
EasyChair Preprint
№ 4810

Roman Urdu Multi-Class Offensive Text
Detection using Hybrid Features and SVM

Tauqeer Sajid, Mehdi Hassan, Mohsan Ali and Rabia Gillani

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 25, 2020

Roman Urdu Multi-Class Offensive Text Detection
using Hybrid Features and SVM

Tauqeer Sajid
Department of Computer Science

National Cybercrime Forensics Lab
Air University, Sector E-9, Islamabad

Pakistan
raotauqeer36@gmail.com

Rabia Gillani

Department of Computer Science,
National Cybercrime Forensics Lab

Air University, Sector E-9, Islamabad
Pakistan

160923@students.au.edu.pk

Mehdi Hassan
Department of Computer Science

National Cybercrime Forensics Lab
Air University, Sector E-9, Islamabad

Pakistan
mehdi.hassan@mail.au.edu.pk

Mohsan Ali
Department of Computer Science

National Cybercrime Forensics Lab
Air University, Sector E-9, Islamabad

Pakistan
amohsan636@gmail.com

Abstract—Hate content has become a significant issue
worldwide due to the increase in social networking sites.
Detection of hate content from a language other than English is
challenging. We propose a new technique that automatically
detects the Roman Urdu comments from YouTube videos into
five classes. These classes, including, Religious Hate, Violence
Promotion, Extremist (Racist), Threat/Fear, and Neutral. We
have generated dataset by scrapping Roman Urdu comments
from YouTube videos and labeled by the language experts. We
have considered N-grams and TF-IDF values for feature
extraction followed by SVM classification. Some classes have
relatively less instances, and we employed SMOTE for class-
balancing. The developed model offers a high classification
performance of 77.45% using the 10-Fold cross-validation
technique. The proposed approach offers superior classification
results as compared to others.

Keywords—hate speech, n-gram, tf-id, machine learning, deep
learning, youtube

I. INTRODUCTION

In Pakistan, most people used Roman Urdu for comments
on video-sharing and social media platforms like YouTube,
Facebook, and Twitter. From the last few years in Pakistan,
tremendous growth in the number of people using YouTube.
YouTube is the second most visited website in Pakistan [1].
People from different religions, cultures, and educational
backgrounds use YouTube. Sometimes people upload videos
which might be inappropriate for various cultures or religions,
which may lead to verbal assaults in comments because of
differences in people's opinions. Such type of actions may
create law and order situation in the country. People have
freedom of speech so they can comment on any content on
YouTube, which leads to the use of abusive language, racist
comments, religious hate, and sometimes people even give
menace. Hate speech makes a terrible impact on society and
damages people's mental health, so people commit suicide [2].

Hate speech is a huge issue, although, for English and
some other languages, there is much work that has been done
in the hate speech detection field, for Roman Urdu there is no
work done to detect hate speech. This increases the
importance of detection hate speech in Roman Urdu to remove
such content, so we can save people from cyberbullying. Also,
manually removing such content is challenging, which also
increases the importance of an automated system, which can
detect hate content from comments on YouTube.

We divided the hate speech into five different classes:
Religious Hate, Violence Promotion—Extremist (Racist),

Threat/Fear, and Neutral. Similar approaches were used to
detect hate speech used in previous research [3] and [4]. There
is no international legal definition of hate speech. However,
according to UN hate speech is: any kind of communication
in speech, writing or behavior that attacks or uses abusive or
discriminatory language which refers to a group or single
person based on religion, ethnicity, nationality, race, color,
gender or other identity factors [5].

In this research paper, we proposed a solution that can
identify hate speech into five classes. People use youtube as a
medium to spread hate speech in the country. So, we decided
to use youtube as a source. We made our scrapper that scrape
the comments from YouTube videos. We annotate these
comments into their respective class. We train our model
using n-gram with norm L1 and L2 of term frequency-inverse
document frequency (TF-IDF) as features values and classify
the comments. We evaluate the model using metric scores and
a confusion matrix. In this research, we perform comparative
analysis using Logistic Regression (LR), Support Vector
Machines (SVM), SGDClassifier, Naive Bayes (NB) using n-
gram with L1 and L2 norm of TF-IDF values and document
to vector features with Logistic Regression (LR), Support
Vector Machines (SVM) and SGDClassifier as classifier
models. Our results show that on our Roman Urdu dataset,
Support Vector Machine (SVM) performs better than all other
models on n-gram with norm L2 TF-IDF features values. We
also did hyperparameter tuning of our machine learning
models using 10-Fold cross-validation. We make a YT
Monitor web interface that scrapes the comments from a given
link or keyword and classifies comments into its respected
classes of hate speech.

We organized this paper as follows. In section II, we will
overview related work, which approaches people used to solve
the hate speech problem. In section III, we will explain our
methodology; which steps we follow to solve hate speech
problem. Section IV will describe the results of the
comparative analysis of machine learning models using
different features. In section, V concludes our research.

II. RELATED WORK

Detection and checking of a Hate Speech in social media
cannot be an easy task. Every day many people write text on
social media; they use informal languages. Different people
use different languages; that is why some words for some
people, are a joke, but for other people, hate speech [3]. This
point is difficult to distinguish.

Different machine learning and deep learning approaches
have used to detect hate speech. In some researches, sentence
structure used to capture hate speech [6], many others used
Lexical features [7], and a bag of words [8] approaches to
detect hate speech. Previous research observed that these
features were not entirely useful to understand the hate speech
from text and failed. On the other hand, the N-gram feature
with TF-IDF also used in research, which showed better
results [9] [10].

Lexical features have two main approaches, dictionary-
based and corpus-based. In Lexical features, it involves the
words of the same meaning tagged in a static dictionary with
polarity labels and semantic orientation scores. In a bag of
words (BOW), the text is tokenized into words, followed by
its word frequencies. As a bag of words (BOW) did not care
about word order, semantic of words, and grammar, it mostly
used for basics works of natural language processing (NLP)
[11].

Linguistic Features are comprised of sample length, parts-
of-speech, average length of words, number of periods,
punctuations, URLs, capitalized letters, polite words, insults
words, hate speech words and one letter words. These features
did not provide much importance in studies and did not show
much improvement in the classifier accuracy [12]. Sentiment
analysis features show their importance in hate speech
detection, and it has seen that they are closely related. It
assumed that most negative sentiment concerns hate speech
[13]. Hate speech shows higher negative polarity where hate
speech present in document [14].

Recently, word embedding has proposed to detect hate
speech [15]. In Word embedding’s tokens are devour
sequentially in the matrix through the concatenation of tokens
embedding's [16]. Also, Deep learning algorithms recently
used to detect hate speech, such as Convolutional Neural
Network (CNN and LSTM). Convolutional Neural Network
(CNN) is used to detect hate speech from Twitter in recent
researches [17] and [18]. They also perform further analysis
using a word embedding, so they understand the effect of the
feature selection process on different models.

III. METHODOLOGY

For this research, we obtained a new Roman Urdu dataset
for hate speech detection from YouTube comments. For hate
speech detection flowchart can be found in Fig. 1.

Fig. 1. Block diagram of proposed methodology

A. Data Crawling

The first step is to crawl YouTube comments data; for this
purpose, we developed a YouTube comments crawler. This

crawling process had done using the scrapy library with AJAX
request. If we give a crawler link of any video, it will scrape
all comments from this video, or if we provide a YouTube
channel link, the scraper will scrape all comments from all
videos uploaded on the provided YouTube channel. We also
can search for videos by keyword we input the keyword in the
search box, and the crawler will scrape the top videos against
the given keyword, and top videos will show on the YT
Monitor interface. From shown videos against keyword
searches, we can select which video comments we want to
scrape and simply click the scrape button, and comments will
scrape for that selected video. For this research, we query
different keyword and find videos that have comments
contains offensive in Roman Urdu. We also query many
offensive Roman Urdu words on YouTube to finds a video
that has comments related to offensive keywords. We scrape
about 16806 comments data from YouTube.

B. Data Pre-processing

In pre-processing, we filter the comments dataset first, and
we remove duplicate comments from data. To decide whether
a given document is roman or not, we used a pre-defined set
of roman words named as roman dictionary; dictionary
contains the set of roman words and words possible write up.
For example, some people use to write the word kafir or kafar.
So, we stored all the possible roman words that a user can
write in the document. The roman dictionary is compiled by
the language experts in our team. Also, we remove those
comments which contain languages other than Roman Urdu.
After filtering the comments, we got 16300 comments, which
is labeled by the language experts.

TABLE I. FEW SAMPLES FROM THE DATASET

Document Label
This Randi doesnt know the difference between fuel
tank and bomb.

Violence
Promotion

Pakistan zindabad pak army zindabad pakistan isi
zindabad.

Neutral

Tu pak k nitale kuto hramiyo aagar bhart tum pe mut
bhi de na to tum to use amrit samaz kar pi jaoge.

Extremist

Sahaba se bughuz sirf harmi karskta hn. Religious

meri khawish hai me gun uthaon aur un sb ko maar
do jo wahan milen gaye muje.

Threat

For this research, the dataset annotated into five different
labels: Religious Hate, Violence Promotion, Extremist
(Racist), Threat/Fear, and Neutral. Three annotators annotate
this dataset. We provide the essential guide for data annotation
to avoid any biasness and if we have a clash in any comment
label, we finalized its label by majority voting. Three
annotators annotated every comment in the dataset. After the
annotations process complete by three annotators, we have all
the comments by annotators agreement. The number of class
labels are depicted in Fig. 2.

Fig. 2, we can observe that classes are imbalanced. For
violence Promotion class we have 5264 records, for Neutral
class, we have 4405 records, for Religious Hate class we have
3914 records, for Extremist (Racist) class we have 2186, and
for Threat/Fear, we just have 1037 records. So to solve this
imbalanced class problem, we used Synthetic Minority Over-
sampling Technique (SMOTE) [19].

For Roman Urdu data, we first need to make a list of stop
words because we did not have pre-defined stop words for

Roman Urdu. We convert all the comments to lowercase and
remove the following unnecessary elements from comments:

1) Bad symbols
2) Stop words
3) Non-Ascii characters
4) Punctuations
5) Uniform resource locator (URLs)
6) Emoji’s
Next step which is a challenge for us, In Roman Urdu,

every person have different writing style like some people
write kafir word as Kfar or Kafr or Kafar. So, we have to
convert the word into its original form for that problem, but
we did not have stemming or lemmatization pre-defined for
Roman Urdu data. We did not have a dictionary for Roman
Urdu data to convert the word into its original form. For this
challenging task, we start working on making a dictionary for
Roman Urdu data to convert all different forms of the same
meaning word into one word. For this research, we build that
dictionary and convert different forms of the same meaning
word in our data into one word. Our dataset is not published
online yet and hope so will be available soon, because we are
performing experiments based on that data.

C. Feature Extraction

For this research, we use n-grams features from uni-gram
to tri-gram and give the weights with TF-IDF values. We use
TF-IDF to remove biasness from those tokens, which occurs
very frequently in data but are very less informative. TF-IDF
is computationally and mathematically easy to implement for
problem in hand. The other important thing in the TF-IDF is
that it is very simple to calculate the similarity between two or
more documents. Basic calculations such as addition and
subtraction process is used to extract the most descriptive
terms from the dataset. Common terms or words in the dataset
not affect the results due to IDF (e.g. “is”, “are”, “am”,
etc.).When we complete the feature extractions process, we
provide the data to models for classification. A formula [4]
that used to compute TF-IDF is: TF െ IDFሺݐሻ 	ൌ ,ݐሺ݂ݐ	 ݀ሻ 	ൈ ݂݅݀ሺݐሻ (1)

We use the L1 and L2 norm of TF-IDF performing
experiments. L1 norm of TF-IDF is defined as:

௡௢௥௠ݒ ൌ |ݒ |ଵݒ ൅ | .	൅	ଶ|ݒ . . ൅	|ݒ௡| (2)

 In L2 norm n is the total number of documents. L2 norm of
TF-IDF is defined as:

௡௢௥௠ݒ ൌ ଵ²ݒඥݒ ൅ ଶ²ݒ ൅	. . . ൅	ݒ௡² (2)

 The L1 and L2 are normalization techniques, which
are used to normalize the vectors such as TF-IDF vector. The
L1 normalization is also called Manhattan .The input to the
L1 normalization is the absolute values of the vector TF-IDF.
The input to the L2 normalization vector is the square root of
the TF-IDF vector.

The dimensions of the uni-gram, bi-gram and tri-grams
used for the feature extraction of the textual data. The vectors
dimensions are shown in the TABLE II given below:

TABLE II. FEATURES EXTRACTION DIMENSION OF TF-IDF

Features Dimensions

Uni-gram (25865, 13897)

Uni+bi-gram (25865, 26002)

Uni+bi+tri-gram (25865, 28884)

D. Classification Models and Evaluation

For this research, we use different classifiers Logistic
Regression (LR), Support Vector Machine (SVM),
SGDClassifier, Naive Bayes (NB), and document to vector
features with Logistic Regression, Support Vector Machine
(SVM) and SGDClassifier. We use Scikit-Learn and Keras for
the implementation of these models. Scikit-Learn is a trendy
library that provides highly efficient classification models
which nowadays, almost every researcher uses in their
research for text and other classification. For better results, we
tune our model parameters using GridSearchCV, also to avoid
our model from overfitting, we use 10-Folds cross-validation
and evaluate our model. Mostly in the research field, 10-Fold
cross-validation is used. In 10-Fold cross-validation, we
divided the dataset into 10 parts where 9/10 parts of data use
for training data, and the 1/10 data use for testing the model.

E. YT Monitor

YT Monitor is a web-based application developed to
scrape comments and performs the task of multi-class
offensive detection in Roman Urdu data. It has an input field
where user give URL or keyword to scrape comments of
videos from YouTube. Input will pass to the YouTube
comment scraper, which we made, and the comment will
scrape for respected input. After scraping the comments, we
apply pre-processing steps on scraped comments and pass the
pre-processed comments to our machine learning model,
which classifies the comments to its respected classes. We
show different graphs as a result, such as a pie chart, line
graph, word cloud.

Fig. 2. Distribution of obtained dataset 1

IV. RESULTS

The comparative analysis results of machine learning
models Logistic Regression (LR), Support Vector Machine
(SVM), SGDClassifier (SGD) and Naive Bayes (NB) using
different combinations of feature parameters of TF-IDF
shown in TABLE I, document to vector features with Logistic
Regression (LR), Support Vector Machine (SVM),
SGDClassifier (SGD) shown in TABLE II.

TABLE III. COMPARISON OF MODELS WITH DIFFERENT N-GRAM
FEATURES AND TF-IDF VALUES

N-gram with TF-IDF
Norm

Accuracy

LR SVM SGD NB

word uni-gram with L1
norm

0.6369 0.7075 0.6565 0.6565

word uni-gram + bi-gram
with L1 norm

0.6330 0.6956 0.6581 0.6690

word uni-gram + bi-gram
+ tri-gram with L1 norm

0.6338 0.6944 0.6607 0.6734

word uni-gram with L2
norm

0.6879 0.7298 0.7038 0.6836

word uni-gram + bi-gram
with L2 norm

0.6970 0.7326 0.7179 0.7010

word uni-gram + bi-gram,
tri-gram with L2 norm

0.6973 0.7318 0.7174 0.7017

TABLE III presents that machine learning algorithms
perform better on the L2 norm of TF-IDF than on the L1 norm
of TF-IDF. The best model is Support Vector Machine, and
its accuracy is 73.26%, on uni-gram, bi-gram with TFIDF
norm L2. Support Vector Machine (SVM) performs better on
uni-gram, bi-gram, tri-gram with TFIDF norm L2, and
achieved 73.18% accuracy. SGDClassifier performs better on
uni-gram, bi-gram with TFIDF norm L2, and achieved
71.79% accuracy. Naïve Bayes (NB) performs better on uni-
gram, bi-gram, tri-gram with TFIDF norm L2, and achieved
70.17% accuracy.

TABLE IV. COMPARISON OF DOCUMENT TO VECTOR FEATURES WITH
DIFFERENT MACHINE LEARNING MODELS

Models Accuracy

LR 0.6142

SVM 0.6142

SGD 0.6069

 TABLE IV demonstrates that Logistic Regression
(LR) and Support Vector Machine (SVM) performs the same
and better than SGDClassifier (SGD) using the document to
vector features. We got 61.42% accuracy for Logistic
Regression (LR) and Support Vector Machine (SVM) using
the document to vector features, and for SGDClassifier
(SGD), we got 60.69% accuracy.

Machine learning models perform better using n-gram
with the L2 norm of TF-IDF values on our dataset. We tune
machine learning models using 10-Fold cross-validation on n-
gram with the L2 norm of TF-IDF shows in TABLE III.

TABLE V. COMPARISON OF TUNED MODELS WITH DIFFERENT N-
GRAM FEATURES AND TF-IDF VALUES

N-gram with TF-IDF
Norm

Accuracy

LR SVM SGD NB

 uni-gram with L2 norm 0.7386 0.7743 0.7038 0.7077

N-gram with TF-IDF
Norm

Accuracy

LR SVM SGD NB

uni-gram + bi-gram with
L2 norm

0.7606 0.7734 0.7179 0.7337

uni-gram + bi-gram + tri-
gram with L2 norm

0.7614 0.7745 0.7174 0.7312

TABLE V shows that after tuning the parameters of
models, Support Vector Machine (SVM) performs best on our
data. We tune Support Vector Machine (SVM) on Kernel and
Regularization C with different values. We get the best
parameters of Support Vector Machine (SVM) C is 100, and
the kernel is rbf on uni-gram, bi-gram, tri-gram with L2 norm
of TFIDF values. Support Vector Machine (SVM) precision,
recall, and f-score can see in TABLE IV.

TABLE VI. FINAL TUNED SUPPORT VECTOR MACHINE (SVM) MODEL
SCORES ON TEST DATA

 Precision Recall F-Score

Religious Hate 0.78 0.71 0.74

Violence
Promotion

0.69 0.74 0.72

Extremist
(Racist)

0.86 0.76 0.81

Threat/Fear 0.83 0.96 0.89

Neutral 0.72 0.69 0.70

TABLE VI shows that the violence promotion class
precision is 0.69, which shows that model 31% predict the
other four classes as violence promotion. Recall for neutral
comments is 0.69, comparatively low than other class’s recall,
which shows 31% comments which are neutral but
misclassified by the model. Recall for Threat/Fear is 0.96,
which is better.

 We also compute the confusion matrix for the tuned
Support Vector Machine (SVM), which can see in Fig. 3.
Confusion matrix, also known as an error matrix, is a specific
table that visually describes the performance of a supervised
classification machine learning algorithm.

Fig. 3 we can see that model did several misclassifications.
To increase the score of model improvements can be done in
this area. The final accuracy of the Support Vector Machine
(SVM) model obtained on testing data is 77.45%.

Fig. 3. Confusion matrix of final tuned SVM model

V. CONCLUSION

In this paper, we proposed a solution to detect the Roman
Urdu hate speech on YouTube. We trained machine learning
models based on features, n-gram with TF-IDF values of L1,
L2 norm, and document to vector features. We performed a
comparative analysis of Logistic Regression (LR), Support
Vector Machine (SVM), SGDClassifier, and Naive Bayes
(NB) on different feature values with 10-Fold hyperparameter
tuning. The research results showed that Support Vector
Machine (SVM) performs outperforming the other models
based on unigram, bi-gram, and tri-gram with the L2 norm of
TFIDF values. Performance evaluation reports of different
models proved that SVM is more accurate than any other
model on our dataset. SVM is 77.45% accurate, which is
higher than any other mentioned machine learning models. In
the future, the accuracy of the model is increasable by means
of model training on more Roman Urdu data collected from
YouTube.

ACKNOWLEDGMENT

This research is carried out under National Cybercrime
Forensics Lab and supported by ORIC, Air University,
Islamabad.

REFERENCES
[1] “Alexa - Top Sites in Pakistan - Alexa.”

https://www.alexa.com/topsites/countries/PK (accessed Jun. 26, 2020).

[2] “Bullying and suicide - Wikipedia.”
https://en.wikipedia.org/wiki/Bullying_and_suicide (accessed Jun. 27,
2020).

[3] M. O. Ibrohim and I. Budi, “A Dataset and Preliminaries Study for
Abusive Language Detection in Indonesian Social Media,” Procedia
Comput. Sci., vol. 135, pp. 222–229, 2018, doi:
10.1016/j.procs.2018.08.169.

[4] A. Gaydhani, V. Doma, S. Kendre, and L. Bhagwat, “Detecting Hate
Speech and Offensive Language on Twitter using Machine Learning:
An N-gram and TFIDF based Approach,” 2018, [Online]. Available:
http://arxiv.org/abs/1809.08651.

[5] A. Guterres, “United Nations Strategy and Plan of Action on Hate
Speech,” no. May, pp. 1–5, 2019, [Online]. Available:
https://www.un.org/en/genocideprevention/documents/advising-and-
mobilizing/Action_plan_on_hate_speech_EN.pdf.

[6] L. Silva, M. Mondal, D. Correa, F. Benevenuto, and I. Weber,
“Analyzing the targets of hate in online social media,” Proc. 10th Int.
Conf. Web Soc. Media, ICWSM 2016, no. June, pp. 687–690, 2016.

[7] N. D. Gitari, Z. Zuping, H. Damien, and J. Long, “A lexicon-based
approach for hate speech detection,” Int. J. Multimed. Ubiquitous Eng.,
vol. 10, no. 4, pp. 215–230, 2015, doi: 10.14257/ijmue.2015.10.4.21.

[8] C. K. Themeli, “Hate Speech Detection using different text
representations in online user comments,” no. October 2018, 2018, doi:
10.13140/RG.2.2.12991.25764.

[9] J. Salminen et al., “Anatomy of online hate: Developing a taxonomy
and machine learning models for identifying and classifying hate in
online news media,” 12th Int. AAAI Conf. Web Soc. Media, ICWSM
2018, no. Icwsm, pp. 330–339, 2018.

[10] B. Mathew, N. Kumar, Ravina, P. Goyal, and A. Mukherjee,
“Analyzing the hate and counter speech accounts on Twitter,” 2018,
[Online]. Available: http://arxiv.org/abs/1812.02712.

[11] C. Themeli, G. Giannakopoulos, and N. Pittaras, “A study of text
representations for Hate Speech Detection,” no. February 2020, 2019.

[12] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang,
“Abusive language detection in online user content,” 25th Int. World
Wide Web Conf. WWW 2016, pp. 145–153, 2016, doi:
10.1145/2872427.2883062.

[13] A. Schmidt and M. Wiegand, “A Survey on Hate Speech Detection
using Natural Language Processing,” no. 2012, pp. 1–10, 2017, doi:
10.18653/v1/w17-1101.

[14] N. Bauwelinck and E. Lefever, “Measuring the Impact of Sentiment for
Hate Speech Detection on Twitter,” no. c, pp. 17–22, 2019.

[15] H. Faris, I. Aljarah, M. Habib, and P. A. Castillo, “Hate speech
detection using word embedding and deep learning in the Arabic
language context,” ICPRAM 2020 - Proc. 9th Int. Conf. Pattern
Recognit. Appl. Methods, no. March, pp. 453–460, 2020, doi:
10.5220/0008954004530460.

[16] S. Zimmerman, C. Fox, and U. Kruschwitz, “Improving hate speech
detection with deep learning ensembles,” Lr. 2018 - 11th Int. Conf.
Lang. Resour. Eval., pp. 2546–2553, 2019.

[17] B. Gambäck and U. K. Sikdar, “Using Convolutional Neural Networks
to Classify Hate-Speech,” no. August, pp. 85–90, 2017, doi:
10.18653/v1/w17-3013.

[18] Z. Zhang, D. Robinson, and J. Tepper, “Hate Speech Detection Using
a Convolution-LSTM Based Deep Neural Network,” Eurpoean
Semant. Web Conf., pp. 745–760, 2018, [Online]. Available:
https://doi.org/10.475/123_4.

[19] “imblearn.over_sampling.SMOTE — imbalanced-learn 0.5.0
documentation.” https://imbalanced-
learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SM
OTE.html (accessed Jun. 27, 2020).

