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What Does This Notation Mean Anyway?

BNF-Style Notation as it is Actually Used

D. A. Feller J. B. Wells S. Carlier F. Kamareddine

Following the introduction of BNF notation by Backus for the Algol 60 report and subsequent nota-

tional variants, a metalanguage involving formal “grammars” has developed for discussing structured

objects in Computer Science and Mathematical Logic. We refer to this offspring of BNF as Math-

BNF or MBNF, to the original BNF and its notational variants just as BNF, and to aspects common

to both as BNF-style. MBNF is sometimes called abstract syntax, but we avoid that name because

MBNF is in fact a concrete form and has a more abstract form. What all BNF-style notations share

is the use of production rules roughly of this form:

• ::= ◦1 | · · · | ◦n

Normally, such a rule says “every instance of ◦i for i ∈ {1, . . . , n} is also an instance of •”.

MBNF is distinct from BNF in the entities and operations it allows. Instead of strings, MBNF

builds arrangements of symbols that we call math-text. Sometimes “syntax” is defined by interleaving

MBNF production rules and other mathematical definitions that can contain chunks of math-text.

There is no clear definition of MBNF. Readers do not have a document which tells them how

MBNF is to be read and must learn MBNF through a process of cultural initiation. To the extent that

MBNF is defined, it is largely through examples scattered throughout the literature.

This paper gives MBNF examples illustrating some of the differences between MBNF and BNF.

We propose a definition of syntactic math text (SMT) which handles many (but far from all) uses of

math-text and MBNF in the wild. We aim to balance the goal of being accessible and not requiring

too much prerequisite knowledge with the conflicting goal of providing a rich mathematical structure

that already supports many uses and has possibilities to be extended to support more challenging

cases.

1 Background and Motivation

MBNF is important to interpreting papers in theoretical computer science. Out of the 30 papers in the

ESOP 2012 proceedings [23], 19 used MBNF, but not one used BNF.1 We highlight some of the ways in

which the notation we call MBNF differs from BNF to demonstrate the need for a definition.

Where BNF uses Strings, MBNF Uses Math-Text Parentheses for disambiguation are not needed in

MBNF grammars and when an MBNF grammar specifies such parentheses they can often be omitted

without any need to explain. When possible, MBNF takes advantage of the tree-like structure implicit in

the layout of symbols on the page when features like superscripting and overbarring are used.

Instead of non-terminal symbols, MBNF uses metavariables2 , which appear in math-text and obey

the conventions of mathematical variables. Metavariables are not distinguished from other symbols by

annotating them as BNF does, but by font, spacing, or merely tradition.

1We chose ESOP 2012 because its book was the most recent conference proceedings that we had as a paper book. Because

the first book we picked contained an abundance of challenging instances of MBNF, our wider searching has mainly been to

find even more challenging examples. We will be happy to receive pointers to additional interesting cases.
2We use metavariable to mean a variable at the meta-level which denotes something at an object-level.

http://creativecommons.org
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In addition to arranging symbols from left to right on the page, math-text allows subscripting, su-

perscripting, and placing text above or below other text. It also allows for marking whole segments of

text, for example with an overbar (a vinculum). Readers can find more detailed information on how

math-text can be laid out in The TeXbook [14], or the Presentation MathML [11] and OpenDocument

[12] standards. Here is a nonsense piece of Math-text to illustrate how it may be laid out:

c↓ a′ = p̌〈v′′x ⊙ a2+1〉 − f n
x + y · f j +

∞
∑

i=0

si∈1...n −
a,b,c−−−→ bâ

MBNF Is Aimed at Human Readers MBNF is meant to be interpreted by humans, not comput-

ers/parser generators. Authors may define a MBNF grammar in an article for humans and a separate

grammar for use with a parser generator to build an implementation. MBNF defines entities not in-

tended or expected to be serialized or parsed. MBNF grammars are typically missing features needed to

disambiguate complex terms. Papers often put mathematical metalanguage inside MBNF notation.

MBNF Allows Powerful Operators Like Context Hole Filling (a.k.a. Tree Splicing) Chang and

Felleisen [4, p 134] present an MBNF grammar defining the λ-term contexts with one hole where the

spine3 is a balanced segment4 ending in a hole. We write e@e instead of e e and add parentheses.

Concrete syntax and BNF-style notation are green. Metavariables are blue. Additional operators are red.

e ::= x | (λx.e) | (e@e)

A ::= [ ] | (A[(λx.A)]@e)

One can think of the context hole filling operation in this grammar ([ ] in (A[(λx.A)]@e)) as performing

tree splicing operations within the syntax. Here are trees illustrating steps in building syntax trees for A:

@

[ ]

[ ] λx1

[ ]

x2

@

λx1

[ ]

x2

These trees show the result of the second rule where each A is [ ] and e is a variable. The tree on the

left is the tree corresponding to A[λx.A]@e before the hole filling operation is performed, where the first

A is assigned [ ]. The tree on the right represents an unparsing of the typical syntax tree for ((λx1.[ ])@x2).

x1 and x2 are disambiguated instances of x. A metavariable assigned a value won’t appear in the final

tree. If it’s not a terminal node, [ ] tells us to fill in the leaf in the frame on the left with the tree in the

frame on the right. Once performed, [ ] disappears. The set of strings derived from A using roughly the

rules of BNF plus hole filling is not context-free and so MBNF certainly isn’t.

MBNF Mixes Math StuffWith BNF-Style Notation Germane and Might [7, pg 20] mix BNF-style

notation freely with mathematical notation in such a way that the resulting grammar relies upon both sets

3The root node is on the spine. If A is applied to B by an application on the spine, the root node of A is on the spine and the

root node of B is not. If a node on the spine is an abstraction each of its children is on the spine.
4A balanced segment is one where each application has a matching abstraction and where each application/abstraction pair

contains a balanced segment.
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produced from the result of MBNF calculations and MBNF production rules which use metavariables

defined using mathematical notation:

u ∈ UVar = a set of identifiers ccall ∈ CCall ::= (q e∗)γ
k ∈ CVar = a set of identifiers e, f ∈ UExp = UVar + ULam

lam ∈ Lam = ULam + CLam q ∈ CExp = CVar + CLam

ulam ∈ ULam ::= (λe(u∗k)call) ℓ ∈ ULab = a set of labels

clam ∈ CLam ::= (λγ(u
∗)call) γ ∈ CLab = a set of labels

call ∈ Call = UCall + CCall

ucall ∈ UCall ::= ( f e∗q)ℓ

The results of math computations are interleaved with MBNF production rules, not just applied after

the results of the production rules have been obtained. This grammar uses •1 ∈ •2 to mean “•2 is the

language of •1” (this is the case in both the MBNF production rules (::=) and the math itself (=)).

MBNF Has at Least the Power of Indexed Grammars Inoe and Taha [10, pg 361] use this MBNF:

Eℓ,m ∈ ECtx
ℓ,m
n ::= · · · | 〈Eℓ+1,m〉 | · · ·

This suggests that MBNF deals with the family of indexed grammars [9, p 389-390], which is yet another

reason it’s not context-free. The ℓ + 1 is a calculation that is not intended to be part of the syntax. The

production rule above defines an infinite set of metavariables ranging over different sets.

MBNF Allows Arbitrary Side Conditions on Production Rules An example of a production rule

with a side condition can be found in Chang and Felleisen [4, p 134]:

E = [ ] | Ee | A[E] | Â[A[λx.Ǎ[E[x]]]E] where Â[Ǎ] ∈ A

It is possible to make side conditions that prevent MBNF rules from having a solution. A definition for

MBNF can help in find conditions on side conditions that ensure MBNF rules actually define something.

MBNF “Syntax” Can Contain Very Large Infinite Sets Toronto and McCarthy [28, p 297] write:

e ::= · · · | 〈tset, {e
∗κ}〉

We are told {e∗κ} denotes “sets comprised of no more than κ terms from the language of e”. It seems as

though κ is also intended to be an inaccessible cardinal. This section of an MBNF for e is taken from a

larger MBNF that contains a term which ranges over all the encodings of all the hereditarily accessible

sets. BNF, by contrast, only deals with strings of finite length.

MBNF Allows Infinitary Operators Fdo, Dı́az and Núñez [15, p 539] write an MBNF with the fol-

lowing operator, which the authors state is infinitary (i.e. we should regard I to be infinite):

P ::= · · · |
�

i∈I

Pi | · · ·

The authors tell us the MBNF this is taken from is defined by regarding (M)BNF expressions as fixed

point equations and a least fixed point can be found by bounding the size of the possible set of indices by

some infinite cardinal. We may think of infinitary operators as defining trees of infinite breadth (i.e. trees

whose internal nodes may have infinitely many direct children), where BNF deals with finite strings.
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MBNF Allows Co-Inductive Definitions Eberhart, Hirschowitz and Seiller [6, p 94] intend the fol-

lowing MBNF to define infinite terms co-inductively:

P,Q ::= Σi∈nGi | (P|Q)

G ::= a〈b〉.P | a(b).P | νa.P | τ.P | ♥.P

We may think of co-inductive definitions as allowing us to define trees of infinite depth (i.e. trees in

which paths may pass through infinitely many nodes), where BNF only deals with finite strings.

2 A Method to Allow Reading Some Uses of Mathematical “Syntax”

This section defines syntactic math text (SMT) which will allow reading some uses of math text as being

“syntax” and standing for essentially themselves, e.g., 1 + 3 can continue to stand for 4 while λx.x can

in some sense stand for itself. SMT plus a definition of the ::= notation allows us to interpret the more

common uses of MBNF as they are written. It also provides some support for more complicated uses

with a little extra machinery. We do not aim to cover every use of MBNF in the literature, but we hope

to provide a good foundation which can be built upon.

As well as dealing with some of MBNF, SMT provides a more general notion of objects appearing

within syntax that behave like equivalences over chunks of math-text representing syntax. This enables

us to interpret working modulo equivalences on math-text representing syntax.

According to Kamareddine et al. [13], converting mathematical text to a form where it can be checked

by a proof assistant is involves both human input and intermediary translations. Our proposal focuses on

the translation, by the reader, of math-text used to define syntax, as it appears in a document, to a more

formal structure, which is independent of any theorem prover format and could be easily translated to

multiple provers. While we think that providing a semi-formal notion of this notation may be of interest

to anyone creating and proof checking documents, we stress that this is not the main focus of our work.

The gap we hope to fill is the lack of a good reference document for those yet to develop an intuition

suited to working formally with SMT. Our proposal is intended to be descriptive rather than prescriptive.

We aim to handle both historical documents and new works. For published uses of MBNF that our

proposal fails to handle, this is a problem to be solved in future work. We do not aim at displacing the

input languages of proof assistants or syntactic variants of BNF which already have definitions. The

reader is invited to put themselves in the position of a grad student/mathematician interested in reading

the theoretical computer science literature. Such a person can follow a complex definition, but may not

have in depth knowledge of the background of a given text. If they were to search for resources relevant

to understanding MBNF, they may have to extrapolate from a definition of BNF as context-free sets of

strings, which could lead them to struggle with examples like those in Section 1. Alternatively, they may

have to familiarise themselves with the language of some proof assistant/compiler generator and compare

the MBNF grammars appearing in a number of documents with their formal implementations, or look

for clarifications spread throughout the literature, which could take a long time and be quite challenging.

Even authors who do most of their work within a theorem prover quite often use SMT when writng

about their results, so a semi-formal definition for SMT will still remain relevant as theorem provers

become more popular. Furthermore, for as long as theorem provers remain somewhat cumbersome

to use authors may appreciate a model which allows them to be confident their syntax definitions are

realisable without fully implementing them in a theorem prover.

Our proposal relies as much as possible on the mathematical meta-level.5 For example, we use

5 We will give some loose heuristics for determining where text is meant to be on the syntax level or the meta-level in a
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ellipses and related methods for abbreviating sequences from the mathematical meta-level. Incomplete

definitions (relying on some choice of metavariable) cause the resulting grammar to be defined as the

output of a function depending on this choice. Any otherwise pointless statement of the form x ∈ S

declares x and any decorated x (e.g., x1, x2, . . ., x′, x′′, etc.) as a variable ranging over S . Metavariables

appearing without a quantifier are bound by an implicit for all quantifier in the outermost position of

whatever “context” they appear in.6

2.1 Objects, Arrangements, and Symbols

We now define the main notion of syntactic objects and the auxiliary notion of arrangements. In essence,

syntactic objects are arrangements of symbols, numbers, and pointers to subobjects, where the arrange-

ment can include left-to-right sequencing, superscripting, subscripting, overlining etc. To support α-

conversion and operators that are associative, commutative, idempotent, etc., the objects are defined so

that in effect they work modulo an equivalence relation on arrangements that is defined separately. We

use pointers to subobjects inside objects rather than the subobjects themselves, because the sets within

the model for objects would be too large otherwise and because we wanted to allow for objects to be

nested within themselves, provided some syntax is added as part of this nesting. By using pointers we

are able to include all equivalences over regular trees within our set of objects.

Let s range over the set Symbol containing syntactic symbols to be used in arrangements. We re-

quire that Symbol is disjoint from all other sets defined here. We also require that some symbols are

not in Symbol, namely the square brackets (“[” and “]”) and the special square symbol � (which repre-

sents a hole in which an object can be placed). The symbols can include letters, parentheses and other

parenthesis-like symbols (e.g., ^ and _ and [ and ]), punctuation, and other symbols. Letters (Roman

or Greek) used as syntactic symbols will be typeset using an upright sans-serif font to distinguish them

from metavariables which are written in a slanted serif font (generally italics). For example, a, C, λ, and

Γ could be syntactic symbols while a, C, λ, and Γ would be metavariables. We avoid using any particular

letter both ways, except for symbols used in names, where for example xi could be a syntactic name at

the same time as x could be a metavariable ranging over names (see section 2.5).

The set Object of syntactic objects and the set Arrangement of syntactic arrangements are defined si-

multaneously. Let O range over Object and let A range over Arrangement. We represent each object by a

member of the set Pointer. Let PO be the pointer that indicates O. Let ≈ ⊂ Arrangement × Arrangement

be an equivalence relation that is reflexive on Arrangement. We require that if A1 ≈ A2 and A1 , A2,

then neither A1 nor A2 may have used the special object � in their construction, we do this to avoid any

ambiguity in context hole filling which is defined in Section 2.3.

The sets Object and Arrangement are the smallest sets satisfying the following conditions.

1. The empty arrangement ǫ is in Arrangement.

2. The core items of arrangements are symbols, pointers to objects, numbers, and overlined arrange-

ments. For any symbol s, pointer PO, number n ∈ N, and non-empty arrangement A , ǫ, all of

the following are in Arrangement: s, PO, n, and A. Furthermore, these are all core arrangements,

which are ranged over by the metavariable Â.

longer version of this document. For this version, we require only that readers can use our definition provided they are able to

guess at which pieces of syntax are on the meta-level.
6 The notion of “context” employed here is deliberately vague. Not every context will span the whole paper and, similarly,

contexts may be larger than a math-mode environment within the paper. We will provide heuristics for determining what the

context for a metavariable is in a longer version of this document.
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3. Left-to-right sequencing allows appending additional core arrangements to a non-empty arrange-

ment. For any arrangement A , ǫ and core arrangement Â, it holds that AÂ is in Arrangement.

4. Superscripting, subscripting etc. are supported. For non-empty arrangements A, A1 and A2, all of

the following are in Arrangement: AA1 , AA2
, A

A1

A2
, A1 A...

5. If S ⊆ Arrangement does not contain any arrangements consisting of a bare pointer to an object,

S is non-empty, and |S| ≤ ℵ0, then S ∈ Object.

If S ⊂ Arrangement is not an equivalence class of ≈ or any members of S are ill-formed, then S

is ill-formed. An arrangement is ill-formed iff any of its subcomponents is ill-formed. (Symbols

and natural numbers are well formed.)

(Thus, it is allowed to build an object from ill-formed arrangements, and the resulting object is

ill-formed.)

6. There is a special symbol in Object indicating a hole � in which an object is to be placed.

There are various reasons why we have built equivalence classes into arrangements rather than mak-

ing them identical to math-text. We want to eventually support math stuff in syntax, with math stuff

containing objects not arrangements. We want to allow object-to-object operations in production rules.

When we define equivalences inductively over arrangements we want some of that structure to be repre-

sented by our model.

We write [A]≈ for the object that contains all the arrangements equivalent to A by the equivalence

relation ≈. Only objects of the form [A]≈ are well formed.

2.2 Syntax Shorthand: Arrangement Coercions

From example 2.13, the reader will observe that it’s cumbersome to write PO in so many places when all

we’re interested in is the identity for objects. We introduce the following convention:

Convention 2.1 (Coercing Objects to Pointers). We allow O to be written instead of PO in an arrange-

ment.

Example 2.2. The expression [λO1.O2]≈, stands for [λPO1
.PO2

]≈.

We define meta-level parentheses to be those parentheses which surround a single object and which

may optionally be omitted from some arrangements with a similar form.7

It is still cumbersome to write [ · ]≈ in so many places. One of the ways we deal with this is to arrange

for this to happen automatically at places where a piece of meta-level syntax requires an arrangement to

be regarded as an object.

Convention 2.3 (Coercing Arrangements to Objects). We require that when an arrangement A is writ-

ten, but the surrounding context only makes sense if the value of the expression is an object, then the

arrangement A is implicitly coerced to the object [A]≈, as though the latter had been written instead. As

a special case of this, we require that an arrangement containing meta-level parentheses is to be read as

though the parentheses were instead a use of [ · ]≈.

7We largely leave it up to the reader to determine which parentheses are meta-level. If a primitive constructor (Section 2.4)

appears inside some arrangements with parentheses surrounding it and other arrangements without them, it usually indicates

these parentheses are meta-level. Similarly, parentheses which only surround a single metavariable corresponding to an object

are frequently meta-level. Parentheses surrounding syntax which is to be thought of as a sequence are normally not meta-

level. To help with this ambiguity, from this point forward all parentheses appearing in arrangements inside this document are

meta-level.
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Convention 2.4 (Coercing Arrangements to Pointers). We require that when an arrangement A is writ-

ten, but the surrounding context only makes sense if the value of the expression is a pointer, then the

arrangement A is implicitly coerced to the pointer to the object given by convention 2.3.

Due to the combination of convention 2.3, convention 2.4 and the tight restrictions on where round

parentheses can occur in proper arrangements, most uses of round parentheses will not be symbols that

are part of syntactic arrangements but instead will be part of the meta-level mathematical reasoning.

Example 2.5. The expression (O1 O2) O3, which contains meta-level parentheses, stands for [O1 O2]≈ O3.

If we write O = (O1 O2) O3, then this stands for writing O = [[O1 O2]≈ O3]≈, because the equation’s left-

hand side must be an object due to the declaration that the metavariable O ranges over Object.

We have left ≈ mostly unspecified so far. The sets Object and Arrangement do not depend on ≈,

but their subsets of well formed objects and arrangements do depend on ≈. The definition of ≈ may be

adjusted by the authors of a paper at any point, and the set of well formed objects in scope will therefore

change at the times these adjustments are made. The effect of convention 2.3 will similarly change; the

same expression can denote different objects at different places if there is an intervening change to ≈.

2.3 Contexts and Hole Filling

A context is an object O ∈ Object with at least one use of the special hole object �. The number of hole

symbols in an object or arrangement is its arity. We now define context-hole filling for arbitrary objects

and arrangements (although it will in general only do something useful for well formed objects and ar-

rangements with the correct arity). Let the operations O[O1, . . . ,On], PO[O1, . . . ,On] and A[O1, . . . ,On]

which fill the holes reachable from O, PO and A with the objects in the sequence ~O = [O1, . . . ,On] be

defined as follows:

1. PO
~O = PO′ and O ~O = O′ iff fill(O, ~O) = (O′, []). Similarly, A ~O = A′ iff fill(A, ~O) = (A′, []). The

results of fill(O, ~O) and fill(A, ~O) are undefined except where explicitly defined below. (The result

is undefined unless all of the replacements are used, so the number of replacements must match

the arity.)

2. fill(�, [O] · ~O) = (O, ~O). (Each hole uses up one of the replacements.)

3. fill({A}, ~O) = ([A′]≈, ~O
′) if fill(A, ~O) = (A′, ~O′). (Context-hole filling in a well formed context can

only descend inside an arrangement that is alone in its equivalence class, otherwise ambiguities

may arise over whether free variables in an inserted object become bound. This is part of the

motivation for our requirement that ≈ must not relate distinct arrangements containing holes.)

4. fill(O, ~O) = (O, ~O) if O is not a context. (This is the only way context-hole filling can skip over

embedded objects which are non-singleton equivalence classes of arrangements.)

5. fill(s, ~O) = (s, ~O) and fill(n, ~O) = (n, ~O).

6. Context-hole filling essentially traverses the arrangement tree in a left-to-right order filling in holes

in the order it encounters them. Thus, for any arrangements A, A1, and A2, core arrangement Â,

and object sequences ~O1, ~O2, ~O3, and ~O4, if it holds that

fill(A, ~O1) = (A′, ~O2) fill(A1, ~O2) = (A′
1
, ~O3)

fill(A2, ~O3) = (A′
2
, ~O4) fill(Â, ~O2) = (Â′, ~O3)
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then all of these must follow:

fill(AÂ, ~O1) = (A′Â′, ~O3) fill(A
A1

A2
, ~O1) = (A′

A′
1

A′
2

, ~O4)

fill(AA1 , ~O1) = (A′A
′
1 , ~O3) fill(AA1

, ~O1) = (A′A′
1
, ~O3)

fill(A, ~O1) = (A′, ~O2) fill(A, ~O1) = (A′, ~O2)

7. fill(PO, ~O1 · ~O2) = fill(PO3
, ~O2) if fill(O, ~O1 · ~O2) = fill(O3, ~O2). (Context-hole filling descends ob-

ject pointers until it encounters a hole)

Example 2.6. Here are some examples of context-hole filling:

(��)[O,O] = O O �[O] = O

(�→ O1)[O2→ O2] = (O2→ O2)→O1 (�≔ �,�)[O1,O2,O3] = (O1 ≔ O2,O3)

We now will define (S1,S2)-Context to be the contexts which act as functions from S1 to S2, i.e.,

the set of every context Oc of arity 1 such that for all O ∈ S1 it holds that Oc[O] ∈ S2. S-Context can

be thought of as the set of all the things that can be wrapped around an arbitrary member of S to give

another member of S.

Given a relation R such that (domain(R)∪range(R)) ⊆ S ⊆ Object, let [R]S denote the S-compatible

closure of R, defined as follows: if Oc ∈ S-Context and O1 −
R−→ O2,8 then Oc[O1] −[R]S−−−→ Oc[O2]. Let [R]

denote [R]S for some set S which the reader can infer from the context of discussion.

Let c range over primitive constructors, non-hole objects whose only immediate subobjects are �.

Example 2.7. Here are some examples of primitive constructors [4, p 134], [27, p386], [10, pg 360],

[20]:

(��) � ↓ � · � !� 〈�〉 � + � � = � ∈ �

Every well formed non-hole object O can be decomposed into a primitive constructor and the subob-

jects to be placed in the primitive constructor’s holes. A primitive constructor decomposition of O is a

pair (c, ~O) such that O = c ~O. An object will have one primitive constructor decomposition for each of its

arrangements. Furthermore, the subobjects in a decomposition can be recursively decomposed similarly.

A recursive decomposition of an object into primitive constructors is very similar to the concept of an

abstract syntax tree of a string in a language defined by a grammar. If any of the equivalence classes in

an object are non-singletons, then the object will not have a unique recursive decomposition.

Example 2.8. Some examples of recursive decomposition of an object into primitive constructors can

already be seen in example 2.6. Here are some additional examples:

〈(!O)〉 = 〈�〉 [!�[O]] (O1 + O2) + O3 = (� + �) [(�+�)[O1,O2],O3]

2.4 Syntax Shorthand: Primitive Constuctor Decomposition

Convention 2.3 allows avoiding the need to write [ · ]≈ by implicitly invoking [ · ]≈ at obvious arrange-

ment boundaries and also at most uses of ( · ) in arrangements. For example, convention 2.3 allows us to

8 O1 −
R−→ O2 is an alternative notation for (O1,O2) ∈ R. See appendix A.4 for details.
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know that the expression (O1 @ O2) @ O3 stands for the object whose primitive constructor decompo-

sition is given by O′ = c@[c@[O1,O2],O3] where c@ = �@ �.

But the shorthand notation provided by convention 2.3 is not enough. Additionally, we want to allow

inferring uses of [ · ]≈ in other places in the middle of what appear to be arrangements. As a concrete

example, we want to allow inferring that the expression O1 @ O2 @ O3 stands for the same object as the

expression (O1 @ O2) @ O3, namely the object O′ mentioned in the previous paragraph. We want that

the expression O1 @ O2 @ O3 must not stand for the object whose primitive constructor decomposition

is c′′[O1,O2,O3] where c′′ = (�@ �@ �).

To provide the additional shorthand notation that is needed, we establish mechanisms for (1) declar-

ing primitive constructors and (2) parsing arrangements. We build the parsing mechanism by adapting the

notions of operator precedence and declared associativity from parsing of languages to our setting; this

will allow splitting what appears to be a single primitive constructor into multiple primitive constructors.

As an auxiliary device, we define splicing of arrangements. Remember that every arrangement is, in

effect, a sequence of core arrangements (symbols, objects, numbers, or overlined arrangements), possibly

superscripted or subscripted. An arrangement A′ can be spliced into another arrangement A′′ by inserting

the main core arrangement sequence of A′ into one of the core arrangement sequences of A′′ in place of

an occurrence of �.

Convention 2.9 (Declaring and Parsing Primitive Constructors).

1. Unless prevented by part 2 of this convention, at the first use of a proper arrangement A, if there

is a primitive constructor c = {A′} and objects O1, . . . , On such that {A} = c[O1, . . . ,On], then this

use of A declares the primitive constructor c and the arrangement A′. Note that A′ differs from A

exactly in having � in place of every non-� object appearing in A.

2. At each place where we coerce an arrangement A into an object O using convention 2.3, the ar-

rangement A is inspected to see if it can be built by splicing together already-declared arrange-

ments. If A can be built entirely by splicing together already-declared arrangements, and then

filling the holes in the splicing result with objects, and there is no explicit indication forbidding

the use of this convention, then A is to be interpreted as though it had been written with uses of

[ · ]≈ around each splice point. If there is more than one way A can be built by splicing already-

declared arrangements, then it must be specified somewhere which one to choose. (This choice

will typically involve notions of operator precedence and declarations of associativity.)

Example 2.10. Suppose we have written the expressions 〈O1〉 and !O2. This declares the primitive con-

structors 〈O1〉 and !O2. If we then write O = 〈!O′〉, then by convention 2.9 this produces the same result

as writing O = 〈(!O′)〉. This happens because the arrangement 〈!O′〉 can be built by splicing !� into 〈O1〉

and then filling the hole with O′.

(If we wanted to avoid the interpretation of convention 2.9, we could do so by avoiding the implicit

coercion of convention 2.3 and writing instead O = [〈!O′〉]≈, which would use the primitive constructor

〈!�〉 instead of the two smaller primitive constructors 〈�〉 and !�.)

Suppose we write the expression O1 @ O2. This declares the primitive constructor c@ = �@ �. If

we then state that c@ is left-associative, then writing O = O1 @ O2 @ O3 produces the same result as

writing O = (O1 @ O2) @ O3. If we did not give the associativity of c@, then writing O = O1 @ O2 @ O3

would be an error, because there are multiple distinct ways the arrangement �@ �@ � can be built by

splicing the arrangement �@ � into itself.
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2.5 Names, Binding, α-Conversion, and Substitution

The relation ≈ provides a mechanism for working with syntax considered modulo equivalences on ar-

rangements. One of the most important equivalences is the notion of α-conversion which renames bound

names.9

Some of the members of Object can be declared to be names. The names may be furthermore sub-

divided into groups. Formally, the concepts of names and groups of names are given by an equivalence

relation ∼ ⊂ Object × Object which relates names in the same group. An object O is a name iff O ∼ O.

Declaring a subset S ⊂ O to be a name group is the same as declaring that S is a ∼-equivalence class.

The definition of ∼ will be extended incrementally with declarations of groups. Any objects that have

not been declared to be related by ∼ are not related by ∼. To keep things simple we require that no name

contains another name (of the same group or of a different group) as a subobject.

Specific primitive constructors can be declared to bind a name placed in one of the constructor’s

holes across some of the constructor’s holes. We define the free names of an object O, written FN(O):

1. If O is a name, then FN(O) = {O}.

2. Otherwise, if FN(O) is defined, it is as follows.

First, we must define the free names of primitive constructor decompositions (p.c.d.’s) of O. Sup-

pose O = c[O1, . . . ,On] gives one such p.c.d. Let Si be the names bound by c in Oi for 1 ≤ i ≤ n.

Then FN(c, [O1, . . . ,On]) =
⋃

i∈{1,...,n} FN(Oi) \ Si.

If there exists a set S such that S = FN(c, ~O) for every p.c.d. (c, ~O) of O, then FN(O) = S.

The free names of an arrangement A are defined by FN(A) = FN({A}). A name that is not free is bound.

Example 2.11. Consider cλ = λ�.� of arity 2. Suppose we declare that cλ binds any name placed in

its first hole in both of its holes. Suppose we declare that { xi i ∈ N } is a name group. (We will in fact

make both of these declarations later, so this example is not just hypothetical.) Suppose that we have not

declared any bindings for the constructor c@ = �@ �. Then FN((λx1.(x1 @ x2)) @ x3) = {x2, x3}.

Consider clet = (let � = � in �) of arity 3. Suppose we declare that clet binds any name placed in its

1st hole in its 1st and 3rd hole. Then FN(let x1 = x3 in (x1 @ x2)) = {x2, x3}.

We now define the auxiliary notion of name swapping. Given two names Ox and Oy such that

Ox ∼ Oy, let swap(Ox,Oy,O) be the object O′ that results from replacing every occurrence of Ox in O

by Oy, and vice versa. Let swap(Ox,Oy, A) be defined similarly.

We now define α-conversion. Let ≡α be the smallest equivalence relation satisfying the following

condition. For all Ox, Oy, O, and A, if Ox ∼ Oy and {Ox,Oy} ∩ FN(O) = {Ox,Oy} ∩ FN(A) = ∅, then

O ≡α swap(Ox,Oy,O) and A ≡α swap(Ox,Oy, A).

Definition 2.12 (α-Conversion as a Syntactic Equivalence). If a paper says that it is “working modulo

α” or “identifying α-equivalent terms” that means ≡α restricted to arrangements is a subset of ≈, i.e., if

A1 ≡α A2 then A1 ≈ A2.

Definition 2.12 implies that ≈ will change whenever adjustments are made to the declared bindings

of primitive constructors or to the definition of ∼.

9 We do not give an especially sophisticated notion of binding here. We are only interested in providing a concept of binding

that can be readily grasped and is sufficiently general for wide use in a variety of grammars. The notion of equivalence we

provide is intended to be used in defining other syntactic equivalences in addition to α-equivalence. For example, suppose we

wanted to declare that the primitive constructor (� | �) is equivalent up to reordering when the holes are filled with u ∈ U, we

can write (u1 | u2) ≈ (u2 | u1). We support the declaration of other equivalences in this fashion.
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We now define the substitution operation, written as O[Ox ≔ O′]. This expression will be defined to

stand for the result of replacing all free occurrences of Ox in O by O′. This operation must be defined

carefully. The result of O[Ox ≔ O′] must not allow names that are free in O′ to be captured by bindings

in O. Also, the operation must respect ≈ so that if both O and O′ are well formed, then O[Ox ≔ O′] is

also well formed. Given a name Ox, define O[Ox ≔ O′] formally as follows.

1. If O = Ox, then O[Ox ≔ O′] = O′.

2. Otherwise, O[Ox ≔ O′] is defined as follows.

First, we must define substitution for primitive constructor decompositions (p.c.d.’s). Given

O = c[O1, . . . ,On], let S be the subset of {O1, . . . ,On} of names bound by this occurrence

of c. If S ∩ FN(O′) , ∅, then let (c, [O1, . . . ,On])[Ox ≔ O′] be undefined.10 Otherwise, let

(c, [O1, . . . ,On])[Ox ≔ O′] = c[O1[Ox ≔ O′], . . . ,On[Ox ≔ O′]].

If there exists an O′′ such that O′′ = (c, ~O)[Ox ≔ O′] for every p.c.d. (c, ~O) of O such that

(c, ~O)[Ox ≔ O′] is defined, then O[Ox ≔ O′] = O′′. Otherwise O[Ox ≔ O′] is undefined.11

The reader will note that without an infinite supply of names O[Ox ≔ O′] may not be defined. This is

permissible, though equally, given a grammar with no more than countably many objects, we may extend

∼ for any name group appearing in the grammar by adding countably many objects distinct from those in

the grammar. Also, since if a variable is declared and no further constraints are placed on it, we assume

it to range over some countable set of names disjoint from any other object in the grammar, substitution

is defined more often than not.

Example 2.13. Below, on the left are some example syntactic objects [4, p 134], [20], [27, p 386]. These

objects may not be well formed, because the singleton sets may not be equivalence classes of ≈. The

objects to the right of them are adjusted to be well formed (assuming the subobjects O1, to O4 are well

formed):

{λPO1
.PO2
} [λPO1

.PO2
]≈

{ΠPO1
: PO2

.PO3
} [ΠPO1

: PO2
.PO3

]≈
{PO1 ↓ {PO2

PO3
} · PO4

} [PO1 ↓ [PO2
PO3

]≈ · PO4
]≈

2.6 Production Rules for Defining Syntactic Sets

We have already defined syntactic objects, but the set Object is too big. Carefully defined subsets of

Object may be defined via syntax production rules, which we write in the form

ν1, . . . , νn ∈ SF A1 | · · · | Am

where ν1, . . . , νn are metavariables, S is the name of the subset of Object being defined, and A1, . . . ,

Am are alternatives. Each alternative is either the special notation “· · · ” or an expression e,12 together

with an optional side condition c (written “e if c”, where c is a formula with expressions in the place of

variables), which evaluates to a member of Object when values are supplied for metavariables occurring

10For simplicity, we do not check whether the substitution needs only to proceed into holes of c which are not subject to its

bindings. This will behave well enough for our uses provided each group of names is big enough that fresh names can be found.
11So the substitution must be defined for at least one of the primitive constructor decompositions to get a defined result.
12 By expression we mean either an object, an object level variable or something like a primitive constructor which is allowed

to have metavaribles in the place of holes. An expression can be thought of as either corresponding to a syntactic object, or else

ranging over a set of objects corresponding to an object given by assigning values to the metavariables in the expression.
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in e, provided both c holds of that choice of metavariables and the values supplied for metavariables

occurring in e match any constraints placed on those metavariables by their production rules. One can

omit the “∈ S”, allowing the reader to fill in Swhose name is distinct from the names of all other declared

sets. One can omit the side condition in which case we can read it as if true. One can provide a global

side condition if c′ which we read as appending ∧c′ to all A. On either side of a production rule authors

may choose to include an optional comment.13

Such a syntax production rule has the following effects:

1. It declares S to be a set of syntactic objects, in particular the smallest one that satisfies all other

constraints placed on it not just by this rule but also by the rest of the document.

2. It declares the metavariables ν1, . . . , νn to range over the set S.

3. A global side condition if c′ appends ∧c′ to eachA1, . . .An.

4. If each A1, . . .An contains only undecorated instances of ν, then for any A containing multiple

instances of ν and no side conditions containing ν that apply to A, we can rewrite it with each ν

given a different decoration. I.e., m ∈ M ::= x | m m becomes m,m1,m2 ∈ M ::= x | m1 m2.

5. For each alternativeA in the rule which is not “· · · ”, a constraint on the membership of S is added.

The constraint is that for each legal choice14 of values for the metavariables occurring in A, if O

is the result of evaluating the expression e inA using those metavariable assignments, then O ∈ S.

Metavariables occurring in an alternative A that are not yet declared to range over any set are

presumed to range over a countable set of object-level variables disjoint from all the other sets of

objects in the paper. This assumption is dropped if a value for a metavariable gets declared later in

the paper and values forA are recalculated accordingly.

6. If the first alternative is not the special alternative “· · · ”, then any constraints on the membership

of S established by earlier rules are forgotten.

7. The rule triggers a recalculation of all of the sets declared by all syntax production rules. Such a

recalculation is also triggered whenever the definition of ≈ is altered. Or when a definition of what

metavariables range over is altered.

This recalculation evaluates all of the constraint expressions for all syntactic sets using the current

bindings for all metavariables, set names, the equivalence relation ≈, etc., and rebinds the set

names to the recalculated values in the subsequent text.15

Multiple rules can be given for the same set S. If a later rule for S begins with the special alternative

“· · · ”, then its alternatives are combined with the alternatives already in force for S. Usually the alterna-

tives of the later rule replace the previous alternatives if this is not the case. However, if the author uses

a single alternative in each of his/her production rules, then they normally expect these to be combined

as though they had used · · · . The special alternative “· · · ” used as the final alternative of a rule has no

mathematical consequence and is used only as a signal to the reader warning that there will be later rules

for the same set.

13 We won’t deal with comments in depth as they have no effect on the resulting grammar. They are usually a short description

of the metavariable being defined e.g. (label).
14 By legal choice we mean a choice of metavariables matching the sets they are declared to range over and fulfilling any

constraints added by any side conditions.
15It is an error if there is not a unique assignment of smallest values to the declared sets. Normally, the existence of a unique

assignment will be provable using a fixed point theorem like the Knaster-Tarski theorem. However, the notation allows putting

strange side conditions in the constraint expressions in alternatives, and this can cause a failure.
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When a syntax alternative is intended to allow building terms from multiple subterms16 of the same

set, it is necessary to use distinct metavariables for each possible subterm to allow the subterms to differ.

It is always possible to find distinct metavariables for the same set by using subscripts.

Example 2.14. We can define the usual simple types like this:

a, b ∈ Ty-Variable F ai

T ∈ Simple-TypeF a | T1→ T2

Given this definition, a possible example type is T0 = a → (b → a). In this example T0, we leave

unspecified which exact type variables are used. We could make T0 concrete by specifying a = a0 and

b = a1 yielding T0 = a0→ (a1→ a0). If we had written the second alternative in the production rule for

Simple-Type as T → T , then the type T0 would not be allowed and we could only write types like a→ a

and (a→ a)→ (a→ a) where both arguments of each→ are equal.

Example 2.15. We can define the lambda calculus like this:

e ∈ exp ::= v | λv.e | e e

Each v ranges over a countable set of object-level variables disjoint from the objects produced by the

other production rules. The production rule e ∈ exp ::= v can be read as giving us the constraint

var ⊆ exp. The constraint { [λPv.Pe]≈ ptr(v) = Pv ∧ ptr(e) = Pe } ⊆ exp is given by e ∈ exp ::= λx.e.

The constraint { [Pe1
Pe2

]≈ ptr(e1) = Pe1
∧ ptr(e2) = Pe2

} ⊆ exp is given by e ∈ exp ::= e e. We pick the

least exp ⊆ Object and var ⊆ Object satisfying these constraints with an ordering given by the subset

relation.

In addition to declaring e as ranging over exp this definition also declares e1, e2,..., e′, e′′ etc. to

range over exp and similarly for v ∈ var. The subset of Object picked out by these constraints depends

on the choice of equivalence relation ≈, in the lambda calculus this is most likely α equivalence, although

it may also be the identity relation on Arrangement

In order to be confident that this set can be picked out (e.g. for exp) we begin with exp0 equal to the

set ranged over by v and let exp1 contain all the things exp must contain if exp is at least exp0 and so on

for each +1 case. For a limit point ε we let expε be
ε
⋃

i=0

expi. We take the least fixed point of the function

f ∈ P(Object)→P(Object) such that f (expi) = expi+1 over some appropriately large set of expi ordered

by the subset relation.

We define the rewriting relation as the exp-compatible closure of the smallest β (in the ordering given

by ⊆) satisfying the constraint (λv.e1)e2 −
β
−→ (e1[v≔ e2]). The notation O1[O2≔O3] is defined in Section

2.5. We do the same for λv.e1v −
η
−→ e. Note that because we have bracketed the term after substitution we

are able to reapply equivalences that may have otherwise been lost in the process.

Example 2.16. Given the definition of simple types in Example 2.14 we can define the simply typed

lambda calculus as follows:

ê ∈ texp ::= v | ê ê | λv : T. ê

We add rewriting rules:

(λv : T1.ê1)ê2 −
β
−→ (ê1[v≔ ê2])

λv : T1.ê1 v −
η
−→ ê

The rewriting relations are the texp-compatible closure of the least β and η satisfying this constraint.

16When we say A is a term and B is a subterm of A what we mean is there is some context C such that filling the hole in C

with B gives us A.
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Example 2.17. We can extend example 2.14 with records in a similar way to Pierce [19, pg 129]. We can

define lambda calculus with records like this:

l ∈ label ::= yi R ∈ Type-Records ::= ǫ | l : T,R where l < lab(R)

ê ∈ texp ::= · · · | {r} | ê.l

t ∈ Record-Type ::= T | {R} r ∈ Term-Records ::= ǫ | l = ê, r where l < lab(r)

Where we define lab s.t. lab(ǫ) = ∅, lab(l : T,R) = {l}∪ lab(R) and lab(l = ê, r) = {l}∪ lab(r). Both r and

R are equivalent up to reordering (i.e. l : T,R ≈ R, l : T and l = ê, r ≈ r, l = ê). Here, ≈ is the smallest

equivalence relation fulfilling these constraints. It is defined incrementally over each R and each r as a

new one is added.

We add a rewriting rule:

{l = v, r}.l −RCD−−−→ v

For each ∗ ∈ { x ∈ Object × Object x = β } ∪ { x ∈ Object × Object x = η } ∪ {RCD} we add additional

constraints:
(ê1 −

∗−→ ê2)

(ê1.l −
∗−→ ê2.l)

(ê1 −
∗−→ ê2)

({r, l = ê1} −
∗−→ {r, l = ê2})

(The horizontal line is read as the logical operator ⇒). Our rewriting relations are the texp-compatible

closure of the least relations, −RCD−−−→, −β−→ and −η−→ satisfying all of these constraints.

3 Model for Syntactic Math Text

In this section we show that there is a model for SMT. In order to do so, we choose sets to represent

Symbol, Pos, Pointer, �, ǫ and B. Our invariant constraints are those that will hold of sets thought to

approximate Object and Arrangement in the proof these are well defined. Our constraints on the final

selection will only hold of the set we pick out from these approximations.

Definition 3.1 (Symbol, Pos, Pointer, {�, ǫ,B}). We can create a countable set, D, representing symbols,

marking/wrapping and positioning from the ordinals17 following ω which are themselves smaller than

2ω. We pick a finite set of elements, Pos, from D to represent the positions subscript, superscript, pre-

subscript, pre-superscript, text above, text below, etc. (at least as many as positions as detailed in the

OpenDocument standard[12]). We pick out an element of D which we call B. We pick out an element of

D to represent the context-hole �, and one to represent the empty arrangement ǫ. We let the remainder

of the elements in D represent Symbol (at least as many symbols as in Unicode).

Definition 3.2 (Invariant Constraints). Our invariant constraints on Object, Arrangement, ptr, Pointer,

Symbol, Pos and Core hold if the following hold:

ptr ∈ Object→ Pointer and ptr is a bijection between Object and Pointer.

B < Object and B < Arrangement.

� ∈ Object and � < Arrangement and ǫ ∈ Arrangement

Pos ⊥ Object and Pos ⊥ Arrangement.18

Symbol ⊂ Core.

17With the Von Neumann encoding.
18We use X⊥Y to mean X and Y disjoint.
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N ⊂ Core.

Core ⊂ Arrangement.

Definition 3.3 (Constraints on Final Selection). Our constants on the final selection of on Object,

Arrangement, Pointer, Symbol, Pos and Core hold if the following hold:

Pointer ⊂ Core.

If A ∈ Arrangement, A , ǫ and x ∈ Symbol then (B, x, A) ∈ Core.

Arrangement × Core ⊂ Arrangement.

If A ∈ Arrangement and x ∈ Pos→ Arrangement \ {ǫ} and x , ∅ then

(A, x) ∈ Arrangement.

If S ⊂ Arrangement and |S| ≤ ℵ0 and S = {p} where p ∈ Pointer, then S ∈ Object.19

Theorem 3.4. There exists some selection of Object, Arrangement and ptr such that our invariant con-

straints and our constraints on the final selection hold.

Proof Sketch. We define a sequence of sets thought to contain closer approximations of Object and

Arrangement until some member contains a model for Object and Arrangement themselves. The small-

est set in our sequence contains all tuples of:

1. The set containing � (approximating Object).

2. An injective function p ∈ {�} → Pointer (approximating ptr).

3. Symbol ∪N ∪ {ǫ} (approximating Arrangement).

4. Symbol ∪N (approximating Core).

Each subsequent set in our sequence contains those tuples of sets which would be added by applying our

constraints as though Object were its approximation, Pointer were its approximation and Arrangement

were its approximation. Where our sequence reaches a limit point each set in each tuple is calculated as

though Arrangement was the union of arrangements up to that point (apart from the set approximating

Arrangement which also gets the pointers to the approximation of Object at that limit).

These sets remain sufficiently small to pick mappings for Object. Further, there is a fixed point for

the function mapping each member of this sequence to the member above it. From this fixed point we

can select a model for Object and Arrangement.

(Full proof in Appendix B)

4 How Can This Definition be Used?

Non-MBNF “Grammars” As well as covering some uses of MBNF to define syntax, SMT also pro-

vides us with a notion of what it means to use the structures of math-text together with syntactic equiva-

lences, even in documents where MBNF does not feature, or where MBNF is mixed with other notation

for picking out objects. Coverage of this sort may require users to select appropriate sets of objects that

resolve ambiguities.

19We do not bother restricting objects to only include proper arrangements here as it does not particularly affect the logic of

the proof. Provided one can pick out unique members from Symbol for left parenthesis, right parenthesis and comma, its not

too hard to express what it means for an arrangement to be proper with a logical formula.



16 What Does This Notation Mean Anyway?

A Flexible Notion of Equivalence Not only is the notion of equivalence presented in SMT sufficient

to deal with α-equivalence over finite terms, regardless of how binding may be represented in the syntax,

it also deals with things like equality up to reordering of finitely many chunks of syntax and equality of

finitely many compositions with zero, both of which appear in the π-calculus [3]. It deals with many of

the equivalences an author might define using “=,” provided they do not quantify over an uncountable set

when using it. Furthermore it provides tools to consider equalities over sub-objects, not just the syntactic

objects themselves, which can be vital when talking about the structure of a grammar.

Combining Objects in Math-Text SMT deals with most combinations of characters likely to appear

in math text used to represent “syntax” in a fairly general manner (it does not deal with matrices/grids,

numbers other than the naturals, or an use of sets that cannot be thought of in terms of equivalences up

to reordering and repetition on finite lists of elements, but none of these is likely to appear in “syntax”).

Automatic Bracketing Since SMT preserves the tree-like structure of syntax, it can be readily used

for grammars where authors treat bracketing as optional. We also give authors the option of making this

structure more explicit by primitive decomposition. Bracketing structures may often also be derived by

noticing where objects appear in production rules.

Functionality Inherited From BNF Our definition extends the basic functions covered by BNF to

MBNF and the richer syntactic structures that are represented by math-text. Substitution of non-terminals

becomes assigning values to metavariables and choice of production rules remains supported.

Hole Filling The following chunk of the MBNF we took from Chang and Felleisen [4, p 134] defining

A can be handled by our definition using convention 2.3:

e = xi | λxi.e | e e

A = [ ] | A[λxi.A] e

5 Related Work

Ott [24] provides a formal language for writing specifications like those written in MBNF. The process

of moving from an Ott specification to an MBNF can be performed automatically. However, the focus

of this article is on interpreting MBNF without requiring it to be specified in a theorem-prover friendly

format. We wish to provide a general mathematical intuition suitable for translation to multiple theorem

provers, whereas Ott focuses on translating to Coq 8.3, HOL 4 and Isabelle directly, but offers less

support for those seeking a general mathematical intuition. Ott only allows contexts with a single hole,

does not allow for hole-filling operations to appear in the clause of a production rule and currently does

not support rules being used coinductively. Ott also does not handle the common practice of using

mathematical text outside of the MBNF grammar as part of its definition. We handle more cases of

context hole filling. We allow integration with mathematical text. It seems more feasible SMT could be

extended to handle co-induction. There are also a variety of systems supporting HOAS, such as Hybrid

[2], Twelf [22] and Beluga [18]. While HOAS bears some resemblance to MBNF and is widely used,

it does not support all the same uses. For example, Dami [5], uses an MBNF to talk about dynamic

binding.
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Steele [25] covers many of the notational variants of BNF, including some MBNFs. However,

Steele’s focus is primarily on surface differences. He does not discuss how the underlying mathematical

structure of MBNF differs wildly from BNF.

Grewe et al. [8] discuss the exploration of language specifications with first-order theorem provers.

However, they still require the reader to be able to intuitively translate language specifications to a suffi-

ciently formal language first. This is the part of checking this paper aims to help with.

Reynolds [21, 1-51] has the best attempt at a definition of MBNF which we could find after looking

through the books in our collection, which he calls “abstract syntax”20 . However, he only deals with

context-free grammars and in many places he proceeds by example.

6 Future Work

While we do not deal with trees of infinite breadth or depth here, we hypothesise that the method outlined

in this document could be used on trees with countably infinite breadth and depth. The main difference

in doing so would be that Object and Arrangement would likely have to be of cardinality ℵ2, rather than

ℵ1, but apart from that it seems likely a similar proof would work.

While we provide some powerful tools for writing syntax patterns more explicitly and dealing with

numbers in the syntax, we do not provide procedures for generating countably many production rules.

Guy Steele [25] has done work in this area, but doesn’t address differences between MBNF and BNF.

A formalisation of SMT within a theorem prover would be an eventual avenue for future work, but

our current goal is to develop a semi-formal definition that is sufficiently comprehensive to cover a good

cross section of the literature. As such, implementation of the current definition in a theorem prover

would be premature, as SMT is likely to be updated based on new examples and user feedback.
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[8] Sylvia Grewe, Sebastian Erdweg, André Pacak, Michael Raulf & Mira Mezini (2018): Exploration of

language specifications by compilation to first-order logic. Sci. Comput. Program. 155, pp. 146–172,

doi:10.1016/j.scico.2017.08.001. Available at https://doi.org/10.1016/j.scico.2017.08.001.

[9] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2006): Introduction to Automata Theory, Lan-

guages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[10] Jun Inoue & Walid Taha (2012): Reasoning About Multi-stage Programs. In Seidl [23].

[11] Patrick D F Ion, Nico Poppelier, David Carlisle & Robert R Miner (2001): Mathematical Markup Language

(MathML) Version 2.0. W3C Recommendation, W3C. Https://www.w3.org/TR/MathML2/chapter3.html.

[12] (2015): Information technology – Open Document Format for Office Applications (OpenDocument) v1.2 –

Part 1: OpenDocument Schema. Standard, International Organization for Standardization, Geneva, CH.

[13] Fairouz Kamareddine, Joe Wells, Christoph Zengler & Henk Barendregt (2014): Computerising Mathe-

matical Text. In Jörg H. Siekmann, editor: Computational Logic, Handbook of the History of Logic 9,

North-Holland, pp. 343 – 396, doi:https://doi.org/10.1016/B978-0-444-51624-4.50008-3. Available at

http://www.sciencedirect.com/science/article/pii/B9780444516244500083.

[14] Donald E. Knuth (1986): The TeXbook. Addison-Wesley Professional.
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A Basic Logic and Mathematics

This appendix gives a brief overview of some concepts which are common enough in mathematics, but

which are often represented in different ways, to say how they are used in this paper.

A.1 Metavariable Conventions

For this section, ν stands for an arbitrary metavariable (a meta-metavariable). Statements of the form “let

ν range over C” declare and define ν as a metavariable that stands for some element of the class C.

We use single letters (either Roman or Greek) for metavariables.

Whenever we declare a metavariable ν as ranging over a class, this also defines as ranging over that

class all variants of ν obtained by either (1) adding a subscript i ∈ N to ν to produce νi (e.g., ν0, ν1, ν2,

etc), (2) adding a single, double, or triple prime to ν, producing respectively in ν′, ν′′, and ν′′′, or (3) a

combination of (1) and (2).

In contrast, we use superscripts (e.g., ν1, ν2) and accents (e.g., ν̄, ν̃) to distinguish metavariables that

are in some way related to the corresponding undecorated metavariable, but not necessarily ranging over

the same class. For example, if we have declared ν to range over the set S, we might have ν0 ranging

over S0, ν1 ranging over S1, and S1 ⊂ S0 ⊂ S.

A.2 Sets

The mathematical foundation we use is set theory with choice. ZFC is suitable, so are other variants.

If P(X) is a proposition of first-order logic that mentions X, then (1) P(Y) differs from P(X) only by

mentioning Y instead of X, and (2) the notation { X P(X) } stands for { X ∈ S P(X) } for some set S

which is left to the reader to infer from the context of discussion. Given some expression f (X1, . . . , Xn)

mentioning variables X1, . . . , Xn, we use the notation { f (X1, . . . , Xn) P(X1, . . . , Xn) } for

{ Y ∃X1, . . . , Xn. Y = f (X1, . . . , Xn) ∧ P(X1, . . . , Xn) }. Given two sets X and Y we use the notation X ⊥ Y

to mean ‘X and Y are disjoint.’

A.3 Pairs

We rely on a operator ( · , · ) for building ordered pairs and corresponding projection operators fst and

snd, such that if Z = (X, Y), then fst(Z) = X and snd(Z) = Y . We require that it is impossible for a pair

http://dx.doi.org/10.1145/3018743.3018773
http://doi.acm.org/10.1145/3018743.3018773
https://projecteuclid.org:443/euclid.pjm/1103044538
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to also be a set of pairs and that the natural numbers do not overlap with pairs.21 Given two sets S and

T , the product set S × T is the set of pairs { (X, Y) X ∈ S and Y ∈ T }. Let tuple notation be defined so

that (X1, X2, X3, . . . , Xn) = ((X1, X2, X3, . . . , Xn−1), Xn).

A.4 Relations

Let R range over sets of pairs. The statement (X, Y) ∈ R can be written with three kinds of alternate

notation: R(X, Y), and X R Y , and X −R−→ Y .

A relation R is reflexive w.r.t. S iff R ⊇ { (X, X) X ∈ S }. As is common practice, if we mention that

a relation is reflexive without saying what set S this is with respect to, this means we are leaving it to the

reader to infer from the context of discussion which set S to use.

Let R∗ be the reflexive and transitive closure of R and let R= be the reflexive, symmetric, and transi-

tive closure of R; in both cases we use the above-mentioned convention that the reader must infer the set

S w.r.t. which to take the reflexive closure. Let X −R−։ Y mean X −R
∗

−→ Y , and let X ևR−։ Y mean X −R
=

−−→ Y .

A relation is an equivalence iff it is symmetric and transitive. Given an equivalence relation R, let

[X]R = { Y (X, Y) ∈ R } be the equivalence class of X w.r.t. R and let [X]R be an equivalence class of R.

A relation R is terminating iff there is no infinite sequence X1, X2, . . . such that X1 −
R−→ X2 −

R−→ · · · .

If X −R−։ Y , and there exists no Z such that Y −R−→ Z, then we call Y an R-normal form of X. If R is

terminating, then it can be used for induction: If it can be shown that R is terminating and ∀X ∈ S. (∀Y ∈

S. X −R−→ Y ⇒ P(Y))⇒ P(X), then it follows that ∀X ∈ S. P(X).

A relation is a partial order on S iff it is transitive and antisymmetric. A partial order is strict iff it is

irreflexive. A non-strict partial order, ≤, is a total order on S iff for all X, Y ∈ S either X ≤ Y or Y ≤ X.

A strict partial order, <, is a strict total order on S iff for all X, Y ∈ S s.t. X , Y either X < Y or Y < X.

A.5 Functions

A function is a relation f such that for all X, Y , and Z, if {(X, Y), (X, Z)} ⊆ f then Y = Z. Let S→ T =

{ f f ⊆ S × T and f is a function }. Let f be from S to T iff f ∈ S → T . A function f is injective

iff f −1 is a function. If (X, Y) ∈ f for some Y , then f (X) denotes Y , otherwise f (X) is undefined.

A function f is total on S iff f (X) is defined for all X ∈ S. Given a function f , let f [X 7→ Y] =

( f \ { Z ∈ f fst(Z) = X }) ∪ {(X, Y)}.

A fixed point of a function f is some x for which f (X) = X. If the set of fixed points of f has a

greatest lower bound which is itself a fixed point, then we call this the least fixed point of f and if it has

a least upper bound which is itself a fixed point, then we call this the greatest fixed point of f .

A function is f order preserving w.r.t a partial ordering leq if f (X) ≤ f (Y) iff X ≤ Y .

A.6 Sequences

Given a set S which is not a relation (if S contains only pairs then instead the notation refers to the

definition of R∗ from section A.4, the reflexive and transitive closure of R), let S∗, the set of finite

21We therefore can not use Kuratowski’s encoding of pairs where (X,Y) = {{X}, {X,Y}}, because (for example) {(X,X)} =

{{{X}}} = ({X}, {X}). Similarly, we can not use the “short” encoding where (X,Y) = {X, {X,Y}} together with von Neumann’s

encoding of natural numbers (actually of all ordinal numbers) where 0 = ∅ and i + 1 = i ∪ {i} because (0, 0) = {0, {0, 0}} =

{∅, {∅,∅}} = {∅, {∅}} = {∅} ∪ {{∅}} = 1 ∪ {1} = 2. We can use Wiener’s encoding of pairs where (X,Y) = {{{X},∅}, {{Y}}},

because in this encoding a pair can not be a set of pairs, a set of sets of pairs, or a von Neumann ordinal number. We can also

work in a set theory with a primitive pairing operator.
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sequences of elements in S, be the set of all finite functions f such that range( f ) ⊆ S, and domain( f ) ⊆

N, and m < n ∈ domain( f ) implies m ∈ domain( f ).

Convention A.1 (Metavariables over Sequences). If ν is declared to range over S, then ~ν is automatically

declared to range over S∗.

The notation [ν0, . . . , νn] stands for the least-defined function ~ν such that ~ν(i) = νi for all i ∈

{0, . . . , n}. For example, the singleton sequence [ν] containing ν as its only element is {(0, ν)}, and we

have [ν0, ν1, ν2] = {(0, ν0), (1, ν1), (2, ν2)}. The component of a sequence ~ν at index i is simply ~ν(i). Note

that the first component of a sequence is at index 0, and that the empty sequence [] is merely the empty

set. The length of a sequence ~ν is the smallest n ∈ N which is larger than all elements of domain(~ν). The

concatenation of sequences ~ν1 and ~ν2 is ~ν1 · ~ν2 = ~ν1 ∪ { (|~ν1| + i, ν) (i, ν) ∈ ~ν2 }.

Note that (S∗, ·, []) forms a monoid, i.e., the following equalities hold:

[] · ~ν = ~ν ~ν · [] = ~ν (~ν1 · ~ν2) · ~ν3 = ~ν1 · (~ν2 · ~ν3)

B Proof of Key Results

Section 2 is sufficient for any reader who wants an outline of our definition in order to interpret those

pieces of MBNF it defines. This appendix will be of interest either to those readers who are looking to

extend our definition to define more uses of MBNF, or to those readers who want to reassure themselves

that the sort of entities described in Section 2.1 can always be thought to exist. While it is our intention

that our definition should be easy to work with, a deeper working knowledge of set theory is assumed

for this appendix than the rest of this document and everything apart from Section 3 may be read without

this section.

For this appendix we use Wiener’s [29] encoding of pairs and von Neumann’s encoding of ordinals,

the natural numbers [17] and cardinal assignment [16]. We also make use of the axiom of choice.

Lemma B.1. Given a countable set A and a set B of all trees C such that the interior nodes of C are

elements of A and the leaf nodes of C are elements of ω1, |B| = ℵ1.

Proof. Let D be the set of all trees C such that every element of C is an element ofω1. Since we can make

a bijection between members of A to a members of ω and the function f ∈ ω1→ω1 s.t. f (x) = ω+ x is a

bijection, |C| = |D|. For a finite subset, S, of ω1 the relation < on S is a finite subset ofω1×ω1. Assuming

choice, |ω1 × ω1| = ℵ1. The cardinality of the set of finite subsets of ω1 is ℵ1. So |C| = |D| = ℵ1.

We can now go on to show that Object and Arrangement are well defined. We do so by producing a

model within set theory that fulfils most of the constraints in Section 2.1., which are written out formally

in Appendix D.22 This proof requires that the reader pick some appropriate values for Symbol, Pos,

Pointer, �, ǫ and B. The definition of these sets in Appendix D is adequate.

We for a given ordinal i we define a set of tuples OPACi which may be thought of as getting closer

to the tuple (Object, ptr,Arrangement,Core).

Definition B.2 (OPAC).

0 Case:

Let Obj0 = {�}

22In order to simplify the proof this model allows the use of arrangements consisting of a single pointer in the formation of

objects. It is not too difficult to rule this case out.
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Let ptrSpace0 = { x ∈ Obj0→ Pointer x is total on Obj0 ∧ x is injective }.

Let

OPAC0 = {(Obj0, ptr0,Arr0,Core0) | ptr0 ∈ ptrSpace0 ∧ Core0 = Arr0 \ {ǫ}

∧Arr0 = N ∪ {ǫ} ∪ Symbol ∪ ptr0(x)}

+1 Case:

For (Objkn, ptrk
n,Arrk

n,Corek
n) ∈ OPACn

Let Accentk
n+1
= ({B} × Symbol) × (Arrk

n \ {ǫ}).

Let Corek
n+1
= Corek

n ∪ Accentk
n+1

.

Let Layoutk
n+1
= Arrk

n × { x ∈ Pos→ Arrk
n \ {ǫ} x , ∅ }.

Let Seqk
n+1
= Arrk

n × CoreArrk
n+1

.

Let Objk
n+1
= Objkn ∪ { x ∈ P(Arrk

n) |x | ≤ ℵ0 ∧ (y ∈ Pointer⇒ x , {y} }

Let

ptrSpacen+1 = {x ∈ Objk
n+1
→ Pointer | (Objn, ptrn,Arrn,Coren) ∈ OPACn∧

x is total on Objk
n+1
∧ x is injective}

Let ptr
k,i
n+1

(x) ∈ ptrSpacen+1 such that ptr
k,i
n+1

(x) ⊆ ptrk
n+1

if such a set exists. If no such set exists let

ptr
k,0
n+1
= ∅

Let Arrk,i
n+1
= Arrk

n∪CoreArrk
n+1
∪Layoutk

n+1
∪Seqk

n+1
∪{ ptrk,i

n+1
(x) x ∈ Objn+1 } if ptrk,i

n+1
(x) is defined

and ∅ otherwise.

Let

OPACn+1 = {(Objk
n+1
, ptr

k,i
n+1
,Arr

k,i
n+1
,Corek

n+1
) | (Objn, ptrn,Arrn,Coren) ∈ OPACn

∧Arr
k,i
n+1
, ∅}

Limit Case:

We now define the above functions for a limit point ε.

Let

stack = {S ⊆
⋃

i<ε
OPACi | ((Objk

i
, ptrk

i
,Arrk

i
,Corek

i
) ∈ S ∧ (Objl

j
, ptrl

j
,Arrl

j
,Corel

j
) ∈ S)

⇒ (( j < i⇒ (Objl
j
⊆ Objk

i
∧ Arrl

j
⊆ Arrk

i
∧ ptrl

j
⊆ ptrk

i
))

∧ ( j < i ∨ i < j

∨ (Objk
i
, ptrk

i
,Arrk

i
,Corek

i
) = (Objl

j
, ptrl

j
,Arrl

j
,Corel

j
))

∧ ∀n < ε, (Objmn , ptrm
n ,Arrm

n ,Corem
n ) ∈ S)}

For S ∈ stack

Let

Ob jSε = (
⋃

{Obji (Objk
i
, x, y, z) ∈ S })∪

{ x ∈ P(
⋃

{Arrk
i

(a, b,Arrk
i
, c) ∈ S }) |x | ≤ ℵ0 ∧ (y ∈ Pointer⇒ x , {y} }

Let ptr
S,k
ε be a bijection between Sε ⊆ Pointer and Objε such that for all (Obji, ptri,Arri,Corei) ∈ S,

ptri ⊆ ptr
S,k
ε . If no such bijection exists, let ptr

S,0
ε = ∅.

Let ArrS,kε = { ptrS,kε (x) x ∈ ObjSε }∪
⋃

{Arri (a, b,Arrk
i
, c) ∈ S } if ptrS,kε (x) is defined and ∅ otherwise.

Let CoreSε =
⋃

{CoreArri (x, y, z,Corek
i
) ∈ S }.

Let

OPACε =
{

(ObjSε , ptrS,kε ,ArrS,kε ,CoreSε ) S ∈ stack ∧ Arrk,i
n+1
, ∅
}
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Lemma B.3. OPACi is Non-Empty for all Ordinals i.

Proof. The only way OPACi may be empty for some i is if |Objk
i
| > Pointer for some Objk

i
such that

(Objk
i
, a, b, c) ∈ OPACi. We prove by induction on the size of Objkn and Arrk

n such that (Objkn, x,Arrk
n, y) ∈

OPACn that this cannot be the case.

0 Case:

|Obj0| = 1 ≤ ℵ1 and for all Arr0 ∈ ArrSpace0, |Arr0| = ℵ0 ≤ ℵ1.

+1 Case:

If, for all (Objkn, x,Arrk
n, y) ∈ OPACn, |Objkn| ≤ ℵ1 and |Arrk

n| ≤ ℵ1, then, for all Objk
n+1

, |Objk
n+1
| ≤ ℵ1,

provided we have some way of ordering Objk
i

and Arrk
i
. With choice this follows quite easily from the

fact that the cardinality of the set of subsets of ℵ1 which are of cardinality less than or equal to ℵ0 is

(2ℵ0 )ℵ0 = 2ℵ0 ·ℵ0 = 2ℵ0 . As, for all Objk
n+1

there exists some Obj
j
n s.t. Objk

n+1
⊆ Obj

j
n, there exists some

ptr which assigns pointers for Objk
n+1

and which may also be used to assign pointers for Obj
j
n.

It is easy to observe that, if |Objkn| ≤ ℵ1 and |Arrk
n| ≤ ℵ1, then |Arrk,i

n+1
| ≤ ℵ1 since neither Accentk

n+1
,

nor Layoutk
n+1

nor Seqk
n+1

can add cardinality greater than ℵ1.

Limit Case:

We show ∃ε;∀i < ε; (|Obji| ≤ ℵ1 ∧ |Arri| ≤ ℵ1) ⇒ (|Objε| ≤ ℵ1 ∧ |Arrε| ≤ ℵ1).We note that no Arri

has ℵ0 sub-arrangements and all such Arri can be readily identified with some finite tree whose interior

nodes are labelled corresponding the operations marking/wrapping, concatenation and the finite number

of possible combinations of Subscript, superscript etc. and whose leaf nodes are labelled with members

of the set ω1. So, by lemma B.1, |
ε
⋃

i=0

Arri| ≤ ℵ1. Similarly we may readily identify each set in Obji apart

from the � with some countable subset of the set of trees we used to define each Arri. The cardinality of

the countable subsets of a set of size ℵ1 is (2ℵ0 )ℵ0 = 2ℵ0 ·ℵ0 = 2ℵ0 . So |
ε
⋃

i=0
Obji| ≤ ℵ1. The desired result

follows easily. As Objε ⊆ Obji, for each i ≤ ε there exists some ptr which assigns pointers for Objε and

which may also be used to assign pointers for Obji.

Definition B.4 (fun). Let Z = {OPAci i < κ } for some κ < ω2. We define a function fun ∈ Z→ Z such

that fun(OPACi) = OPACi+1

Lemma B.5. fun has a least fixed point.

Proof. The Knaster–Tarski theorem [26] tells us that any any order-preserving function on a complete

lattice has a least fixed point. For OPACa,OPACb ∈ Z we define ≤ such that OPACa ≤ OPACb iff

(either, for all (Objb, p, q, r) ∈ OPACb, there exists (Obja, b, c, d) ∈ OPACa s.t. Obja ⊂ Objb, or, for all

(Objb, p,Arrb, r) ∈ OPACb, there exists (Obja, b,Arra, d) ∈ OPACa s.t. (Obja = Objb and Arra ⊂ Arrb)).

Z is a complete lattice ordered by ≤ and fun is an order preserving function on Z.23

Theorem B.6. Object and Arrangement are well defined.

Proof. For some tuple a in OPACi there exists some tuple b in OPACi such that:

1. The first member of b contains all the objects our rules say must exist if Arrangement is at least

the third member of a,

23Note that the way in which we have defined Obj and Arr is such that j ≤ i implies (Obj j ⊆ Obji and Obj j ⊆ Obji). Note

also that, for all limit ordinals ε ≤ κ; (Objε,Arrε) ∈ Z. Finally note that ω2 is large enough that it has a larger cardinality than

any Obji or Arri, so we can select some κ larger than the partition of Obji and Arri into the extra elements added at each stage.
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2. The third member of b contains all the arrangements that our rules say must exist if Arrangement

is at least the third member of a, Object is at least the first member of a and ptr is at least the

second member of a.

If OPACi is the least fixed point of fun then OPACi+1 = OPACi.

We now take the least fixed point, lfp(fun), of fun ∈ Z→Z and select some tuple (Obj, ptr,Arr,Core) ∈

lfp(fun). The first member of the tuple gives us a model for Object and the third member, Arrangement.

C Examples of our Definition in Action

C.1 Call by Need

The following example is derived from Chang and Felleisen [4, p 134]:

e ∈ se ::= x | λx.e | e e Â ∈ sÂ ::= � | A[Â] e

v ∈ sv ::= λx.e Ǎ ∈ sǍ ::= � | A[λx.Ǎ] e

a ∈ sa ::= A[v] E ∈ sE ::= � | E e | A[E] | Â[A[λx.Ǎ[E[x]]]E]

A ∈ sA ::= � | A[λx.A] e whereÂ[Ǎ] ∈ A

Each constraint is added sequentially and the least set of objects satisfying them is recalculated. Where

the value of a set a metavariable can range over is recalculated and it is referenced in another rule, the

set that rule applies to is recalculated with a new value. For example, initially a ∈ sa = ∅, but when

A ::= � is read it triggers a recalculation of A[v] so sa = sv. Then when A ::= A[λx.A] e is read, first it

triggers a recalculation of A so sA = {�} ∪ { [PλA Pe]≈ ptr(e) = Pe ∧ ptr([λx.�]≈) = PλA } then it triggers

a recalculation of a so sa = v ∪ { [PλA[v] Pe]≈ ptr(e) = Pe ∧ ptr([λx.Pv]≈) = PλA[v] ∧ ptr(v) = Pv } then

a won’t trigger recalculations, but we have a recalculation on A waiting. Let f (se, sv, sa, sA, sÂ, sǍ, sE)

take (se, sv, sa, sA, sÂ, sǍ, sE) when a recalculation is triggered to their values after a recalculation is

performed. Let < be an relation on (se, sv, sa, sA, sÂ, sǍ, sE) such that (se1, sv1, sa1, sA1, sÂ
1
, sǍ

1
, sE1) <

(se2, sv2, sa2, sA2, sÂ
2
, sǍ

2
, sE2) iff se1 ⊂ se2 or sv1 ⊂ sv2 or sa1 ⊂ sa2 or sA1 ⊂ sA2 or sÂ

1
⊂ sÂ

2

or sǍ
1
⊂ sǍ

2
or sE1 ⊂ sE2. We observe that each set out of (se, sv, sa, sA, sÂ, sǍ, sE) either gets new

elements added to it or remains the same every time a recalculation is triggered and is bounded above by

Object. We can therefore take the least fixed point on f satisfying all of these constraints.

If the side condition on E were to re-trigger the calculation on A, Â or Ǎ we would have to be able to

check that the new side condition produced by this recalculation could not effect any E previously added.

This grammar relies on an assignation of values to x, otherwise all of its sets are either ∅ or �. For a given

equivalence (e.g. ≡α or ≡A) this grammar may define a different collection of (se, sv, sa, sA, sÂ, sǍ, sE).

We add the reduction rule for this Grammar which is the least R satisfying:

Â[A1[λx.Ǎ[E[x]]]A2[v]] −R−→ (Â[A1[A2[(Ǎ[E[x]])[x≔ v]]]]) where Â[Ǎ] ∈ A

C.2 Lambda Calculus (Missing Steps)

e ∈ exp ::= v | λv.e | e e

When v is read, we take it to range over some set of countable object-level variables V . If this were the

only constraint we’d have exp = V . Call this exp0. When the λv.e is read it triggers a recalculation of

exp0. We define expn+1 = expn ∪ { {λPv.Pe} v ∈ V ∧ e ∈ expn } (we increment the index on exp each
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time a recalculation is performed). For a limit point ε we define expǫ =
⋃

i<ε
expi (we can think of this

as the limit of each of these recalculations as exp ⊆ expn+1). If v and λv.e were the only constraints

then exp would be the least fixed point of the least function f : Object → Object such that ∀expi,

f (expi) = expi+1 (which exists by the Knaster-Tarski theorem). Instead, if k is the first k such that

expk = expk ∪ { {λPv.Pe} v ∈ V ∧ e ∈ expk }, then we look to see if there are any other constraints which

would trigger a recalculation of e. In this case there is the constraint e e. We update our definition

of expi like so: If n < k, then expn+1 = expn ∪ { {λPv.Pe} v ∈ V ∧ e ∈ expn }, otherwise expn+1 =

expn ∪ { {λPv.Pe} v ∈ V ∧ e ∈ expn } ∪ { {Pe Pe} e ∈ expn }. Since there are no further constraints, the

least fixed point of f gives us the desired result.

This induction may be carried out with terms identified up to α-equivalence. So exp0 would remain

the same. For the n + 1 case (for n < k) we have:

expn+1 = expn ∪
{

x (a ∈ x ∧ b ∈ x)⇔ (a, b ∈ { λPv.Pe v ∈ V ∧ e ∈ expn } ∧ a ≡α b)
}

For n > k we have:

expn+1 = expn∪
{

x (a ∈ x ∧ b ∈ x)⇔ (a, b ∈ { λPv.Pe v ∈ V ∧ e ∈ expn } ∧ a ≡α b)
}

∪
{

{Pe Pe} e ∈ expn }

For a limit point ε we have:

expε =















x (a ∈ x ∧ b ∈ x)⇔ (a, b ∈
⋃

i<ε

expi ∧ a ≡α b)














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