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Abstract— We propose a robotic-assisted abdominal puncture
intervention with respiratory status monitoring in this paper.
We constructed the collected respiratory data as point cloud
data and established a respiratory state monitoring model
using the Pointnet++ point cloud classification network. During
normal respiration, We divided the respiratory signal into four
phases: inspiration, peak inspiration, expiration, and the valley
of expiration, and used the peak respiratory phase as the
robot’s needle Intervention moment. Experiments with simu-
lated robot-assisted puncture interventions show the proposed
scheme is feasible in a robot-assisted puncture intervention
system.

I. INTRODUCTION

The respiratory motion of the human body cause irregular
displacement of abdominal organs and tumours. Therefore,
robotic-assisted abdominal puncture interventions must have
a solution to the respiratory problem.

Real-time tracking of the tumour is one of the best
solutions to the respiratory problem. It can achieve by estab-
lishing a correlation model between the monitored external
signal and the internal tumour motion trajectory. To track the
tumour in real-time, a puncture fiducial needle can be im-
planted near the tumour to establish a real-time deformation
model of the internal fiducial marker and the tumour[1]. A
respiratory motion model also can be found from the surface
fiducial marker[2]. An artificial neural network model can
also predict the tumor position under respiratory motion in
real-time[3]. These methods are all based on the assumption
that external signals strongly correlate with internal tumour
motion. However, this assumption does not necessarily hold
from a physiological perspective [4].

Respiratory gating is the simplest and most effective
solution to the problem of respiratory during robot-assisted
abdominal puncture interventions. Varian USA manufactures
the True Beam system [5], which is the world’s most
advanced respiratory gating device and has been widely used
in oncology radiology. In addition, it is possible to apply

This work was supported in part by the Zhuhai Industry-University-
Research Collaboration Program (ZH22017002210011PWC), National
Key Research and Development Program of China (2018YFA0704100,
2018YFA0704104), and the National Natural Science Foundation of China
(81827805), Project funded by China Postdoctoral Science Foundation
(2021M700772).

1Nanjing University of Information Science & Technology, Nanjing
210044 China

2Hanglok-Tech Co., Ltd., Hengqin 519000, China
3Center of Interventional Radiology and Vascular Surgery, Department

of Radiology, Zhongda Hospital, Medical School, Southeast University,
Nanjing 210009, China

*Corresponding author: G.-J. Teng (gjteng@vip.sina.com).

Fig. 1. Robotic Assisted puncture intervention scheme

respiratory gating to abdominal puncture. It is achieved by
quantifying registration errors in real-time to compensate for
robot motion in surgical navigation [6].

This paper aims to construct a solution to the problem of
respiratory during robot-assisted abdominal puncture inter-
ventions, using respiratory status monitoring and respiratory
gating techniques.

II. METHODOLOGY

The robotic abdominal puncture intervention we con-
structed consists of respiratory status monitoring and the
robot control module, as shown in Figure 1. The respiratory
status monitoring module uses the monitored respiratory
status as a command to guide the robot’s movement in real-
time. When an abnormal respiratory state is detected, the
robot hovers or returns to its initial posture and waits. When
a normal state is detected, the peak inspiratory moment is
determined as the moment of needle insertion by analyzing
and processing the average respiratory signal.

To achieve real-time respiratory status monitoring, res-
piratory data were collected for normal respiratory, deep
respiratory, cough, and other abnormal movement conditions.
The data was collected with the subject lying still on the
acquisition platform, and five NIR reflective spheres were
attached to the right rib cage of the issue in a set distribution
as a fiducial mark, as shown in Figure 2. Respiratory data
were collected from 19 healthy adult males for 3 hours using
the NDI Polaris Vega ST.

The point cloud data is constructed from the continuously
transformed coordinate values of the five fiducial markers
over one second. The point cloud classification network
model Pointnet++ [7] changes the respiratory state clas-
sification into a point cloud classification question. Since
the point cloud data of respiration contains fewer points



Fig. 2. (a) shows how respiratory data is collected and where the fiducial
marker is attached. (b) Shows an experimental platform for simulating
abdominal puncture interventions

Fig. 3. Accuracy of classification for each respiratory state

and less information, the original feature extraction layer
of Pointnet++ is reduced by half. The absoulte accuracy
of the respiratory state classification model is 81%, where
the accuracy of the individual respiratory states is shown in
Figure 3.

When the respiratory state monitoring model monitors the
normal respiratory state, a respiratory curve is inscribed using
the amplitude of motion of the fiducial marker center of
mass. It is filtered into a stable sinusoidal-like turn using
an averaging smoothing method by eq(1).

x
′
i =

(xi−1 + xi+1)/2+ xi

2
(1)

where i = (2,3, ...n− 1), and x ∈ X = {x1,x2, ...xn} is the
amplitude of motion of the fiducial marker center of mass
after standardization.

The normal respiratory signal was divided into four res-
piratory phases based on the monotonicity of the curve:
inspiration, expiration, peaks, and valleys. We have observed
that the increasing curve corresponds to the inspiratory phase
and the exhalation to the decreasing curve. We have observed
that the increasing curve corresponds to the inspiratory
phase and the exhalation to the decreasing curve. The peak
respiratory phase is shown in Figure 4.

The optimum puncture time for the robot is determined
from the preoperative CT recording of the respiratory phase.

Fig. 4. (a) is the original normal respiratory signal collected. (b) shows
the phase of the respiratory peak captured after smoothing.

During abdominal puncture interventions, if a respiratory
phase can be traced intraoperatively to be similar to the
preoperative CT, the tumor’s location in the target area is
identical a the preoperative CT. In the clinic, the respiratory
phase recorded on the preoperative CT is often the peak
respiratory.

III. RESULTS

By collecting respiratory data from different respiratory
states and constructing them as point clouds, we achieved
real-time monitoring of the intraoperative patient’s respira-
tory state based on a point cloud classification model. In
the normal respiratory state, we divide the respiratory signal
into four phases and use the peak respiratory phase as the
moment of puncture intervention for the surgical robot.

IV. CONCLUSIONS AND DISCUSSION

The respiratory status monitoring model with robot control
establishes a safety warning mechanism for the abdominal
puncture intervention robot, reducing the risk of surgery due
to abnormal respiratory status. Finally, we expect to be able
to implement the respiratory gating technique with the patient
in a free-respiratory state. This will avoid preoperative respi-
ratory exercises and reduce intraoperative patient discomfort.
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