
ports. Secondly for each IoT device, the solution will detect the
brand, make, or model of the IoT device which will be used
for the analysis to output default credentials that the model
or brand uses the most. The detection will be done using the
help of generative AI that will scan and analyse the available
web or login page on ports 80 or 443. A second non-AI scan
will be used for devices without web or login pages or have
ports 80 or 443 closed. Phase three of the script will use the
outputs from the analysis to search for the default credentials.
The fourth phase brute forces the scanned devices using the
credentials from the third phase. Moreover, the solution will
take note of successful and unsuccessful login attempts, this
information will be used in the last phase. These steps will
compress the number of login attempts and will avoid the
blockage occurred when rate limiting is used by IoT devices.
The method proposed will reduce the size of the dictionary
being used in the attack and thus decrease the detection and
mitigation probability. The script will show which combination
of username and password returned a successful login attempt
and report it to the user.

Fig. 1 gives an overview of the main flow of the solution.
The solution starts by scanning the network, analysing twice
using AI, brute forcing, and finally, reporting the results to the
user. The details of each phase is discussed in this paper.

The flow chart in Fig. 2 shows the steps of the mentioned
code phases. The chart illustrates the flow of functions of the
tool starting with getting the range of IP addresses for the

scan from the user. The rectangle denotes a function whereas
the diamond represents an if function with Boolean outputs.
The connection between endpoints and the line at the start of
the diagram means the looping functionality of the script. The
script loops and performs the functions on each device on the
network. We can notice that on the right side of the diagram,
functions that should be performed on devices with ports 80
and/or 443 are open, such as the web page analysis and the
brand search. While on the left side, the diagram illustrates
functions to be done only on devices with ports 80 and/or 443
is closed, where web page is not available.

A. Phase 1: Network Scanning

The first step in phase one is initializing the scanner and
getting the IP address or IP address range that will be used
for the penetration testing from the user. Then the script will
start to scan the network for devices that have specific ports
open. These ports are 20/21, 22, 23, 80/443.

• Ports 20 or 21: FTP runs on these ports. IoT devices use
these ports to transfer files between other IoT devices or
connected services.

• Port 22: IoT devices use this port for SSH service,
allowing remote connectivity and command execution.

• Port 23: Telnet occupies this port and has similar func-
tionality to SSH but in a less secure and unencrypted
method.

• Ports 80 or 443: HTTP works on 80 and the HTTPS
works on 443, allowing for web servers to be commu-
nicated with to load web pages. This is mostly used if
the IoT device has a web-based control panel that can be
accessed by requesting the device’s IP address.

Since some networks block network scanning, the script
uses a different randomised IP address in the scanning func-
tions, overcoming the IP blockage. The scan will result in a
two-dimensional list, the main list contains the IP addresses of
the devices, and inside of that list, the sub-list contains what
ports are open from the specified ports.

B. Phase 2: AI Analysis and Vendor Detection

Phase two of the solution detects the IoT device’s vendor
and uses it to search for default credentials. The vendor
detection is done using two methods. Based on the method
used, the usage of generative AI will increase or decrease.
The script reasoning behind choosing either method is based
on the availability of a web page on ports 80 or 443. The
first method, which is an AI-based method, is chosen when
ports 80 or 443 are open on the device and have a web page
running on one of these ports. The second method, which is
a less AI-based method, is chosen when ports 80 and 443 are
closed. The detailed working of each method is discussed in
the following. In the case where port 80 or 443 is open and
has a web page available, the code will input the HTML code
of that web page to the AI module with a prompt that asks it
to analyse the HTML code and find what brand or model is
that IoT device. In the second method where ports 80 and 443
are closed, the script uses a normal header or banner scan to

Fig. 2: Script Flow Chart

Fig. 3: Phase 3 Flow

get the vendor of the IoT device. This method outputs fewer
specific results but uses no AI resources. After the vendor
detection using either method, the script parses and arranges
the unstructured output of generative AI and creates variables
for the results to be used in the next phase which is searching
for default credentials.

C. Phase 3: Default Credentials Retrieval

In this phase, the script takes the parsed output from phase
2 as attributes and searches for the default credentials of the
detected vendor or brand. Using the attributes from phase
two, a prompt is constructed and passed to the generative AI
module to output the list of the most used username/password
combinations of that vendor. Again, the unstructured data is
parsed and prepared for the brute force function in the next
phase. Fig. 3 demonstrates the inputs to the generative AI
function and the output.

D. Phase 4: Brute Force Attack

The output from phase three will be used to brute force
the specified ports. This phase will also be divided into two
types. Attacking a login page on ports 80 or 443 is the first
one and attacking other ports is the second. It is divided
because the login structure or the command used for the
login attempt in the script is different between these ports.
To illustrate, a login page running on ports 80 or 443 is
different from one device to another, with different HTML
structures handling the login form. The username login form

HTML selector can be named “username”, “Username”, or
“user name” and the password login form HTML selector
can be named “password”, “Password”, or “PassWord”. After
the correct type is chosen and the brute force command is
formulated, the attack begins the brute force, trying to log
in with each username/password combination from the list
generated using AI.

In this phase, Hydra will be used as the brute forcing tool.
Hydra uses a word list for the username field, another word
list for the password field, a method, and the options the
method needs. In the case of HTTP, Hydra needs the HTTP
GET or POST method and the HTML selectors attributes
for the username and password field. This to ensure that the
parameters entered correctly for the login trial.

E. Phase 5: Reporting

At the end of the script, the tool will present the scan
details such as the devices scanned with their IP addresses,
what brand or vendor, what ports are open, the login form
selectors (if applicable), the top 3 or 4 username/password
combination, and most importantly, if the device is still on
default credentials or not. Succeeding in logging in using
the AI-fetched credentials denotes that the IoT device is
still configured with default credentials. The code reports an
attention message to the user with the credentials combination
that succeeded in logging in. On the contrary, the failure in
logging in using all combinations denotes that the device is
configured with credentials different from the generated list.
Safe devices will also be reported to the user.

F. HTML Selectors

Searching for the correct HTML selectors is crucial for
the attack success. Since different login forms use different
naming methods for the fields, making the tool general purpose
across a wide range of IoT devices is difficult. A mechanism
of automatically detecting HTML selectors should be imple-
mented. This can be done using some HTML parsing libraries
or tools.

TABLE II: OpenAI API Cost per Scanned Device

Function Number of
Tokens
Needed

GPT
Model

Amount
per 1K
Tokens

Total
Amount

HTML
Content
Analysis

1,500 GPT-4
Turbo

$0.03 $0.045

Credentials
Search

500 GPT-4
Turbo

$0.03 $0.015

Total $0.06

G. False Positives

Despite the wide range of IoT device configurations and
the accompanying challenge of different HTML login forms,
the script does the HTML content scraping to get the ap-
propriate form field selectors. This function, as mentioned,
increases the number of IoT devices the tool can be used
for without hardcoding the attack command for each device.
It is important to mention that the script may fail to get
all required login attributes and thus produce false positives.
These false positives are wrong login attempt results, for
example, the code may produce multiple successful attempts
with different combinations of username and password. This
will only happen in the case where the IoT device has a login
page.

To put the user into perspective, a detection mechanism is
implemented where the script detects that the command is
resulting in more than one successful attempt when assessing
that device. Therefore, the code notifies the user that the tool
is producing false positives for that specific device.

H. Cost Analysis

For the generative AI functionality, the script uses an API
from OpenAI. The reasoning model implemented in the tool
is GTP-4 Turbo, the newest (as of the date of writing this
paper) and the most accurate AI model OpenAI offers. The
way it works is by installing the OpenAI library from “pip”,
which is a Python package manager. Then we need to import
the library to our code and add the API key that is generated
from OpenAI’s account dashboard.

Using OpenAI API and its GPT-4 Turbo model is not free,
it is pricing mechanism is based on the number of tokens
utilised. A token is counted as a word or a very few words.
As of the date of this report, the cost of requesting 1,000
tokens of GPT-4 Turbo is $0.03 [13]. The tool uses the API at
most twice, firstly to analyse the HTML code of the web page
to detect brand and model, and secondly to search for default
credentials. Tab. II shows, for a single scanned device, a rough
estimate of the number of AI tokens used per function, and
how much they cost each.

This initial experiment was done throught he implementa-
tion of OpenAI GPT-4 API. We must mention that the tool
can be accompanied with any type of LLM and not exclusive
to OpenAI. Any other LLM can be used by implementing its
API or even a local LLM can be used for a more cost effictive
approach.

IV. CONCLUSION AND FUTURE WORKS

With the immense increase of IoT usage by small or-
ganizations and large corporations, securing them becomes
rather requisite. The analysis done on tools and related works
shows the severity of the addressed issue. Thus, resulting in
a literature gap for a simple and automated tool that simple
personnel can use to monitor security posture of IoT devices in
hand. The tool proposed simply marks vulnerable IoT devices
on the network without kicking the tester out of network or
blocking him. The proposed idea ensures classifying vulnera-
ble IoT device connected to the network, making it simple
for SMEs and cost-effective. The usage of Generative AI
reduces the combinations used for login trials and makes the
whole process more efficient by searching for vendor specific
credentials. The resulting small list of credentials will then
be used to attack the IoT device. Successful attacks means
that the device is still on default credentials and this must be
reported to the responsible staff immediately. The next step
would firstly be implementing the solution then testing it in a
real-world network of different organizations and corporates.
Based on the test result, the solution can be improved and
enhanced. Another area where this tool can be improved in is
the integration of machine learning to firstly parse the HTML
selectors more accurately and secondly to deeply understand
the firmware of the IoT device and its configurations to be
used in thoroughly assessing its security.

REFERENCES

[1] “IoT Technologies Explained: History, Examples, Risks
& Future.” Accessed: May 04, 2024. [Online]. Available:
https://www.visionofhumanity.org/what-is-the-internet-of-things/

[2] G. Kambourakis, C. Kolias, and A. Stavrou, “The Mirai botnet and
the IoT Zombie Armies,” Proceedings - IEEE Military Communications
Conference MILCOM, vol. 2017-October, pp. 267–272, Dec. 2017.

[3] S. Feuerriegel, J. Hartmann, C. Janiesch, and P. Zschech, “Generative
AI,” Business and Information Systems Engineering, vol. 66, no. 1, pp.
111–126, Feb. 2024.

[4] S. Romana, J. Grandhi, and P. R. L. Eswari, “Security Analysis of
SOHO Wi-Fi routers,” in Proceedings - 2020 International Conference
on Software Security and Assurance, ICSSA 2020, Institute of Electrical
and Electronics Engineers Inc., 2020, pp. 72–77.

[5] R. R and Y. Muin, “MikroTik Router Vulnerability Testing for Net-
work Vulnerability Evaluation using Penetration Testing Method,” Int J
Comput Appl, vol. 183, no. 47, pp. 33–37, Jan. 2022.

[6] S. Perone, L. Faramondi, and R. Setola, “Default Credentials Vulner-
ability: The Case Study of Exposed IP Cams,” in Proceedings of the
2023 IEEE International Conference on Cyber Security and Resilience,
CSR 2023, Institute of Electrical and Electronics Engineers Inc., 2023,
pp. 406–411.

[7] R. Andrews, D. A. Hahn, and A. G. Bardas, “Measuring the Prevalence
of the Password Authentication Vulnerability in SSH,” IEEE Interna-
tional Conference on Communications, vol. 2020-June, Jun. 2020.

[8] M. M. Raikar and M. S. M, “SSH brute force attack mitigation in
Internet of Things (IoT) network : An edge device security measure,”
2021.

[9] T. Shah and S. Venkatesan, “A method to secure IoT devices against
botnet attacks,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Springer Verlag, 2019, pp. 28–42.

[10] K. Quach, “DEFAULT USERNAME AND PASSWORD IN INTERNET
OF THINGS,” 2018.

[11] T. Alladi, V. Chamola, B. Sikdar, and K. K. R. Choo, “Consumer IoT:
Security Vulnerability Case Studies and Solutions,” IEEE Consumer
Electronics Magazine, vol. 9, no. 2, pp. 17–25, Mar. 2020.

[12] D. Kumar et al., “All Things Considered: An Analysis of IoT De-
vices on Home Networks”, Accessed: Apr. 21, 2024. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity19/presentation/
kumardeepak

[13] “Pricing — OpenAI.” Accessed: May 11, 2024. [Online]. Available:
https://openai.com/api/pricing/

