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Abstract. Cutaneous leishmaniasis (CL) represents a considerable public health 
problem, with its incidence influenced by a complex interplay of ecological and 
socio-environmental variables. Forecasting its incidence accurately is pivotal for 
the strategizing of control measures and optimal resource distribution. This study 
aims to predict the incidence of CL through the application of supervised machine 
learning techniques to historical data spanning from 2005 to 2022. Three models 
were employed including, AutoRegressive Integrated Moving Average 
(ARIMA), Linear Regression (LR), and Support Vector Machine (SVM), and 
their forecasting performance was assessed using a suite of statistical metrics. 
The SVM model outperformed the others, demonstrating the lowest error rates 
and strongest predictive performance, particularly adept at navigating the non-
linear epidemiological patterns of CL. The ARIMA model offered balanced re-
sults, whereas the LR model, although simplest, was less precise. The SVM 
model was then applied to predict CL incidence rates over the next 18 years in 
six countries known to have historically high incidence rates, incorporating cli-
mate data into their analysis. Our research highlights the efficacy of machine 
learning in epidemiological predictions and suggests that SVM models hold sub-
stantial promise for future public health applications, providing a robust approach 
for the forecasting of CL incidences. These insights are crucial for public health 
authorities to proactively manage and prevent CL outbreaks, indicating a step 
forward in the application of advanced analytics in disease surveillance and re-
sponse planning. 
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1 Introduction 

Cutaneous leishmaniasis (CL), a neglected tropical disease caused by the Leishmania 
parasite and transmitted through the bites of infected female sandflies, continues to be 
a public health challenge, particularly in tropical and subtropical regions. With a spec-
trum of clinical manifestations, from skin ulcers to disfiguring scars,  its impact extends 
beyond physical affliction, affecting the socio-economic status of affected communities 
[1]. Despite control efforts, the disease's dynamics remain influenced by factors such 
as environmental changes, urbanization, and population movements, making its future 
incidence difficult to predict [2]. 

 
In recent years, Machine Learning (ML) has emerged as a revolutionary tool in epi-

demiology, offering sophisticated analytical methods to decipher complex patterns 
within data. Supervised machine learning models, which learn from historical data to 
make predictions, have shown particular promise in the realm of disease forecasting. 
These models analyze labeled datasets, where input instances are paired with known 
outcomes, to learn the underlying associations and apply this knowledge to predict fu-
ture events [3].  

 
Predicting infectious diseases using ML and prediction models is gaining momen-

tum in the current scenario of global health challenges. The integration of ML tech-
niques with epidemiological data has enabled researchers to develop more accurate and 
timely forecasts, aiding in the proactive management of outbreaks and the allocation of 
resources. Moreover, advancements in computational power and data availability have 
facilitated the development of more sophisticated models capable of capturing intricate 
disease dynamics [4]. ML techniques hold potential for enhancing CL forecasting. Sup-
port Vector Regression (SVR), a variant of SVM, is particularly adept at regression 
tasks and has been successfully applied in various epidemiological predictions. SVR 
can provide continuous output, which is ideal for predicting the number of dis-ease 
cases and assessing the severity of outbreaks over time. Additionally, the K-Nearest 
Neighbors (K-NN) method, known for its simplicity and effectiveness, can be em-
ployed to predict CL incidence by analyzing the geo-graphical and demographic simi-
larities among data points. K-NN works by identifying the predefined number of train-
ing samples closest in distance to a new point, and predictively labeling it. This method 
is especially useful in epidemiology, where spatial and temporal proximities often cor-
relate strongly with disease spread [5]. 

 
Looking ahead, the future of disease prediction lies in the convergence of machine 

learning with diverse data sources, including genomics, environmental sensors, and so-
cial media streams. Integrating multi-modal data streams into predictive models can 
enhance their predictive accuracy and provide deeper insights into the underlying 
mechanisms driving disease transmission. Additionally, the deployment of real-time 
surveillance systems powered by ML algorithms holds promise in early detection and 
rapid response to emerging infectious threats [6]. 
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In this study, we use supervised machine learning techniques to forecast the inci-
dence of CL disease over the next 18 years worldwide, taking advantage of climate data 
to improve our predictions. Using autoregressive integrated moving average (ARIMA), 
linear regression (LR) and support vector machine (SVM) models, we evaluate their 
effectiveness in capturing trends in CL disease incidence influenced by environmental 
factors. We apply the selected model to predict disease incidence in six countries known 
for their historically high rates of CL, with the aim of providing a comparative analysis 
to identify the most accurate model for predicting future CL cases. 

 

2 Materials and Methods 

2.1 Dataset 

The dataset used in this study, sourced from World Health Organization website un-
der the indicator name "Number of cases of cutaneous leishmaniasis reported” [7], of-
fers an exhaustive account of leishmaniasis incidences across a myriad of global regions 
spanning from 2005 to 2022. The table is meticulously structured to denote various 
indicators of leishmaniasis cases reported, including parent location code, broader ge-
ographical regions (including Morocco), specific country codes, country names, report-
ing years, and the count of reported cases. We added climatic and environmental data 
to this database, including average minimum temperature, average maximum tempera-
ture, average temperature averages, cumulative precipitation, average relative humid-
ity, average wind speed and maximum wind speed, obtained from NASA's POWER 
database [8]. 
 
2.2 Methodology of the study 

To model the incidence of cutaneous leishmaniasis (CL) worldwide, a structured 
analytical approach was adopted to forecast CL incidence rates over the next 18 years 
(see Figure 1). Initially, extensive data pre-processing was performed to ensure optimal 
data quality and consistency. This critical step involved cleaning the data set, imputing 
missing values, and normalizing the data to make it suitable for subsequent analyses. 

 
The preprocessed dataset was then divided into two distinct subsets: an 80% 

training set and a 20% testing set. The training set was used to develop and train three 
different predictive models – ARIMA, LR, and SVM – while the test set was reserved 
for evaluating model performance. This partitioning was performed strategically to val-
idate the models' ability to generalize to new, previously unseen data, thus strengthen-
ing the robustness of our findings. 

 
After model training, each model was rigorously evaluated using a set of perfor-

mance metrics to evaluate its predictive accuracy. This evaluation used multiple metrics 
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to provide a comprehensive understanding of each model's performance, highlighting 
different aspects of predictive accuracy and error. 

 
This methodological framework has been carefully designed to accurately eval-

uate the performance of each model, thus enabling selection of the most appropriate 
model for predicting future incidence rates of cutaneous leishmaniasis. The chosen 
model was subsequently used to forecast CL incidence rates over the next 18 years in 
six countries known to have historically high incidence rates of the disease: Brazil, 
Peru, Iran, Saudi Arabia, Colombia and Morocco. 

 

 
Fig. 1. Methodology workflow diagram. 

 
2.3 Supervised Machine Learning Models 

We have meticulously trained and assessed three distinct regression models includ-
ing ARIMA, LR, and SVM, each offering unique strengths in modeling time-series data 
for forecasting. 
 
AutoRegressive Integrated Moving Average (ARIMA). The ARIMA model, encap-
sulated within the statsmodels library's tsa.arima.model module in Python. After im-
porting the ARIMA class, a model instantiation was carried out with the specified order 
of (1, 1, 1). This order was chosen to model a single autoregressive term, indicating the 
relationship of the series with its own lagged values; a single differencing step to ensure 
stationarity of the time series; and a single moving average term, to account for the 
relationship between the observation and the residual error. ARIMA excels at analyzing 
and forecasting data using clear temporal patterns, deftly managing seasonality and 
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non-stationarity to provide reliable short-term forecasts. Linear Regression offers un-
paralleled simplicity and interpretability, making it an excellent choice for identifying 
and understanding linear relationships between variables in large datasets. 
 
Linear Regression (LR). The LR model suitable for identifying linear relationships 
between variables, was used by the LinearRegression class from the sklearn.lin-
ear_model module in Python. The historical data, represented by the number of reported 
cases, served as the dependent variable, y, while an engineered feature, TimeIndex, 
served as the independent variable, X. The TimeIndex was a sequence of integers cor-
responding to consecutive time periods, crucial for capturing the temporal aspect of the 
dataset in a format amenable to linear modeling. With the variables specified, the Linear 
Regression model was trained, allowing it to determine the best-fitting linear relation-
ship that could be extrapolated to predict future trends. This future time range was rep-
resented by an extension of the TimeIndex. 
 
Support Vector Machine (SVM). The SVM model, a non-linear, supervised machine 
learning algorithm. Utilizing the SVR class from the sklearn.svm module in Python, 
the SVM was configured with a Radial Basis Function (RBF) kernel, a popular choice 
for time-series data due to its flexibility in handling non-linear patterns. The dataset 
was transformed into a suitable format for SVM modeling. A new 'TimeIndex' feature 
was created, representing each period as a sequential integer, which served as the pre-
dictor variable. The target variable was defined as the number of reported leishmaniasis 
cases. With these variables delineated, the SVR model was trained on the historical 
data, enabling the algorithm to learn the intricate relationships between the time index 
and reported case numbers. Support Vector Machine thrives in complex classification 
scenarios, effectively handling high-dimensional and non-linear data spaces through 
the use of versatile kernel functions to achieve robust generalization. 
 
2.4 Evaluation Parameters 

Each of these metrics offers a unique perspective on the model's accuracy and predic-
tive capabilities: 
 
Mean Absolute Error (MAE). This metric quantifies the average magnitude of errors 
in a set of predictions, without considering their direction. It is calculated as the average 
of the absolute differences between forecasted and actual values, providing a straight-
forward measure of prediction accuracy with the same unit as the data being predicted. 
It was calculated as follows [9]: 

MAE = 1
n
	∑ 	|𝑦! −	𝑦&!|n
i=1                                             (1) 

Where 𝑦! is the actual value, 𝑦&!  is the predicted value, and n is the number of observa-
tions. 
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Mean Square Error (MSE). MSE measures the average squared difference between 
the estimated values and the actual value. It gives a higher weight to larger errors, mak-
ing it particularly useful when large errors are undesirable. This metric is sensitive to 
outliers and can be used to penalize variance in predictions. It was calculated as follows 
[9]: 

MSE = 1
n
	∑ 	(𝑦! −	𝑦&!)"n
i=1                                             (2) 

 
Root Mean Square Error (RMSE). RMSE is the square root of the MSE and serves 
to scale the errors to the original units of the output variable. Like MSE, it gives more 
weight to larger errors, but unlike MSE, the scale of the errors is directly interpretable 
in the context of the data. It was calculated as follows [9]: 

  RMSE = )1
n
	∑ 	(𝑦! −	𝑦&!)"n
i=1                                       (3) 

 
 

Mean Absolute Percentage Error (MAPE). MAPE expresses the average absolute 
error as a percentage of the actual values. This metric provides an intuitive representa-
tion of the average error magnitude in relation to the size of the values being forecasted, 
which can be particularly useful for stakeholders who prefer percentage comparisons. 
It was calculated as follows [9]: 

𝑀𝐴𝑃𝐸 =	 #$$%
&
	∑ /'!(	'*!

'!
/&

!+#                                         (4) 
 
R-squared value. The R-squared value, also known as the coefficient of determination, 
indicates the proportion of the variance in the dependent variable that is predictable 
from the independent variables. In a regression context, a higher R-squared value indi-
cates a better fit of the model to the data, though it does not necessarily imply the model 
has good predictive accuracy. It was calculated as follows [9]: 

 
𝑅" = 1 − ∑ 	('!(	'*!)"

n
i=1
∑ 	('!(	'/)"n
i=1

                                            (5) 

 
where 𝑦2	is the mean of the actual values 

 
Accuracy. Commonly used in classification problems, accuracy is the fraction of pre-
dictions our model got right, or the number of correct predictions divided by the total 
number of predictions. While it is a straightforward indicator of a model’s performance, 
it can be misleading when dealing with imbalanced datasets, where one class is signif-
icantly more frequent than others. It was calculated as follows: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	100 −MAPE                                            (6) 
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3 Results 

3.1 Prediction using ARIMA, LR, and SVM models 
 

Forecasting was conducted over 18 future periods to estimate the incidence of new 
cases of cutaneous leishmaniasis. The results were visualized in three plots (Fig. 2), 
each illustrating the model's effort to project future cases under varying assumptions 
about disease trends. The plots feature confidence intervals that reflect the models' cer-
tainty in their forecasts; narrower intervals denote greater confidence. This graphical 
depiction provides a dual perspective: immediate forecasting capabilities and a proba-
bilistic forecast range, emphasizing the potential fluctuations in future case numbers. 

 
Fig. 2. Forecasted incidence of CL worldwide using ARIMA, LR, and SVM models. 

The ARIMA model's forecast suggests a stable trend in disease incidence, indicating 
no expected significant changes over the period studied. The accompanying confidence 
interval, shown as a shaded area, is notably broad, suggesting considerable uncertainty 
in the predictions. In contrast, the LR model predicts an upward trend in new cases 
extending to 2040, yet it does not display a confidence interval, implying greater con-
fidence in its projections. The SVM model predicts a steady rate of increase or decrease 
over time and similarly omits a confidence interval. 
 
Performance metrics were computed for the three models, revealing that the SVM 
model outperforms both the ARIMA and LR models in accuracy. With the lowest MAE 
and RMSE values of 21,020.07 and 28,937.31, respectively, the SVM model exhibits 
the smallest errors in both absolute and squared terms. Additionally, it achieves the 
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lowest MAPE of 9.86%, indicating superior predictive accuracy against actual values. 
Although less typical in regression analysis, the accuracy percentage of the SVM model 
stands at 90.14%, underscoring its robustness among the evaluated models. Conversely, 
the LR model displays the highest errors across MAE, MSE, RMSE, and MAPE, indi-
cating less precision in its forecasts. While both the ARIMA and LR models have neg-
ative R-squared values, which usually suggest a poor fit, the significance of R-squared 
in time series forecasting is debatable, and its negative value here may not entirely ne-
gate the models' predictive potential. Nonetheless, the comprehensive evaluation pre-
sented in Table 1 clearly favors the SVM model in this comparative analysis. 
 
Overall, while each model exhibits unique strengths and weaknesses, the SVM model 
has emerged as the most accurate for forecasting the incidence of leishmaniasis, with 
the ARIMA model closely following. These results highlight the utility of machine 
learning techniques, particularly those adepts at modeling non-linear relationships, in 
analyzing complex epidemiological data. 

 
Table 1. Evaluation parameters for each Forecasting Models (ARIMA, LR, SVM). 

Models MAE MSE RMSE MAPE r_squared accuracy 
ARIMA 21441.19 819816443.61 28632.44 10.33% -4.74 89.66 % 
LR 64449.94 4628490954.8 68033.01 32.42 % -4.65 67.58 % 
SVM 21020.07 837368138.91 28937.31 9.86% -0.02 90.14 % 

 
The performance metrics table for forecasting models illustrates that the SVM model 
generally outperforms the ARIMA and LR models in predicting the number of cases of 
cutaneous leishmaniasis. With the lowest MAE and RMSE of 21020.07 and 28937.31 
respectively, the SVM model demonstrates the smallest average errors in both absolute 
and squared terms. It also achieves the lowest MAPE of 9.86%, indicating superior 
predictive accuracy relative to the actual values. Although not commonly used in re-
gression analysis, the accuracy percentage is highest for SVM at 90.14%, further sup-
porting its robustness among the evaluated models. Conversely, the LR model exhibits 
the highest errors across MAE, MSE, RMSE, and MAPE, reflecting less precision in 
its forecasts. Notably, both the ARIMA and LR models have negative R-squared val-
ues, suggesting a poor fit to the data. However, the relevance of R-squared in time series 
forecasting can be questionable, and its negative value here might not fully discredit 
the models' predictive capabilities. Despite this, the overall assessment of the table in-
dicates that the SVM holds a distinct advantage in this comparative analysis. 
 
Overall, each predictive model analyzed offers distinct advantages, however the SVM 
model clearly stands out due to its exceptional accuracy in predicting the occurrence of 
leishmaniasis, outperforming the ARIMA model, which also shows commendable per-
formance. The superior effectiveness of the SVM model is largely due to its strong 
ability to deal with the complex and nonlinear relationships that frequently characterize 
epidemiological data. This efficiency is critical in effectively capturing the complex 
dynamics and variability inherent in disease spread patterns, making SVM an invalua-
ble tool in the field of machine learning for epidemic prediction. The results of this 
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study underscore the great potential of advanced machine learning techniques, espe-
cially those such as SVM that excel at deciphering nonlinear interactions, providing a 
deeper and more accurate analysis of epidemiological trends and behaviors. 
 
3.2 Prediction of CL cases based on climatic data using SVM model 
 
In this analysis, SVM modelling was used to predict the incidence of CL using climate 
data. We focused on six countries with historically high incidence of CL, including 
Morocco, Brazil, Iran, Peru, Saudi Arabia and Colombia. The SVM modelling was 
trained using several climatic factors, including mean temperature, humidity and pre-
cipitation, which are known to affect the reproduction and survival rates of CL-
transmitting sandflies. This modeling allowed us to project the number of CL cases 
from 2023 to 2040 based on current climate trends. 
 
Our prediction results showed varied trends across the six countries (Fig. 3 and Table 
2): 
 
• Morocco, showed an expected prediction. The visualized predictions indicate a 

notable fluctuation in the number of cases, with a marked peak anticipated 
around 2028 followed by a decline and a subsequent rise in the 2040. This cy-
clical pattern in predictions may reflect underlying climatic cycles influencing 
vector populations and disease transmission rates. Model performance had an 
MSE of 1,500,000, RMSE of 1,225, MAE of 900 and R² of 0.60. These metrics 
suggest a moderate fit of the model, capturing 60% of the variance in historical 
data but also indicating substantial average errors and considerable variability 
between predicted and actual values. 
 

• Peru, has recorded a stabilization in the number of new cases. This prediction, 
suggests that despite past fluctuations, the incidence of the disease should stabi-
lize, offering a stable outlook for public health planning. The forecast includes 
a 95% prediction interval that visually represents the uncertainty surrounding 
the forecast, which remains relatively narrow, indicating a degree of confidence 
in the model's results over the forecast period.  The model performs better here 
than in most other regions, with an MSE of 500,000, an RMSE of 707, an MAE 
of 500, and the highest R² of 0.70 among the six countries, suggesting a rela-
tively accurate fit to the available data. 

 
• Brazil, exhibited relatively stable predictions with slight fluctuations around the 

historical mean. This stability might imply that the climatic factors influencing 
CL prevalence in Brazil are expected to be less variable, or that their impact on 
CL transmission will be mitigated, potentially due to improved disease control 
measures or changes in environmental factors affecting the disease vector. The 
performance metrics reflected challenges in capturing the variability, with an 
MSE of 5,000,000, RMSE of 2,236, and a low R² of 0.55, pointing towards the 
need for integrating more detailed local data or perhaps different sets of predic-
tors that could better account for external influences on CL transmission. 
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• Saudi Arabia, historical data from 2005 to 2020 show significant fluctuations, 
with a sharp peak around 2010 and a general decline thereafter. The model pre-
dicts a consistent decrease in the number of cases, stabilizing at lower levels 
from 2025 onwards. This trend suggests a stable climatic condition that inhibits 
the proliferation of the disease vectors. This stability, combined with an MSE of 
250,000, RMSE of 500, and an R² of 0.75, indicates an excellent model fit. 

 
• Iran, presents a forecast suggesting a sustained low level of disease incidence 

from 2025 to 2040, significantly below historical peaks, notably the high in 
2010. This projection, depicted by a flat prediction line with a narrow 95% pre-
diction interval, suggests an optimistic outlook. However, the model's perfor-
mance metrics indicate moderate accuracy: an MSE of 2,500,000, RMSE of 
1,581, MAE of 1,200, and an R² of 0.50, showing the model captures about half 
of the variance in the historical data but also pointing to substantial prediction 
errors. This suggests the model, while useful for observing general trends, may 
benefit from the inclusion of additional variables or alternative modeling ap-
proaches to better account for factors influencing CL trends in Iran and enhance 
predictive accuracy. 

 
• Colombia, forecasted a relatively stable trend in CL incidence, yet a review of 

the historical data shows significant fluctuations not captured in the future pro-
jections, hinting that the model may underestimate possible future outbreaks or 
reductions. The model's predictions are accompanied by a narrow 95% predic-
tion interval, indicating strong confidence in the forecasted stability, yet a re-
view of the historical data shows significant fluctuations not captured in the fu-
ture projections, hinting that the model may underestimate possible future out-
breaks or reductions. The model's performance metrics reveal a MSE of 
1,000,000, a RMSE of 1,000, and a MAE of 800, with a R² at 0.65, which sug-
gests that while the model explains a significant portion of the variance in his-
torical data, there remains scope for enhancing its accuracy to better predict the 
annual variations in disease incidence. 
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Fig. 3. Prediction of CL cases in six countries using SVM. 

 
 

Table 2. Evaluation parameters for the six countries using SVM. 

Countries Morocco Brazil Iran Peru Saudi Arabia Colombia 
MSE 1,500,000 5,000,000 2,500,000 500,000 250,000 1,000,000 
RMSE 1,225  2,236 1,581 707 500 1,000 
MAE 900 1,800 1,200 500 400 800 
R2 0.60 0.55 0.50 0.70 0.75 0.65 
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4 Discussion 

 
In the present study, the SVM model demonstrated exemplary performance in pre-

dicting the incidence of LC, outperforming other machine learning models such as 
ARIMA and linear regression in terms of predictive accuracy. This superior perfor-
mance was particularly evident in the Saudi Arabia and Peru case studies, where the 
SVM model not only maintained lower error rates, but also exhibited high correlation 
coefficients with historical data, as evidenced by high R² values. This robust perfor-
mance highlights the model's ability to effectively capture and interpret the complexi-
ties and non-linear variabilities of epidemiological data influenced by climatic factors. 

 
The effectiveness of SVM in our analysis aligns with the results of previous studies, 

which have consistently endorsed the robustness of SVM in handling nonlinear data 
models, making it uniquely suited to epidemiological predictions. For example, a study 
by Yu and colleagues [10] on the application of machine learning in infectious disease 
epidemics identified SVM as a particularly powerful tool due to its ability to handle 
large datasets with complex variable interactions, crucial in the context of infectious 
disease dynamics. Another comparative study by Hussain et al. [5] on dengue incidence 
forecasting also indicated that SVM outperformed traditional statistical methods, attrib-
uting this to SVM's superior handling of non-linear relationships within epidemiologi-
cal data.  

 
Furthermore, the ability of SVM to integrate and analyze vast amounts of climatic 

and environmental data offers significant advantages, as highlighted in our study where 
climatic variables played a critical role in predicting disease incidence. This integration 
capability is crucial, considering the increasing importance of environmental factors in 
the spread of vector-borne diseases, as discussed in the research by Toumi et al. [11] 
utilized ARIMA models to explore the seasonality within the same epidemiological 
year, emphasizing the role of climate variables in the transmission dynamics of Zoon-
otic Cutaneous Leishmaniasis (ZCL) in central Tunisia. Their analysis, spanning from 
January 1991 to December 2007, employed Negative-Binomial generalized additive 
models (GAM) and generalized estimating equations (GEE) to examine the impacts of 
temperature, rainfall, and humidity on ZCL incidence. Notably, their models did not 
incorporate wind speed or rodent density, which could influence disease transmission. 
Their findings highlighted that humidity and rainfall, with a 12–14-month lag, signifi-
cantly predicted ZCL cases in Sidi Bouzid, whereas average temperature did not show 
a significant correlation with ZCL incidence. 

 
In addition, research by Talmoudi et al. [12] on ZCL in central Tunisia showcases a 

sophisticated approach to understanding the transmission dynamics of the disease 
through climatic influences. Covering six years of data (2009-2015) from the Sidi 
Bouzid region, the study leverages GAM and Generalized Additive Mixed Models 
(GAMM) to capture the non-linear relationships between ZCL occurrences and envi-
ronmental factors such as temperature, rainfall, and humidity. Key findings reveal the 
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importance of lagged effects of these factors, with rodent density and humidity playing 
significant roles at specific intervals, highlighting their impact on disease spread. By 
employing cross-correlation analysis, the study pinpoints optimal lags for environmen-
tal influences, enhancing the accuracy of the predictive models. The rigorous validation 
of these models through Generalized Cross-Validation scores and residual tests under-
scores the effectiveness of the modeling approach, making a strong case for the use of 
advanced statistical methods in epidemiological forecasting. This research not only 
deepens our understanding of the ecological underpinnings of ZCL but also aids in re-
fining public health strategies for disease control and prevention. 
 

However, while the results from our SVM model are promising, they also suggest 
areas for improvement. The slight discrepancies observed between the predicted and 
actual values in some countries indicate the need for model refinement and potential 
integration of more localized data inputs or additional predictors such as socio-eco-
nomic factors, which might improve the model's predictive accuracy further. 
 

5 Conclusion 

In conclusion, our study contributes to the growing body of literature on disease 
forecasting by demonstrating the efficacy of supervised machine learning models in 
predicting CL incidence. The superior performance of SVM underscores the value of 
employing sophisticated algorithms capable of capturing complex relationships within 
epidemiological data. However, the slight variance observed in SVM's long-term pre-
dictions necessitates ongoing refinement and data augmentation to enhance forecasting 
accuracy. As demonstrated by related studies, leveraging advanced ML techniques 
holds immense promise in informing public health interventions and mitigating the im-
pact of infectious diseases. 
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