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Abstract. Gottschalk’s surjunctivity conjecture for a group G states
that it is impossible for cellular automata (CA) over the universe G with
finite alphabet to produce strict embeddings of the full shift into itself. A
group universe G satisfying Gottschalk’s surjunctivity conjecture is called
a surjunctive group. The surjunctivity theorem of Gromov and Weiss
shows that every sofic group is surjunctive. In this paper, we study the
surjunctivity of local perturbations of CA and more generally of non-
uniform cellular automata (NUCA) with finite memory and uniformly
bounded singularity over surjunctive group universes. In particular, we
show that such a NUCA must be invertible whenever it is reversible. We
also obtain similar results which extend to the class of NUCA a certain
dual-surjunctivity theorem of Capobianco, Kari, and Taati for CA.

Keywords: Gottschalk’s conjecture · surjunctivity · sofic group· cellu-
lar automata · non-uniform cellular automata · asynchronous cellular
automata · reversibility

1 Introduction

In computational science and engineering, cellular automata (CA), especially re-
versible CA, arise as a fundamental and powerful model of simulation for various
physical and biological systems [38] whose global evolution is described by spa-
tially uniform local transition rules. In computer science, it is well-known that the
CA called Game of Life of Conway [14] is Turing complete. Some notable recent
mathematical theory of CA achieves a dynamical characterization of amenable
groups by the Garden of Eden theorem for CA (pre-injectivity ðñ surjectivity,
see Section 1.1 below) [22], [23], [10], [1] and establishes the equivalence between
Kaplansky’s stable finiteness conjecture [18] for group rings and Gottschalk’s sur-
junctivity conjecture (injectivity ùñ surjectivity) [16] for linear CA [30], [34],
[31], [9]. In this paper, we first explore Gottschalk’s surjunctivity conjecture (see
Section 1.2) over surjunctive group universes (see Definition 2), e.g. sofic groups
such as amenable or residually finite groups, for non-uniform CA (NUCA) with
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finite memory. We then obtain an extension of a well-known dual version of
Gottschalk’s surjunctivity conjecture due to Capobianco, Kari, and Taati [6]
(see Section 1.2) over the class of post-injunctive groups (see Definition 3), e.g.
sofic groups, also for NUCA with finite memory. Our main results cover NUCA
which are local perturbations of CA in which a finite number of cells can follow
local transition rules different from the local transition rule of the underlying
CA. Among applications, such NUCA have close connections with asynchronous
CA. For example, if F is an asynchronous CA in which only a finite number of
cells are allowed to update at each (discrete) time, e.g. fully asynchronous CA
[13] and skew-asynchronous CA [36], then F can be identified with a sequence
pFnqnPN of local perturbations of the identity CA: the system F at time n P N
is exactly the NUCA Fn ˝ Fn´1 ˝ ¨ ¨ ¨ ˝ F0.

We generalize our results to a certain class of global perturbations of CA with
uniformly bounded singularity. Essentially by definition and basic properties of
CA, every reversible CA with finite memory over a surjunctive group universe
must be invertible (see Section 1.1 for the exact definitions). Gottschalk’s sur-
junctivity conjecture amounts to say that every group is surjunctive. Hence, our
results extend Gottschalk’s surjunctivity conjecture by showing that over sur-
junctive group universes, reversible NUCA with finite memory and uniformly
bounded singularity must be invertible (see Theorem A and Theorem C).

1.1 Basic definitions

We recall notions of symbolic dynamics. Given a discrete set A and a group G,
a configuration x P AG is a map x : G Ñ A. Two configurations x, y P AG are
asymptotic if x|GzE “ y|GzE for some finite subset E Ă G. The Bernoulli shift
action G ˆ AG Ñ AG is defined by pg, xq ÞÑ gx, where pgxqphq “ xpg´1hq for
g, h P G, x P AG. The full shift AG is equipped with the prodiscrete topology.
For each x P AG, we define Σpxq “ tgx : g P Gu Ă AG as the smallest closed
subshift containing x.

Following von Neumann and Ulam [24], we define a CA over the group G
(the universe) and the set A (the alphabet) as a G-equivariant and uniformly
continuous self-map AG ý [7], [17]. One usually refers to each element g P G
as a cell of the universe. Then every CA is uniform in the sense that all the
cells follow the same local transition map. More generally, when different cells
can evolve according to different local transition maps to break down the above
uniformity, we obtain NUCA [11], [12], [29, Definition 1.1]:

Definition 1. Given a group G and an alphabet A, let M Ă G and let S “ AAM

be the set of all maps AM Ñ A. For s P SG, we define the NUCA σs : A
G Ñ AG

by σspxqpgq “ spgqppg´1xq|M q for all x P AG and g P G.

The set M is called a memory and s P SG the configuration of local transi-
tion maps or local defining maps of σs. Every CA is thus a NUCA with finite
memory and constant configuration of local defining maps. Conversely, we regard
NUCA as global perturbations of CA. When s, t P SG are asymptotic, σs and
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σt are mutually local perturbations of each other. We also observe that NUCA
with finite memory are precisely uniformly continuous selfmaps AG ý. As for
CA, such NUCA satisfy the closed image property [29, Theorem 4.4], several
decidable and undecidable properties [11], [19], [35] and variants of the Garden
of Eden theorem [25], [32].

We will analyze in this paper the relations between the following dynamic
properties of σs. We say that σs is pre-injective if σspxq “ σspyq implies x “ y
whenever x, y P AG are asymptotic. Similarly, σs is post-surjective if for all
x, y P AG with y asymptotic to σspxq, then y “ σspzq for some z P AG asymptotic
to x. By the closed image property, it is known that post-surjectivity implies
surjectivity for NUCA with finite memory. We say that σs is stably injective, resp.
stably post-surjective, if σp is injective, resp. post-surjective, for every p P Σpsq.

The NUCA σs is said to be reversible or left-invertible if there exists a NUCA
with finite memory τ : AG Ñ AG such that τ ˝ σs “ IdAG . A NUCA with finite
memory is reversible if and only if it is stably injective (see [29, Theorem A]).
We say that σs is invertible if it is bijective and the inverse map σ´1

s is a NUCA
with finite memory [29]. We define also stable invertibility which is in general
stronger than invertibility, namely, σs is stably invertible if there exist N Ă G

finite and t P TG where T “ AAN

such that for every p P Σpsq, we have
σp ˝ σq “ σq ˝ σp “ Id for some q P Σptq. In fact, we will show (see Lemma 1)
that every invertible NUCA with finite memory over a finite alphabet and a
countable group universe is automatically stably invertible.

Remark 1. For CA, note that stable invertibility, resp. stable injectivity, resp.
stable post-surjectivity, is equivalent to invertibility, resp. injectivity, resp. post-
surjectivity since Σpsq “ tsu if the configuration s P SG is constant.

1.2 Main results

Gottschalk’s surjunctivity conjecture [16] asserts that over any group universe,
every CA with finite alphabet must be surjunctive (injectivity ùñ surjectivity).
In other words, it is impossible for CA to produce strict embeddings of the full
shift into itself.

Definition 2. A group G is said to be surjunctive if for every finite alphabet A,
every injective CA τ : AG Ñ AG must be surjective.

Every CA with finite memory is injective if and only if it is reversible. There-
fore, a group G is surjunctive if and only if for every finite alphabet A, every
reversible CA τ : AG Ñ AG must be invertible. Over the wide class of sofic
group universes, the surjunctivity conjecture was famously shown by Gromov
and Weiss in [15], [37].

Theorem 1 (Gromov-Weiss). Every sofic group is surjunctive.

The class of sofic groups was first introduced by Gromov [15] and includes all
amenable groups and all residually finite groups. The question of whether there
exists a non-sofic group is still open.
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The situation for the surjunctivity of NUCA admits some complications.
While injective and even reversible NUCA with finite memory may fail to be
surjective (see [29, Example 14.3]), results in [29] show that reversible local per-
turbations of CA with finite memory over an amenable group or an residually
finite group universe must be surjective. More generally, we obtain an exten-
sion (Theorem A) to cover all reversible, or equivalently stably injective, local
perturbations of CA over surjunctive group universes. We also strengthen the
conclusion by showing that such NUCA must be stably invertible (see Section 4).

Theorem A Let M be a finite subset of a countable surjunctive group G. Let
A be a finite alphabet and S “ AAM

. Suppose that σs is stably injective for some
asymptotically constant s P SG. Then σs is stably invertible.

Combining with Theorem 1 and the result in [29, Theorem B] where we can
replace the stable injectivity by the weaker injectivity condition whenever G is an
amenable group, we obtain the following general surjunctivity and invertibility
result for NUCA which are local perturbations of CA.

Corollary 1. Let M be a finite subset of a countable group G. Let A be a finite
alphabet and S “ AAM

. Let s P SG be an asymptotic constant configuration.
Then σs is stably invertible in each of the following cases:

(i) G is an amenable group and σs is injective;
(ii) G is a sofic group and σs is reversible.

Our next results concern a certain dual-surjunctivity version of Gottschalk’s
conjecture introduced by Capobianco, Kari, and Taati in [6] which states that
every post-surjective CA over a group universe and a finite alphabet is also
pre-injective. The authors settled in the same paper [6] the case of sofic group
universes. See also [28] for some extensions.

Theorem 2 (Capobianco-Kari-Taati). Let G be a sofic group and let A be
a finite alphabet. Then every post-surjective CA τ : AG Ñ AG is pre-injective.

The above result motivates the following notion of post-injunctive groups.

Definition 3. A group G is post-injunctive if for every finite alphabet A, every
post-surjective CA τ : AG Ñ AG must be pre-injective.

By a similar technique as in the proof of Theorem A, we establish (see Sec-
tion 5) the following extension of the above result of Capobianco, Kari, and
Taati to cover the class of stably post-surjective local perturbations of CA over
post-injunctive group universes.

Theorem B Let G be a countable post-injunctive group and let A be a finite
alphabet. Let M Ă G be finite and S “ AAM

. Let s P SG be asymptotically
constant such that σs is stably post-surjective. Then σs is stably invertible.
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Our main results also hold for global perturbations of CA with uniformly
bounded singularity. A NUCA σs : A

G Ñ AG has uniformly bounded singularity
if for every finite subset E Ă G with 1G P E “ E´1, we can find a finite subset
F Ă G containing E such that the restriction s|FEzF is constant. It is clear that
σs has uniformly bounded singularity if s is asymptotically constant. When the
universe G is a residually finite group, our notion of uniformly bounded singular-
ity is closely related but not equivalent to the notion of (periodically) bounded
singularity for NUCA defined in [29, Definition 10.1]. We obtain the following
generalizations of Theorem A and Theorem B (see Section 6 and Section 7).

Theorem C Let M be a finite subset of a countable surjunctive group G. Let
A be a finite alphabet and let S “ AAM

. Suppose that σs : A
G Ñ AG is stably

injective for some s P SG with uniformly bounded singularity. Then σs is stably
invertible.

Theorem D Let G be a finitely generated post-injunctive group and let A be a
finite alphabet. Let M Ă G be finite and let S “ AAM

. Suppose that σs : A
G Ñ

AG is stably post-surjective for some s P SG with uniformly bounded singularity.
Then σs is stably invertible.

1.3 Perspectives

Our main results motivate the following natural questions which have an affirma-
tive answer for surjunctive group universes and post-injunctive group universes
respectively.

Question 1. Let G be a group universe and let A be a finite alphabet. Let M Ă G

be finite and let S “ AAM

. Suppose that σs : A
G Ñ AG is stably injective for

some asymptotically constant s P SG. Is σs stably invertible?

Question 2. Let G be a group universe and let A be a finite alphabet. Let M Ă G

be finite and let S “ AAM

. Suppose that σs : A
G Ñ AG is stably post-surjective

for some asymptotically constant s P SG. Is σs stably invertible?

We can actually show (see Proposition 1 below) that Question 1 and Ques-
tion 2 are equivalent when restricted to the class of linear NUCA with finite
memory. Given a vector space V not necessarily finite, then V G is a vector space
with component-wise operations and a NUCA τ : V G Ñ V G is said to be linear
if it is also a linear map of vector spaces or equivalently, if its local transition
maps are linear.

Proposition 1. Let G be a countable group and let A be a finite vector space
alphabet. Question 1 has an affirmative answer for all linear NUCA τ : AG Ñ AG

with finite memory and uniformly bounded singularity if and only if so does
Question 2.
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Proof. Let M Ă G be a finite subset and let s P SG where S “ LpAM , Aq. By
linearity, we define spg,mq P EndpAq for all m P M and g P G by spgqpvq “
ř

mPM spg,mqvpmq for all v P AM . By setting spg,mq “ 0 for m P GzM , we
obtain for every v P AG that spgqpvq “

ř

hPG spg, hqvphq. Let T “ LpA˚M´1

, A˚q

where A˚ is the dual space of A. We use the right superscript T to denote the
transpose of linear maps. The dual configuration of local defining maps s˚ P TG

is given by s˚pg,mq :“ spgm,m´1qT for all g,m P G. We define σ˚
s :“ σs˚ to

be the dual linear NUCA of σs. It is immediate from the definition that s has
uniformly bounded singularity if and only if so does s˚. By [33, Lemma 5.2],
note that s˚˚ “ s and σ˚˚

s “ σs for all s P SG. We infer from the main results
in [33] that

(i) σs is invertible ðñ σs˚ is invertible,
(ii) σs is stably injective ðñ σs˚ is stably post surjective,
(iii) σs is stably post-surjective ðñ σs˚ is stably injective.

Note that every invertible NUCA with finite memory over a finite alphabet and
a countable group universe is automatically stably invertible (see Lemma 1). By
identifying A with its dual vector space A˚, we can now conclude that Question 1
has a positive answer for all linear NUCA AG Ñ AG of finite memory with
uniformly bounded singularity if and only if so does Question 2. [\

Linear NUCA with finite memory enjoy similar properties as linear CA such
as the shadowing property [2], [4], [20], [3], [21], [5], [27], [26], [8], [33]. The recent
result [33, Theorem D.(ii)] states that every stably post-surjective linear NUCA
with finite vector space alphabet over a residually finite group universe is invert-
ible whenever it is a local perturbation of a linear CA. When specialized to the
class of linear NUCA, Theorem B thus generalizes [33, Theorem D.(ii)] because
every residually finite group is sofic and thus post-injunctive by Theorem 2. To
this end, we postulate another seemingly interesting question.

Question 3. Does an affirmative answer to Question 1 imply an affirmative an-
swer to Question 2? Conversely, does an affirmative answer to Question 2 imply
an affirmative answer to Question 1?

It is also natural to explore similar questions for the more general class of
NUCA with uniformly bounded singularity.

1.4 Organization of the paper

In Section 2, we prove that the notions of invertibility and stable invertibility are
equivalent for NUCA with finite memory (Lemma 1). As a consequence, we relate
the surjectivity, the invertibility, and the stable invertibility of a stably injective
NUCA in Corollary 2. As another application, we show that pre-injective stably
post-surjective NUCA with finite memory must be stably invertible. We then
fix in Section 3 the notations and recall the construction of induced local maps
of NUCA in Section 3. The proofs of Theorem A, Theorem B, Theorem C, and
Theorem D are given respectively in the subsequent Sections 4, 5, 6, and 7.
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2 Invertibility vs stable invertibility

Lemma 1. Let M be a finite subset of a countable group G. Let A be a finite
alphabet and let s P SG where S “ AAM

. Suppose that σs is invertible. Then σs

is stably invertible.

Proof. Since σs is invertible, there exist N Ă G finite and t P TG where T “ AAN

such that σs˝σt “ σt˝σs “ IdAG . For every p P Σpsq, we obtain from the relation
σs ˝ σt “ IdAG and [29, Theorem 11.1] some q P Σptq such that σp ˝ σq “ IdAG .
Since q P Σptq and σt ˝ σs “ IdAG , another application of [29, Theorem 11.1]
shows that there exists r P Σpsq such that σq ˝ σr “ IdAG . It follows that σq is
invertible and thus σp ˝ σq “ σq ˝ σp “ IdAG . Hence, σs is stably invertible. [\

Corollary 2. Let G be a countable group and let A be a finite alphabet. Let
τ : AG Ñ AG be a stably injective NUCA with finite memory. Then the following
are equivalent:

(i) τ is surjective,
(ii) τ is invertible,
(iii) τ is stably invertible.

Proof. It is trivial that (iii) ùñ (i). The implication (i) ùñ (ii) results from the
definition of invertibility and [29, Theorem A]. Lemma 1 states that (ii) ùñ (iii)
and the proof is thus complete. [\

Corollary 3. Let G be a countable group and let A be a finite alphabet. Let
τ : AG Ñ AG be a pre-injective stably post-surjective NUCA with finite memory.
Then τ is stably invertible.

Proof. The fact that τ is invertible follows from [29, Theorem 13.4] (see also [6]).
We can thus conclude from Lemma 1 that τ is stably invertible. [\

3 Induced local maps of NUCA

Let G be a group and let A be an alphabet. For every subset E Ă G and x P AE

we define gx P AgE by gxpghq “ xphq for all h P E. In particular, gAE “ AgE .
Let M Ă G and let S “ AAM

be the collection of all maps AM Ñ A. For every
finite subset E Ă G and w P SE , we define a map f`M

E,w : AEM Ñ AE as follows.
For every x P AEM and g P E, we set:

f`M
E,w pxqpgq “ wpgqppg´1xq|M q. (3.1)

In the above formula, note that g´1x P Ag´1EM and M Ă g´1EM since
1G P g´1E for g P E. Therefore, the map f`M

E,w : AEM Ñ AE is well de-
fined. Consequently, for every s P SG, we have a well-defined induced local
map f`M

E,s|E
: AEM Ñ AE for every finite subset E Ă G which satisfies:

σspxqpgq “ f`M
E,s|E

px|EM qpgq (3.2)
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for every x P AG and g P E. Equivalently, we have for all x P AG that:

σspxq|E “ f`M
E,s|E

px|EM q. (3.3)

For every g P G, we have a canonical bijection γg : G ÞÑ G induced by the
translation a ÞÑ g´1a. For each subset K Ă G, we denote by γg,K : gK Ñ K the
restriction to gK of γg. Now let N Ă G and T “ AAN

. Let t P TG. With the
above notations, we have the following auxiliary lemma.

Lemma 2. Suppose that 1G P M X N . Then for every g P G, the condition
σtpσspxqqpgq “ xpgq for all x P AG is equivalent to the condition

tpgq ˝ γg,N ˝ f`M
gN,s|gN

˝ γ´1
g,NM “ π,

where π : ANM Ñ A is the projection z ÞÑ zp1Gq.

Proof. For every g P G and x P AG, we deduce from Definition 1 and the relation
(3.3) that

σtpσspxqqpgq “ tpgq
`

pg´1σspxqq|N
˘

“ tpgq pγg,N ppσspxqq|gN qq

“ tpgq

´

γg,N ˝ f`M
gN,s|gN

px|gNM q

¯

“ tpgq ˝ γg,N ˝ f`M
gN,s|gN

px|gNM q

“ tpgq ˝ γg,N ˝ f`M
gN,s|gN

˝ γ´1
g,NM

`

pg´1xq|NM

˘

from which the conclusion follows as xpgq “ pg´1xqp1Gq. [\

4 Proof of Theorem A

Proof. The theorem is trivial if G is finite since every injective selfmap of a
finite set is also surjective. Thus, without loss of generality we can suppose that
G is infinite. Up to enlarging M if necessary, we can also assume that 1G P M .
As s P SG is asymptotically constant, we can find a constant configuration
c P SG and a finite subset F Ă G such that s|GzF “ c|GzF . Note that as
G is infinite, we have c P Σpsq. Since σs is stably injective, we deduce that
σc : A

G Ñ AG is an injective CA. We infer from the surjunctivity of the group
G that σc is also surjective. By Corollary 2 and Remark 1, it follows that σc is
invertible. Therefore, there exist a nonempty finite subset N Ă G and a constant
configuration d P TG, where T “ AAN

, such that 1G P N and

σc ˝ σd “ σd ˝ σc “ IdAG . (4.1)

The set of NUCA with finite memory over the universe G and the alphabet
A forms a monoid with respect to the composition operation and we obtain
from [29, Theorem 6.2] a configuration q P QG, where Q “ AAMN

, such that
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σs ˝ σd “ σq. Note that MN is a memory set of σq. As both σs and σd are
injective, σq “ σs ˝σd is also injective. Since σc ˝σd “ IdAG and σs ˝σd “ σq and
s is asymptotic to c, we deduce that the configuration q P QG is asymptotic to the
constant configuration πG where π : AMN Ñ At1Gu is the canonical projection
x ÞÑ xp1Gq. More precisely, q|GzF “ πGzF since s|GzF “ c|GzF so that for every
g P GzF (see (3) and the proof of [29, Theorem 6.2]):

qpgq “ spgq ˝ f`N
M,g´1d|M

“ cpgq ˝ f`N
M,g´1d|M

“ π

where the last equality results from (4.1).
Let E “ FMN Ă G then E is finite and F Ă E as 1 P M X N . It follows

that q|GzE “ πGzE . Consider the map Φ : AE Ñ AE induced by the restriction
of σp to AE . More specifically, for every x P AE , we define

Φpxq “ σqpyq|E

for any configuration y P AG extending x, that is, y|E “ x. To check that Φ is
well-defined, let z P AG be another configuration such that z|E “ x. Let g P EzF
then we have qpgq “ π and thus

σqpzqpgq “ qpgqppg´1zq|MN q “ πppg´1zq|MN q

“ zpgq “ xpgq “ ypgq

“ πppg´1yq|MN q “ qpgqppg´1yq|MN q

“ σqpyqpgq.

Now let g P F . Then pg´1zq|MN “ pg´1yq|MN since pg´1zqphq “ zpghq “

xpghq “ ypghq “ pg´1yqphq for all h P MN . Therefore,

σqpzqpgq “ qpgqppg´1zq|MN q “ qpgqppg´1zq|MN q “ qpgqppg´1uq|MN q “ σqpzqpgq.

We conclude that σqpzq|E “ σqpyq|E and thus Φ is well-defined. Observe that

σq “ Φ ˆ IdAGzE .

Since σq and IdAGzE are injective, we deduce that Φ is also injective. Conse-
quently, Φ must be surjective as AE is finite. It follows that σq “ Φ ˆ IdAGzE

is surjective. Combining with (4.1) and the surjectivity of σc, we find that
σs “ σq ˝ pσdq´1 “ σq ˝ σc is also surjective. Since σs is stably injective by
hypothesis, we can thus conclude from Corollary 2 that σs is stably invertible
and the proof is complete. [\

5 Proof of Theorem B

Proof. The proof follows the same lines, mutatis mutandis, as in the proof of
Theorem A. We can suppose that G is infinite since every surjective selfmap
of a finite set is also injective. Up to enlarging M , we can also assume that
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1G P M . By hypothesis, there exist a constant configuration c P SG and a finite
subset F Ă G with s|GzF “ c|GzF . Note again that c P Σpsq as G is infinite.
We infer from the stable post-surjectivity of σs that the CA σc : A

G Ñ AG is
post-surjective. Since G is post-injunctive, σc is pre-injective and thus invertible
by Corollary 3 and Remark 1. Hence, we can find finite subset N Ă G and a
constant configuration d P TG, where T “ AAN

, such that 1G P N and

σc ˝ σd “ σd ˝ σc “ IdAG . (5.1)

By [29, Theorem 6.2], there exists a configuration q P QG, where Q “ AAMN

,
such that σs ˝ σd “ σq. As σs and σd are surjective, so is σq “ σs ˝ σd. Let
π : AMN Ñ At1Gu be the canonical projection x ÞÑ xp1Gq. As s|GzF “ c|GzF , we
have q|GzF “ πGzF since for every g P GzF (see the proof of [29, Theorem 6.2]):

qpgq “ spgq ˝ f`N
M,g´1d|M

“ cpgq ˝ f`N
M,g´1d|M

“ π

where the last equality follows from (5.1). Let E “ FMN Ă G then F Ă E as
1 P M XN . It follows that q|GzE “ πGzE . As in the proof of Theorem A, we can
write σq “ Φ ˆ IdAGzE where Φ : AE Ñ AE is the map given by Φpxq “ σqpyq|E

for every x P AE and any y P AG such that y|E “ x. Then Φ is surjective
because σq and IdAGzE are both surjective. It follows that Φ must be injective
as AE is finite. Consequently, σq “ Φ ˆ IdAGzE is injective. Thus by (5.1), we
have σs “ σq ˝ pσdq´1 “ σq ˝ σc is injective and thus pre-injective. By the stable
post-surjectivity of σs and Corollary 3, we conclude that σs is stably invertible
and the proof is thus complete. [\

6 Proof of Theorem C

We first prove the following technical lemma which will enable a reduction of
Theorem C to Theorem A.

Lemma 3. Let A be an alphabet and let G be a group. Let M Ă G be a finite
subset and S “ AAM

. Suppose that σt ˝ σs “ IdAG for some s, t P SG and
s has uniformly bounded singularity. Then for each E Ă G finite, there exist
asymptotically constant configurations p, q P SG such that p|E “ s|E, q|E “ t|E,
and σq ˝ σp “ IdAG .

Proof. Up to enlarging M , we can assume that 1G P M “ M´1. Let E Ă G
be a finite subset. Up to enlarging E, we can suppose without loss of generality
that M Ă E and E “ E´1. As s has uniformly bounded singularity, there exist
a constant configuration c P AAM

and a finite subset F Ă G containing E3 such
that s|FE3zF “ c|FE3zF . We define an asymptotically constant configuration
p P SG by setting p|FE “ s|FE and p|GzFE “ c|GzFE . We fix g0 P FE2zFE and
define q P SG by qpgq “ tpg0q if g P GzFE and qpgq “ tpgq if g P FE. Then q is
asymptotic to the constant configuration d P SG defined by dpgq “ tpg0q for all
g P G. Since 1G P M , we have a projection π : AM2

Ñ A given by x ÞÑ xp1Gq.
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Since E Ă E3 Ă F Ă FE, we deduce from our construction that p|E “ s|E and
q|E “ t|E . To conclude, we only need to check that σq ˝ σp “ IdAG .

Let g P FE2zFE. Then gE Ă FE3zF since E “ E´1. Consequently, s|gE “

c|gE “ p|gE and thus s|gM “ c|gM “ p|gM since M Ă E. Hence, the condition
σtpσspxqqpgq “ xpgq for all x P AG is equivalent to tpgq˝f`M

M,c|M
“ π by Lemma 2.

Similarly, the condition σqpσppxqqpgq “ xpgq for all x P AG amounts to qpgq ˝

f`M
M,c|M

“ π. Since qpgq “ tpg0q and σt ˝ σs “ IdAG , we conclude from the above
discussion that σqpσppxqqpgq “ xpgq for all x P AG.

Let g P FE. Since s|FE3zF “ c|FE3zF , p|FE “ s|FE , and p|GzFE “ c|GzFE

by construction, we have p|FE3 “ s|FE3 . In particular, p|gM “ s|gM since gM Ă

pFEqE “ FE2 Ă FE3. Therefore, we can infer from the relations σt ˝σs “ IdAG

and qpgq “ tpgq that σqpσppxqqpgq “ xpgq for all x P AG.
Finally, let g P GzFE2. Since p|GzFE “ c|GzFE , q|GzFE “ d|GzFE , and since

c, d are constant, we deduce that qpgq “ dpg0q “ tpg0q and p|gM “ c|gM . The
condition σqpσppxqqpgq “ xpgq for all x P AG is thus equivalent to tpg0q˝f`M

M,c|M
“

π by Lemma 2. But since σt ˝σs “ IdAG and s|g0M “ c|g0M , another application
of Lemma 2 shows that tpg0q ˝ f`M

M,c|M
“ π. Thus, σtpσspxqqpgq “ xpgq for all

x P AG. Therefore, we conclude that σq ˝ σp “ IdAG . The proof is complete. [\

We are now in position to prove Theorem C.

Proof of Theorem C. Since σs is stably injective by hypothesis, we deduce from
[29, Theorem A] that there exist a finite subset N Ă G and t P TG, where
T “ AAN

, such that σt ˝ σs “ IdAG . Up to enlarging M and N , we can assume
that 1G P M “ N and thus S “ T . By Corollary 2, it suffices to show that σs

is surjective to conlude that σs is stably invertible. We suppose on the contrary
that σs is not surjective. Since Γ “ σspAGq is closed in AG with respect to the
prodiscrete topology by [29, Theorem 4.4], there must exist a nonempty finite
subset E Ă G such that ΓE Ĺ AE . Since s has uniformly bounded singularity,
we infer from Lemma 3 that there exist asymptotically constant configurations
p, q P SG such that p|E “ s|E , q|E “ t|E , and σq ˝ σp “ IdAG . Let Λ “ σppAGq

then it follows from p|E “ s|E that ΛE “ ΓE Ĺ AE . We deduce that σp is not
surjective. In particular, σp is not invertible. On the other hand, the condition
σq ˝σp “ IdAG shows that σp is stably injective by [29, Theorem A]. We can thus
apply Theorem A to deduce that σp is invertible and thus surjective. Therefore,
we obtain a contradiction and the proof is complete. [\

7 Proof of Theorem D

The proof of Theorem D generalizes the proof of Theorem A and Theorem B.

Proof. We will show that σs is injective. Suppose on the contrary that there
exist an element h P G and configurations u, v P AG such that σspuq “ σspvq

but uphq ‰ vphq. Up to enlarging M , we can suppose without loss of generality
that M “ M´1 (that is, M is symmetric) and 1G, h P M . When G is finite, σs
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is trivially invertible as a surjective selfmap of a finite set. Hence, we assume in
what follows that the group G is infinite.

Let c1, ..., cn P SG be all the constant configurations in SG where n “ |S|.
Let ∆ Ă G be a finite generating set of G such that 1G P ∆ “ ∆´1 (that
is, ∆ is symmetric) and M Ă ∆. Up to enlarging M , we can suppose that
M “ ∆. For each k ě 1, let Ek “ ∆k then Ek is a finite symmetric subset of G
containing 1G and we have an exhaustion G “

Ť8

k“1 Ek. Since s has uniformly
bounded singularity, we can find a finite subset Fk Ă G such that E5

k Ă Fk and
s|FkE5

kzFk
P SFkE

5
kzFk is constant for every k ě 1. Since S is finite, there exist

m P t1, 2, ..., nu and an infinite sequence 1 ď k1 ă k2 ă k3 ă . . . of integers such
that for c “ cm, we have E5

ki
Ă Fki for every i ě 1 and

s|Fki
E5

ki
zFki

“ c|Fki
E5

ki
zFki

. (7.1)

For every i ě 1, we claim that Fki
E2

ki
zFki

Eki
‰ ∅. Indeed, we would have

otherwise Fki
E2

ki
Ă Fki

Eki
. Hence, Fki

Er
ki

Ă Fki
Eki

by induction on r ě 2 and

G “ Fki
G “ Fki

ď

rě2

Er
ki

“
ď

rě2

Fki
Er

ki
Ă Fki

Eki

which is a contradiction since G is infinite. Therefore, for every i ě 1, we can fix
some gi P Fki

E2
ki

zFki
Eki

. As 1G P Eki
and Eki

is symmetric, it follows that

giEki
Ă Fki

E3
ki

zFki
. (7.2)

It follows from (7.1) and (7.2) that c|giEki
“ s|giEki

. Since G “
Ť8

i“1 Eki
and

Σpsq “ tgs : g P Gu Ă SG, we deduce that c P Σpsq. We thus infer from the stable
post-surjectivity of σs that σc : A

G Ñ AG is a post-surjective CA. Hence, σc is
pre-injective by the post-injunctivity of the group universe G. Theorem C then
implies that σs is an invertible CA. Therefore, there exists a CA τ : AG Ñ AG

such that
τ ˝ σc “ σc ˝ τ “ IdAG . (7.3)

Without loss of generality, we can assume that M is also a memory set of τ up
to enlarging M . Thus τ “ σd for some constant configuration d P SG.

From [29, Theorem 6.2] we obtain a configuration q P QG, where Q “ AAM2

,
such that σd ˝ σs “ σq. Let π : AM2

Ñ At1Gu denote the canonical projection
z ÞÑ zp1Gq and fix j ě 1 large enough such that M2 Ă Ekj

. We claim that

q|Fkj
E4

kj
zFkj

Ekj
“ π

Fkj
E4

kj
zFkj

Ekj . (7.4)

Indeed, let g P Fkj
E4

kj
zFkj

Ekj
. Then gEkj

Ă Fkj
E5

kj
zFkj

as Ekj
is symmetric.

Hence, gM Ă gEkj
Ă Fkj

E5
kj

zFkj
. It follows that s|gM “ c|gM by (7.1) and thus

g´1s|M “ g´1c|M . Since σd ˝ σc “ IdAG by (7.3), the claim (7.4) follows since
(see the proof of [29, Theorem 6.2]):

qpgq “ dpgq ˝ f`M
M,g´1s|M

“ dpgq ˝ f`M
M,g´1c|M

“ π.
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Therefore, as in the proof of Theorem A, we deduce from (7.4) that

σq “ Φ ˆ

ˆ

Id
A

Fkj
E3

kj
zFkj

E2
kj

˙

ˆ Ψ (7.5)

where Φ : A
Fkj

E2
kj Ñ A

Fkj
E2

kj and Ψ : A
GzFkj

E3
kj Ñ A

GzFkj
E3

kj are well-defined
maps given by the following formula:

(i) Φpxq “ σqpyq|Fkj
E2

kj
for x P A

Fkj
E2

kj and y P AG with y|Fkj
E2

kj
“ x,

(ii) Ψpxq “ σqpyq|GzFkj
E3

kj
for x P A

GzFkj
E3

kj and y P AG with y|GzFkj
E3

kj
“ x.

Recall the choice of the configurations u, v P AG in the first paragraph of the
proof with uphq ‰ vphq and σspuq “ σspvq for some h P M Ă Fkj

E2
kj

. It follows
that u|Fkj

E2
kj

‰ v|Fkj
E2

kj
and

Φ
´

u|Fkj
E2

kj

¯

“ σqpuq|Fkj
E2

kj
“ σd pσspuqq |Fkj

E2
kj

“ σd pσspvqq |Fkj
E2

kj
“ σqpvq|Fkj

E2
kj

“ Φ
´

v|Fkj
E2

kj

¯

.

We deduce that Φ is not injective and thus it is not surjective as a selfmap of
the finite set A

Fkj
E2

kj . Consequently, (7.5) implies that σq is not surjective. We
arrive at a contradiction since σq “ σd ˝ σs is surjective as a composition of
surjective maps. Hence, σs must be injective. By Corollary 3, we conclude that
σs is stably invertible and the proof is complete. [\
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