
EasyChair Preprint
№ 8992

Robin’s Criterion on Superabundant Numbers

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 11, 2022



A Millennium Prize Problem

Robin’s criterion on superabundant numbers

Frank Vega1*

1*Software Department, CopSonic, 1471 Route de
Saint-Nauphary, Montauban, 82000, Tarn-et-Garonne, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

A trustworthy proof for the Riemann hypothesis has been considered
as the Holy Grail of Mathematics by several authors. The Riemann
hypothesis is the assertion that all non-trivial zeros of the Riemann
zeta function have real part 1

2
. Robin’s criterion states that the Rie-

mann hypothesis is true if and only if the inequality σ(n) < eγ ·
n · log logn holds for all natural numbers n > 5040, where σ(n)
is the sum-of-divisors function of n, γ ≈ 0.57721 is the Euler-
Mascheroni constant and log is the natural logarithm. We require
the properties of superabundant numbers, that is to say left to right
maxima of n 7→ σ(n)

n
. If the Riemann hypothesis is false, then

there are infinitely many superabundant numbers n such that the
Robin’s inequality is unsatisfied. In this note, we show that the Robin’s
inequality always holds for large enough superabundant numbers. By
reductio ad absurdum, we prove that the Riemann hypothesis is true.
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1 Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real
part 1

2 . It is considered by many to be the most important unsolved problem
in pure mathematics. It was proposed by Bernhard Riemann (1859). The Rie-
mann hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s
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list of twenty-three unsolved problems. This is one of the Clay Mathematics
Institute’s Millennium Prize Problems. As usual σ(n) is the sum-of-divisors
function of n ∑

d|n

d,

where d | n means the integer d divides n. Define f(n) as σ(n)
n . We say that

Robin(n) holds provided that

f(n) < eγ · log log n,

where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The Ramanujan’s Theorem states that if the Riemann hypothesis
is true, then the previous inequality holds for large enough n. Next, we have
the Robin’s Theorem:

Proposition 1 Robin(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [1, Theorem 1 pp. 188].

Superabundant numbers were defined by Leonidas Alaoglu and Paul Erdős
(1944). Let q1 = 2, q2 = 3, . . . , qk denote the first k consecutive primes, then

an integer of the form
∏k

i=1 q
ai
i with a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 is called a Hardy-

Ramanujan integer. A natural number n is called superabundant precisely
when, for all natural numbers m < n

f(m) < f(n).

We know the following properties for the superabundant numbers:

Proposition 2 If n is superabundant, then n is a Hardy-Ramanujan integer [2,
Theorem 1 pp. 450].

Proposition 3 [2, Theorem 7 pp. 454]. Let n be a superabundant number such that
p is the largest prime factor of n, then

p ∼ logn, (n → ∞).

Proposition 4 [2, Theorem 9 pp. 454]. For some constant c > 0, the number of
superabundant numbers less than x exceeds

c · log x · log log x
(log log log x)2

.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).
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There is a close relation between the superabundant and colossally abundant
numbers.

Proposition 5 Every colossally abundant number is superabundant [2, pp. 455].

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. However, there are some
implications in case of the Riemann hypothesis might be false.

Proposition 6 If the Riemann hypothesis is false, then there are infinitely many
colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n) does
not hold) [1, Proposition pp. 204].

In number theory, the p-adic order of an integer n is the exponent of the
highest power of the prime number p that divides n. It is denoted νp(n). Equiv-
alently, νp(n) is the exponent to which p appears in the prime factorization of
n.

Proposition 7 Robin(n) holds for all natural numbers n > 5040 such that ν3(n) ≤
12 [3, Theorem 2 pp. 2].

Proposition 8 [2, Theorem 5 pp. 452]. Let n be a superabundant number such that
νq(n) = aq, p is the largest prime factor of n, 2 ≤ q ≤ p and q < (log p)α, where α
is a constant, then

log
qaq+2 − 1

qaq+2 − q
<

log q

p · log p ·
{
1 +O

(
(log log p)2

log p · log q

)}
.

Putting all together yields the proof of the Riemann hypothesis.

2 Central Lemma

The following is a key Lemma.

Lemma 9 If the Riemann hypothesis is false, then there are infinitely many
superabundant numbers n such that Robin(n) fails.

Proof This is a direct consequence of Propositions 1, 5 and 6. □

3 Main Insight

This is the main insight.
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Lemma 10 Let n be a large enough superabundant number such that p > 3 is the
largest prime factor of n, then

p < 3ν3(n)−1.

Proof Let q = 3 and νq(n) = aq. For every large enough superabundant number n,
there is a constant α such that q < (log p)α. For example, we can take α = 2.5 since
(log p)2.5 ≥ (log 5)2.5 > 3. We will use the following inequality

t

t+ 1
< log(1 + t), (t > 0).

From the previous inequality, we notice that

log
qaq+2 − 1

qaq+2 − q
= log

(
1 +

q − 1

qaq+2 − q

)

>

q−1
qaq+2−q
q−1

qaq+2−q
+ 1

=
q − 1

(qaq+2 − q) · ( q−1
qaq+2−q

+ 1)

=
q − 1

(q − 1) + (qaq+2 − q)

=
q − 1

qaq+2 − 1

>
1

3 · qaq+1
.

Hence, there is a constant C > 0 such that

qaq > C · p · log p
log q

by Proposition 8. Putting c = C
log q , then we obtain that

c · p · log p < qaq ,

where c is a positive constant. We deduce that

c · log p > 3

by Proposition 3 for large enough n. Therefore, the proof is done. □

4 Main Theorem

This is the main theorem.

Theorem 11 The Riemann hypothesis is true.
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Proof There are infinitely many superabundant numbers by Proposition 4. Let n >
5040 be a large enough superabundant number. Let

∏k
i=1 q

ai
i be the representation

of this superabundant number n as the product of the first k consecutive primes
q1 < . . . < qk with the natural numbers a1 ≥ a2 ≥ . . . ≥ ak ≥ 1 as exponents, since
n must be a Hardy-Ramanujan integer by Proposition 2. Suppose that Robin(n) fails.
So,

f(n) ≥ eγ · log logn.
We know that

f(n) = f(2ν2(n)) · f( n

2ν2(n)
)

=

(
2− 1

2ν2(n)

)
· f( n

2ν2(n)
)

< 2 · f( n

2ν2(n)
)

= f(2 · 3) · f( n

2ν2(n)
)

= f(2 · 3) · f
(

n

2ν2(n) · 3ν3(n)

)
· f

(
3ν3(n)

)
= f

(
2 · 3 · n

2ν2(n) · 3ν3(n)

)
· f

(
3ν3(n)

)
= f

(
n

2ν2(n)−1 · 3ν3(n)−1

)
· f

(
3ν3(n)

)

= f

(
n

3ν3(n)−1

)
·

f
(
3ν3(n)

)
f
(
2ν2(n)−1

)
≤ f

(
n · qk

3ν3(n)−1

)
due to f(. . .) is multiplicative and

f(qk) ·
f
(
3ν3(n)

)
f
(
2ν2(n)−1

) ≤ f(q2k)

holds, since

f
(
3ν3(n)

)
f
(
3ν3(n)−1

) ≤
f
(
2ν2(n)−1

)
f
(
3ν3(n)−1

) · f(q
2
k)

f(qk)

is trivially satisfied because of

f
(
3ν3(n)

)
f
(
3ν3(n)−1

)
is strictly decreasing and

f
(
2ν2(n)−1

)
f
(
3ν3(n)−1

)
is increasing where

f(q2k)

f(qk)
> 1
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and n is large enough. We have

f

(
n · qk

3ν3(n)−1

)
< eγ · log log

(
n · qk

3ν3(n)−1

)
by Proposition 7. Therefore, we obtain that

eγ · log log
(

n · qk
3ν3(n)−1

)
> eγ · log log n

which is the same as (
n · qk

3ν3(n)−1

)
> n.

However, we know that

3ν3(n)−1 > qk
by Lemma 10, because of n is large enough. Consequently, we can see that necessarily,(

n · qk
3ν3(n)−1

)
< n.

In this way, we obtain a contradiction under the assumption that Robin(n) fails. To
sum up, the study of this arbitrary large enough superabundant number n reveals
that Robin(n) holds on anyway. Accordingly, Robin(n) holds for all large enough
superabundant numbers n. This contradicts the fact that there are infinitely many
superabundant numbers n, such that Robin(n) fails when the Riemann hypothesis is
false according to Lemma 9. By reductio ad absurdum, we prove that the Riemann
hypothesis is true. □

5 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothe-
sis is closely related to various mathematical topics such as the distribution
of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the
Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypoth-
esis could spur considerable advances in many mathematical areas, such as
number theory and pure mathematics in general.
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