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Abstract—Human Activity Recognition (HAR) based on wear-
able device has become a hot topic of research due to its wide
range of applications in health-care, fitness and smart homes.
However, the classification of some activities with similar sensor
readings, such as standing and sitting, is usually more challeng-
ing for the design of efficient activity recognition algorithms.
Considering the inconsistent performance of different classifiers,
which can provide information complementary for individual
classifier, we propose a novel multi-classifier fusion method based
on belief functions (BFs) theory for HAR. Specifically, at first,
four classifiers are trained using time-domain and frequency-
domain features to obtain basic belief assignments (BBA) of
activity, respectively. Then, three assessment criteria are utilized
to evaluate the reliability of the classifiers and a scoring matrix
is constructed. Next, the algorithm of Belief Function based the
Technique for Order Preference by Similarity to Ideal Solution
(BF-TOPSIS) is employed to calculate the weighting coefficients
for each classifier. Finally, the discounting and Dempster’s rules
are adopted to combine the multiple classifiers and further deci-
sion making. Several experiments were conducted to illustrate the
performance of the proposed method using the UCI smartphone
dataset, and the results show that the proposed method is more
accurate than the state-of-art methods.

Index Terms—Belief functions theory, multiple classifiers fu-
sion, BF-TOPSIS, human activity recognition.

I. INTRODUCTION

With the booming development of micro-sensor technol-
ogy, Human Activity Recognition (HAR) based on wearable
sensors has become one of the hot research topics [1], [2].
Data of daily activities can be well collected in an all-
round and non invasive discrete manner using accelerometers,
gyroscopes and other such portable wearable devices, so as to
accomplish the work of assisted living and health monitoring
while effectively protecting the privacy of users [3]. Obviously,
it has certain advantages compared to traditional vision-based
methods. However, the accuracy of HAR based on wearable
devices is affected by many factors, such as the number
and the deployment location of sensors, the complexity of
activities [4], and so on. Due to the uncertainty, diversity
and individual differences of activities [5], many scholars
took the perspective of multi-sensor information fusion to
achieve higher accuracy of HAR. For example, Dong et al.
[6] developed the kernel density estimation models to fit
the multi-sensor data to obtain the basic belief assignments

(BBAs), and then Dezert-Smarandache theory (DSmT) was
adopted to combine the acquired BBAs. Uddin et al. [7]
fused data from different multimodal sensors with statistical
features of different orders and then trained a deep recurrent
neural network (RNN) for activity recognition. Although they
achieve good accuracy, it is still difficult to accurately identify
some activities with high similarity of sensor readings such as
sitting and standing. Furthermore, the reliability of activity
recognition can be significantly compromised when sensor
readings are missing or disturbed by noise without additional
sensor information.

Recently, the multi-classifier fusion has been applied in
pattern recognition [8], information fusion [9], [10] and other
fields, especially for classification problems in complex envi-
ronments. Different classifiers can learn different feature in-
formation, and multiple classifiers can provide complementary
information compared with any individual classifier, which
can help identify similar human activities such as sitting
and standing. By using multi-classifier fusion, we expect the
improvement of the classification accuracy, which brings the
possibility of high precision HAR. On the other hand, multiple
classifiers can be seen as multiple sources of evidence, and we
fuse the basic belief assignments (BBAs) of the human activity
categories output by the classifiers.

The multi-classifier fusion usually consists of generating
membership classifiers, applying combination rules, and make
a decision about the positioning of the patient. Various ap-
proaches have been proposed for membership classifier gener-
ation, for example, using different training samples, different
features and different types of classifiers [11]. Common clas-
sifier fusion methods include voting method [12], naive Bayes
[13], Dempster-Shafer (DS) rule in Dempster-Shafer theory
(DST) [14], and so on. In the fusion process, the classifiers
may have different reliabilities (weights) and their decision
results may be contradicting, which inevitably brings conflict
issues. In order to improve classification accuracy, it becomes
particularly important to evaluate the reliability of classifiers
before combining them. For instance, Liu et al. employed
contextual reliability evaluation based on inner reliability and
relative reliability concepts [10]. Dong et al. [15] took two
classes of criteria into account to evaluate the classifiers. The



first class is the conflict between the classifiers and the second
class is the imprecision of the information provided by each
classifier. The effective evaluation of the reliability of multiple
classifiers and their fusion is a challenging problem for HAR
tasks.

In this article, we propose a novel Weighted Fusion of
Multiple Classifiers (WFMC) method for HAR based on BFs
theory. Our main contributions are summarized as follows:

• Four classifiers including support vector machine (SVM),
random forest (RF), multi-layer perceptron (MLP) and lo-
gistic regression (LR) are trained by same training dataset
for acquiring BBAs of human activities. To improve the
multi-classifier fusion accuracy, Belief Jensen–Shannon
(BJS) divergence, Interval distance function and belief
entropy are considered to measure the reliability of the
classifiers and a scoring matrix is constructed.

• The BF-TOPSIS1 multi-criteria decision-making algo-
rithm is employed to calculate the weighting coefficients
for each classifier, and multiple classifiers are fused using
discounting technique and DS rule in this work, the final
decision is made based on the maximum belief mass of
all involved single focal elements.

• We evaluate the performance of our proposed method on
the widely used UCI Smart-phone public dataset.

The rest of this article is organized as follows. Section
II presents the basic concepts of BFs theory, discounting
technique and pignistic probability transformation. Section III
provides a detailed description of the new proposed multi-
classifier fusion strategy for HAR. Section IV presents the
detailed experimental results and discussions. The final section
V gives concluding remarks with some perspectives of this
work.

II. PRELIMINARIES

A. Belief Functions Theory

BFs theory (known also as DST) has been widely used in
multi-sensor information fusion due to its ability to deal with
uncertain and imprecise information [17]. The basic concepts
are introduced in this section based on [14]. Let Θ be a finite
set of elements denoted by

Θ = {θ1, θ2, ..., θn}. (1)

The set Θ is called a frame of discernment (FoD), which
consists of exhaustive and exclusive hypotheses. Information
sources distribute mass of belief to elements of the power set
of the FoD, denoted by 2Θ. For example, if Θ = {θ1, θ2},
then

2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. (2)

A BBA, called a mass function, is defined by the mapping
m(·) : 2Θ 7→ [0, 1] , which satisfies m(∅) = 0 and∑

A∈2Θ

m(A) = 1. (3)

1BF-TOPSIS is an extension of the technique for order preference by
similarity to ideal solution (TOPSIS) based on belief functions (BF) [16].

For a proposition A ⊆ Θ, the belief function is defined as:

Bel(A) =
∑

B⊆A,B∈2Θ

m(B). (4)

The plausibility function is defined as:

Pl(A) =
∑

B∩A̸=∅,B∈2Θ

m(B). (5)

If the focal elements of BBA are all singletons, the BBA
is called Bayesian BBA [14]. In pattern classification, m(A)
represents the support degree of the object associated with
class. For example, if A is a set of classes (e.g., A = {θ1, θ2}),
m(A) denotes the possibility of classification among the class
θ1 and θ2 with respect to the object. In DST, the classical
Dempster’s rule (also called Dempster-Shafer rule, or just DS
rule) is used to combine two (or more2) independent Sources
of Evidence (SoEs), which is denoted as m1⊕m2 and defined
as follows [14]: for ∀A ∈ 2Θ, A ̸= ∅ ,

(m1 ⊕m2)(A)=
1

1− k

∑
B,C∈2Θ|B∩C=A

m1 (B)m2 (C) (6)

with
k =

∑
B,C∈2Θ|B∩C=∅

m1 (B)m2 (C) (7)

where k represents the total conflict degree. If k = 1, it implies
that the two SoEs are in total conflict, and the DS rule cannot
be applied because of division by zero.

B. Classical Discounting Technique

The SoEs may have varying degrees of reliability due to
their different abilities of classification. The discounting oper-
ations are frequently conducted by using a discounting factor α
for each source of evidence. A particular discounting operation
has been introduced by Shafer [14] for the combination of
SoEs with different degrees of reliability. Shafer discounts
the masses of all focal elements by a discounting (weighting)
factor α ∈ [0, 1] to the total ignorance. Each discounted BBA
characterizing each discounted source of evidence is used in
the fusion process. More precisely, for ∀A ∈ 2Θ\{Θ}, the
discounted mass of discounted source of evidence is defined
as follows: {

mα (A) = α ·m (A)
mα (Θ) = 1− α+ α ·m (Θ)

(8)

where α = 1 means that the SoE is completely reliable, and
α = 0 means that the SoE is completely unreliable.

C. Pignistic Probability Transformation

When multi-source information is combined, there may
be disjunctive focal elements with strictly positive mass of
belief. It is worth noting that the final decision is made only
among singleton focal elements. Classically, a BBA is usually
transformed into a (possibly subjective) probability measure

2To keep the presentation as simple as possible, we present DS rule for
only two BBAs, see [14] for its generalization.



for decision making. The Pignistic Probability Transformation
(PPT, or BetP transform) proposed by Smets in [18], [19]
is generally considered as a reasonable in-between decisional
attitude between the max of Bel(.) (pessimistic attitude) and
max of Pl(.) (optimistic attitude). The betting probability
BetP (θi) of any singleton focal element θi of the FoD is
defined by

BetP (θi) =
∑

θi∈X,X∈2Θ

m (X)

|X|
(9)

where |X| refers to the cardinality of a subset X . One
clearly sees tat the BetP transform evenly distributes the belief
assignment of disjunctive focal element to the singleton focal
element it contains.

III. WEIGHTED FUSION OF MULTIPLE CLASSIFIERS

A. Classifiers for HAR

In this article, we use classical machine learning classifiers
[20] such as SVM, RF, MLP and LR to generate BBAs
of human activity, and these classifiers can only give the
mass of belief for singleton focal elements (i.e. we work
with Bayesian BBAs). In the fusion of multiple classifiers,
a BBA can be represented by the output of each classifier.
It is worth noting that we should choose different types of
classifiers as far as possible. In general, when the diversity
between the multiple classifiers is larger, the advantages will
be more obvious. At the same time, we need to guarantee
the individual prediction accuracy of each classifier, which
is the basis for the high accuracy of our WFMC algorithm.
Furthermore, we train each classifier separately using the same
training dataset. Once multiple classifiers are trained, we can
obtain the corresponding BBAs for each category of human
activity.

B. Assessment Criteria

After acquiring multiple BBAs of the human activity to
be identified, we can use DS rule to fuse these BBAs and
further make decisions. In this article we work with DS rule
mainly because of its simplicity even we are aware of its well-
known disputable dictatorial behavior in some cases, and that
is why we use discounting techniques. We will evaluate the
performances of alternative fusion rules in our future works.
From the perspective of conflicts between multiple BBAs
or uncertain information, the reliability of multiple BBAs
should be evaluated before combination, its goal is to eliminate
and reduce the negative influence of unreliable BBAs on the
final recognition accuracy. For this reason, the appropriate
assessment criterion need to be chosen in advance. In this
article, we have selected three assessment criteria, described
as follows:

a) Divergence degree: The Belief Jensen–Shannon (BJS)
divergence measure was presented by Xiao [21] to measure
the divergence between belief functions in DST. It is the gen-
eralization of the Jensen-Shannon divergence [22] where the
probability distribution is replaced with belief mass functions.

Let m1 and m2 be two BBAs on the same FoD, containing
n mutually exclusive and exhaustive hypotheses. The BJS
divergence between m1 and m2 is denoted as:

BJS (m1,m2) =
1

2

[
2n−1∑
i=1

m1(Ai) log

(
2m1(Ai)

m1(Ai) +m2(Ai)

)

+
2n−1∑
i=1

m2(Ai) log

(
2m2(Ai)

m1(Ai) +m2(Ai)

)]
(10)

where Ai is a non empty element of the power-set 2Θ,
and

∑2n−1
i=1 m1(Ai) = 1,

∑2n−1
i=1 m2(Ai) = 1. The lower and

upper bounds of the BJS divergence measure are respectively
equal to zero and one. When m1 has the same BBAs as m2,
the BJS divergence between m1 and m2 is 0. When two BBAs
are completely different, the BJS divergence value is 1. In this
article, the average BJS divergence of a BBA can be calculated
by

B̃JS(m) =
1

N − 1

N∑
j=1

BJS(m,mj) (11)

where N indicates the number of classifiers.
b) Distance degree: The smaller the distance between

a pair of BBAs, the closer their belief values are, and the
better for our decision-making. In this article, the interval
distance [23] is an excellent metric, as it considers the belief
intervals using the belief and plausibility functions of each
focal element to describe the closeness between BBAs. The
interval distance is defined as follows:

dEc
BI (m1,m2)

∆
=

√√√√ 1

2n−1
·
2n−1∑
i=1

[dBI (BI1 (Ai) , BI2 (Ai))]
2

(12)
with

BI (Ai)= [Bel (Ai) , P l (Ai)] (13)

dBI ([a1, b1] , [a2, b2]) =√[
a1 + b1

2
− a2 + b2

2

]2
+

1

3

[
b1 − a1

2
− b2 − a2

2

]2 .

(14)
The average interval distance of one set of BBAs can be

calculated by

d̃Ec
BI(m) =

1

N − 1

N∑
j=1

dEc
BI(m,mj) (15)

where N indicates the number of classifiers. The larger the
value of the interval distance, the greater the degree of conflict
between the current BBA and other BBAs, the less reliable it
will be, and vice versa.

c) Uncertain degree: A novel effective measure of uncer-
tainty (i.e. entropy) of BBAs is proposed by Dezert [24], this
new continuous measure is effective in the sense that it satisfies



a small number of very natural and essential desiderata. The
new entropy measure is defined by

U(m) =
∑

X∈2Θ

s (X) (16)

with

s(X)
∆
= −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

(17)
u(X)

∆
= Pl(X)−Bel(X). (18)

s(X) is the uncertainty contribution of X in U(m). This
measure of uncertainty coincides with Shannon entropy for any
Bayesian BBA, it can be also interpreted as an effective gener-
alization of Shannon entropy. We always have U(m) ≥ 0, and
U(m) < U(mv) if the BBA m(.) is different of the vacuous
BBA mv(.) defined by mv(Θ) = 1. It is worth noting that it is
possible that a non-Bayesian BBA can have an entropy value
U(m) smaller than the maximum of Shannon entropy given
by log(|Θ|). When X is a single focal element and satisfies
m(X) = 1, U(m) has a minimum value of 0, which indicates
that the source of evidence is completely certain and it plays
an important role in the final combination.

C. Reliability Evaluation of Classifiers
In this article, each classifier can be regarded as a evidence

source. We obtain the reliability of one classifier by evaluating
its output, as follows:

a) Construction of scoring matrix: Supposing that there
exists N classifiers over the same FoD, and their BBAs
composition are as follows:

A1 A2 · · · AM

C1 m1 (A1) m1 (A2) · · · m1 (AM )
C2 m2 (A1) m2 (A2) · · · m2 (AM )
...

...
...

. . .
...

CN mN (A1) mN (A2) · · · mN (AM )

(19)

where Ai ∈ 2Θ, and Cj , j = 1, 2, ..., N represents the jth
classifier. Then we calculate the scores of each classifier
according to the assessment criteria Critη, η = 1, 2, ..., q and
the scoring matrix S can be generated as follows:

C1 C2 · · · Cj · · · CN

Crit1 S11 S12 · · · S1j · · · S1N

Crit2 S21 S22 · · · S2j · · · S2N

...
...

...
. . .

...
. . .

...
Critq Sq1 Sq2 · · · Sqj · · · SqN

(20)

In this article, q = 3, that is: Crit1
∆
= BJS(·), Crit2

∆
=

dEc
BI(·) and Crit3

∆
= U(·).

b) Construction of local BBAs for classifiers: Consid-
ering the assessment criteria and their corresponding evalu-
ation vectors, we can calculate the positive support degree
Supη (Cj) and negative support degree Infη (Cj) for each
classifier by the following equations (see [16] for details)

Supη (Cj)
∆
=

∑
κ∈{1,··· ,N}|Sηκ≤Sηj

|Sηj − Sηκ|. (21)

Infη (Cj)
∆
= −

∑
κ∈{1,··· ,N}|Sηκ≥Sηj

|Sηj − Sηκ|. (22)

Then, the maximum value Cη
max and minimum value Cη

min

of the classifier Cj under the assessment criteria Critη can be
obtained by the following equations.

Cη
max

∆
= maxjSupη (Cj) (23)

Cη
min

∆
= minjInfη (Cj) . (24)

Next, the construction of local BBAs is based on the method
presented in [16] and defined as follows:

mj−η (Cj)
∆
= Belη (Cj)

mj−η

(
Cj

) ∆
= 1− Plη (Cj)

mj−η

(
Cj ∪ Cj

) ∆
= Plη (Cj)−Belη (Cj)

(25)

with 

Belη (Cj)
∆
=

Supη (Cj)

Cη
max

Belη
(
Cj

) ∆
=

Infη (Cj)

Cη
min

Plη (Cj)
∆
= 1− Infη (Cj)

Cη
min

(26)

where mj−η (Cj), mj−η

(
Cj

)
and mj−η

(
Cj ∪ Cj

)
respec-

tively represent the positive support belief, negative support
belief and uncertainty belief of the classifier Cj based on the
assessment criteria Critη .

c) Calculation of weight factors: We employ the BF-
TOPSIS algorithm [16] to calculate the weight factors for each
classifier and the specific steps are as follows.

• Step 1 Calculate the local BBAs mj−η (Cj), mj−η

(
Cj

)
and mj−η

(
Cj ∪ Cj

)
of each classifier according to the

scoring matrix.
• Step 2 For each classifier, calculate dEc

BI

(
mj−η,m

best
η

)
and dEc

BI

(
mj−η,m

worst
η

)
, mbest

η and mworst
η represent

the best and the worst ideal BBAs based on the assess-
ment criteria Critη , respectively, where mbest

η (Cj) = 1

and mworst
η

(
Cj

)
= 1.

• Step 3 Calculate the weighted average distance dbest (Cj)
and dworst (Cj) of classifier, where

dbest (Cj)
∆
=

N∑
η=1

υ (Critη) · dEc
BI

(
mj−η,m

best
η

)
(27)

dworst (Cj)
∆
=

N∑
η=1

υ (Critη)·dEc
BI

(
mj−η,m

worst
η

)
(28)

where υ (Critη) represents the weight of assessment
criteria Critη . In this article, υ (Crit1) = υ (Crit2) =
υ (Crit3) = 1/3 .



• Step 4 The final weight of the classifier Cj is defined as
follows:

ω (Cj) =
dworst (Cj)

dworst (Cj) + dbest (Cj)
(29)

In the proposed WFMC algorithm, when a classifier is in
complete conflict with other classifiers, it will be supported
to a small degree. According to the reliability evaluation
algorithm, the classifier will receive a small weighting factor,
which discounts the masses of all focal elements to the total
ignorance. This reduces the total conflict between classifiers
in the fusion process, making the total conflict in the proposed
WFMC algorithm always less than 1, thus improving the
reliability of the fusion results.

After obtaining the weight factors for each classifier, mul-
tiple classifiers can be fused using the classical (i.e. Shafer’s)
discounting technique and DS rule, and decision can be
made based on the maximum BetP probability value. For the
convenience of implementation, the brief framework of the
WFMC method is given in Fig. 1.

Fig. 1. The framework of WFMC method.

As we can see in Fig. 1, the proposed WFMC algorithm
includes four main steps:

• Step 1 (Classifiers trained): Multiple classifiers of dif-
ferent types are trained by the same training dataset for
acquiring BBAs.

• Step 2 (Classifiers evaluation): For each BBA generated
by the classifier, a reliability evaluation is performed
using three criteria and a scoring matrix is constructed.

• Step 3 (Calculation of weight factors): The BF-TOPSIS
algorithm is employed to calculate the weight factors for
each classifier based on the scoring matrix.

• Step 4 (Discounting fusion): Multiple classifiers are
combined sequentially using the classical discounting
technique and DS rule, the final decision can be made
based on the maximum BetP probability.

IV. EXPERIMENTS AND DISCUSSIONS

A. UCI Smartphone Dataset

In this article, the UCI Smartphone dataset is considered
for experimental verification. In UCI Smartphone dataset,
the experiments have been carried out with a group of 30
volunteers within an age bracket of 19-48 years. Each person
performed six activities (walking, walking upstairs, walking
downstairs, sitting, standing and laying) wearing a smartphone
on the waist. Three-axial linear acceleration and three-axial
angular velocity at a constant rate of 50Hz were captured by
using its embedded accelerometer and gyroscope. The sensor
signals (accelerometer and gyroscope) were pre-processed
by applying noise filters and then sampled in fixed-width
sliding windows of 2.56 sec and 50 percent overlap (128
readings/window). More descriptions of the UCI Smart-phone
dataset can be found in [25].

B. Example

In order to show how our WFMC method works, an example
is given to illustrate its specific procedures. Firstly, the focal
element in BFs theory can be applied to mathematically
represent human activities. Specifically θ1

∆
= walking, θ2

∆
=

walking upstairs, θ3
∆
= walking downstairs, θ4

∆
= sitting, θ5

∆
=

standing, θ6
∆
= laying. For the 480th sample data with a true

label of (standing) in the test dataset, the corresponding BBAs
generated by four classifiers are shown in Table I. According
to the principle of maximum probability, it can be seen that
SVM and RF support θ4 (sitting) while MLP and LR support
θ5 (standing), which causes trouble to make decisions. We
utilize DS rule to combine the four classifiers and the fusion
results have the maximum belief value of 0.567 to support θ4
(sitting), which is not what we want.

Next, we use WFMC algorithm for testing. The scoring
matrix is acquired based on (9), (13) and (14), as shown in
Table II. Then, we can get the positive support and negative
support degree of each classifier according to (17) and (18),
which are given in Table III and Table IV. It can be seen that
BJS(·) has the highest support for RF, while U(·) has the
highest support for SVM, and dEc

BI(·) supports both RF and
MLP. After that, the derived local BBAs of each classifier can
be also obtained using (21) shown in Table V, Table VI and
Table VII. And then by using step 2 and step 3 in BF-TOPSIS
algorithm, we can obtain distance dbest (Cj) and dworst (Cj)
of classifiers. The weight coefficients of each classifier can
be further obtained based on (27), as shown in Table VIII. It
can be seen that SVM acquires the smallest weighting factor,
while MLP gets the largest weighting factor and RF has a
similar weighting factor to MLP, which indicates that MLP
has the highest reliability for the current activity. Finally, four
classifiers are combined using DS rule (6) generalized3 for
four BBAs, and the probability values for each category of
activity are obtained based on (9), as shown in Table IX. We

3Because DS rule is associative, the four BBAs can also be fused sequen-
tially and the sequential order of DS fusion does not impact the final result.



can see that θ5 (standing) has the maximum BetP probability
value, which is consistent with the true label.

TABLE I
BBAS OF THE 480TH TEST SAMPLE.

θ1 θ2 θ3 θ4 θ5 θ6 Result
SVM 0.0 0.0 0.0 0.844 0.156 0.0 θ4
RF 0.0 0.0 0.0 0.573 0.427 0.0 θ4

MLP 0.0 0.0 0.0 0.349 0.651 0.0 θ5
LR 0.0 0.0 0.0 0.251 0.749 0.0 θ5

DS rule 0.0 0.0 0.0 0.567 0.433 0.0 θ4

TABLE II
SCORING MATRIX OF FOUR CLASSIFIERS.

SVM RF MLP LR
BJS(·) 0.218 0.043 0.056 0.088
dEc
BI(·) 0.113 0.068 0.068 0.084
U(·) 0.628 0.984 0.935 0.8162

TABLE III
POSITIVE SUPPORT DEGREE Supη(·) OF FOUR CLASSIFIERS.

Supη(·) SVM RF MLP LR
BJS(·) 0.0 0.232 0.194 0.130
dEc
BI(·) 0.0 0.061 0.061 0.029
U(·) 0.852 0.0 0.05 0.287

TABLE IV
NEGATIVE SUPPORT DEGREE Infη(·) OF FOUR CLASSIFIERS.

Infη(·) SVM RF MLP LR
BJS(·) -0.466 0.0 -0.013 -0.077
dEc
BI(·) -0.119 0.0 0.0 -0.033
U(·) 0.0 -0.575 -0.425 -0.188

TABLE V
LOCAL BBAS OF FOUR CLASSIFIERS ON BJS(·).

SVM RF MLP LR
mBJS(·) (Cj) 0.0 1.0 0.835 0.560
mBJS(·)

(
Cj

)
1.0 0.0 0.027 0.164

mBJS(·)
(
Cj ∪ Cj

)
0.0 0.0 0.138 0.276

TABLE VI
LOCAL BBAS OF FOUR CLASSIFIERS ON dEc

BI(·).

SVM RF MLP LR
mdEc

BI
(·) (Cj) 0.0 1.0 1.0 0.470

mdEc
BI

(·)
(
Cj

)
1.0 0.0 0.0 0.273

mdEc
BI

(·)
(
Cj ∪ Cj

)
0.0 0.0 0.0 0.257

C. Measure of Performances
The classical Accuracy is applied to measure the perfor-

mance of our proposed method. The specific definitions are as
follows:

Accuracy=
1

n

n∑
i=1

TPi + TNi

TPi + TNi + FPi + FNi
(30)

TABLE VII
LOCAL BBAS OF FOUR CLASSIFIERS ON U(·).

SVM RF MLP LR
mU(·) (Cj) 1.0 0.0 0.059 0.337
mU(·)

(
Cj

)
0.0 1.0 0.740 0.327

mU(·)
(
Cj ∪ Cj

)
0.0 0.0 0.202 0.336

TABLE VIII
WEIGHTED COEFFICIENTS OF FOUR CLASSIFIERS.

dbest (Cj) dworst (Cj) ω (Cj)

SVM 0.471 0.236 0.333
RF 0.236 0.471 0.667

MLP 0.238 0.506 0.680
LR 0.334 0.461 0.580

TABLE IX
RESULTS OF THE WFMC METHOD.

θ1 θ2 θ3 θ4 θ5 θ6 Θ
Weighted

fusion 0.0 0.0 0.0 0.389 0.548 0.0 0.063

BetP (·) 0.01 0.01 0.01 0.399 0.558 0.01 0.0

where i denotes class index and n is the number of classes.
TPi, TNi, FNi and FNi are respectively True Positives, True
Negatives, False Positives and False Negatives.

D. Experimental Results and Analysis

According to the specific steps described in Fig. 1, we
first train four classifiers using 7352 samples, including a
SVM, a RF, a MLP and a LR. For the parameters of SVM,
the sigmoid function is selected as kernel function, and the
penalty parameter is set to 1.0. For the parameters of RF,
the number of trees in the forest is set to 150. For the
parameters of MLP, the number of hidden layers is set to
300. For the parameters of LR, the penalty is set to L1.
Default parameters are selected for the remaining parameters
of four classifiers. In this article, features are extracted from
raw sensor data for model training, including 11 time-domain
and 6 frequency-domain features as shown in Table II. Then
the trained four classifiers are employed to predict the testing
dataset containing 2947 samples. Furthermore, we fuse the
four classifiers using the DS rule and the proposed WFMC
algorithm, respectively, the results are shown in the Table III,
and the related confusion matrixs are shown in Fig. 2 and
Fig. 3. We can find that LR has the highest accuracy among
the individual classifier with 93.52%, which is weaker than
the DS rule approach. It indicates that individual classifier
has limited classification ability. Moreover, we can clearly
see that the performance of the proposed WFMC method is
significantly better than other mentioned method, which shows
the effectiveness of our strategy.

Compared to the approach of traditional DS rule, the pro-
posed method effectively improves the recognition accuracy.
The misclassification where sitting was incorrectly recognized
as standing is reduced from 12.4% to 8.4% and the misclassi-
fication where walking downstairs was incorrectly recognized



TABLE X
FEATURE EXTRACTION

Domain Features

Time

Mean value, Standard deviation, Median
absolute value, Maximum, Minimum, Signal
magnitude area, Average sum of the squares,

Interquartile range, Signal entropy,
Autoregression coefficients, Correlation

Frequency
Largest frequency component, Weighted average,

Skewness, Kurtosis, Energy of a frequency
interval, Angle between two vectors

Fig. 2. Confusion matrix on UCI smartphone dataset by DS rule.

Fig. 3. Confusion matrix on UCI smartphone dataset by the WFMC method.

as walking upstairs is reduced from 6.7% to 4.3%. This is due
to the fact that the three evaluation criteria we have given are
a good measure of the conflict between multiple classifiers
and their own uncertainty, and the BF-TOPSIS algorithm
efficiently calculates the weight coefficients for each classifier,
which improves the accuracy of the multi-classifier fusion.

Furthermore, we compare with some state-of-the-art ap-
proaches in literatures to demonstrate the superiority of our
method, including Activity Graph Based Convolutional Neural
Network [26], DSmT-Based Kernel Density Estimation [6],
Sensor fusion and deep recurrent neural network-based [7],
Two-stream Transformer Network [27], Hesitant Fuzzy Belief

TABLE XI
COMPARISON OF WFMC METHOD WITH TRADITIONAL METHODS ON THE

UCI SMARTPHONE DATASET.

Method Accuracy Time (s)
SVM 91.75% 9.08
RF 92.94% 2.06

MLP 92.53% 1.95
LR 93.52% 1.97

DS rule 94.43% 26.01
WFMC 96.20% 33.10

Structure Based Fused Extreme Learning Machine [28]. As
we can see in Table IV, our method outperforms these state-
of-the-art methods in terms of accuracy.

TABLE XII
COMPARISON OF WFMC METHOD WITH STATE-OF-THE-ART METHODS

ON THE UCI SMARTPHONE DATASET.

Method Accuracy Time(s)
Activity Graph CNN-Based [26] 90.17% 11.34

DSmT-Based Kernel Density Estimation [6] 93.05% 24.46
Sensor fusion and deep RNN-based [7] 94.27% 15.95
Two-stream Transformer Network [27] 94.12% 20.19
Hesitant Fuzzy Belief Based ELM [28] 95.20% 23.78

WFMC 96.20% 33.10

In terms of time consumption, our WFMC method was
programming in Python 3.7 with a hardware of Intel Core i7-
8700 CPU at 3.20 GHz and 16 GB RAM. We use 2947 test
samples and counted the total time consumed by each method.
As can be seen, traditional machine learning algorithms have
the advantage of being fast. As our WFMC algorithm is devel-
oped based on DST, it inevitably increases the computational
burden. Nevertheless, the average elapsed time per test sample
is about 11ms, which is sufficient for practical applications.

V. CONCLUSION

In this article, we have proposed a novel weighted fusion
of multiple classifiers based on belief functions theory for
human activity recognition. Firstly, we train four classical ma-
chine learning classifiers by using time-domain and frequency-
domain features to obtain basic belief assignments of human
activities. Secondly, we evaluate the outputs of four classifiers
using three criteria and construct a scoring matrix. Thirdly, we
use the multi-criteria BF-TOPSIS algorithm to calculate the
weight coefficients of each classifier. Finally, we adopt a dis-
counting technique and DS rule to combine the four classifiers,
and make decisions thanks to the pignistic probability values.
Several experiments have been conducted based on the UCI
Smartphone dataset. The experimental results prove that our
WFMC approach can significantly improve the classification
accuracy with respect to several classical and state-of-the-art
methods.

In our future works, we will evaluate a better measure of
divergence between belief functions based on a more effective
definition of relative entropy and cross-entropy. We will also
explore the possibility to adapt our Stable Preference Ordering
Towards Ideal Solution (SPOTIS) rank reversal multi-criteria



method for HAR instead using the BF-TOPSIS method which
is not robust to rank reversal. We will test and compare
an other decision-making technique based on belief-interval
distance, and work on how to reduce the complexity of multi-
classifier fusion for HAR in order to apply it to an online real
activity recognition system.
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