
EasyChair Preprint
№ 5165

Potential Risk Detection System of Hyperledger
Fabric Smart Contract based on Static Analysis

Penghui Lv, Yu Wang, Yazhe Wang, Han Wang and Qihui Zhou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 16, 2021



Potential Risk Detection System of Hyperledger Fabric 

Smart Contract based on Static Analysis 

Penghui Lv*†, Yu Wang*, YaZhe Wang*, Han Wang*†, Qihui Zhou*† 

*Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China 

† School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China 

*{lvpenghui, wangyu, wangyazhe, wanghan, zhouqihui}@iie.ac.cn 

 

Abstract— The smart contracts of Hyperledger Fabric 
blockchain are mostly developed in general-purpose 
programming languages, which are well-known by 
potential developers, such as Golang. Due to the lack of 
mature development specifications for smart contracts 
using general-purpose programming language, there are 
often potential risks in the smart contracts related to the 
characteristics of Hyperledger Fabric. It will bring many 
inconveniences and potential safety hazards to users after 
the smart contracts are deployed. Although there are 
already some potential risk detection tools for smart 
contracts of Hyperledger Fabric, the accuracy and coverage 
of the tools are limited. In response to the above problems, 
this article summarizes three types of potential risks in the 
smart contracts of Hyperledger Fabric: Non-determinism 
Risk, Logical Security Risk, and Private Data Security Risk. 
In order to detect these different types of potential risks, we 
propose a new static analysis method based on Abstract 
Syntax Tree, Package Dependency Analysis, and Functional 
Dependency Analysis. At the same time, we design a 
detection system that can accurately locate the location of 
potential risk items in the smart contracts of Hyperledger 
Fabric and generate development suggestions for the 
reference of smart contract developers. 
Index Terms—Hyperledger Fabric, Static Analysis, Smart 
Contract, Potential Risk Detection 

I. INTRODUCTION 

The smart contract of Hyperledger Fabric, the most 
famous permissioned blockchain [1], is called “chaincode”, 
which is a piece of computer code running on the docker of   
Hyperledger Fabric. The chaincodes are mostly developed in 
general-purpose programming languages, e.g., Golang, Java, 
and NodeJs. Among them, Golang has become the most 
mainstream development language [2-3]. However, the 
chaincodes developed by general-purpose programming 
languages lack mature development specifications, so most 
developers tend to blur the boundaries between the chaincodes 
and ordinary applications, and introduce potential risks into the 
chaincodes during the development process. It may bring many 
inconveniences and potential safety hazards to users during 
these chaincodes operation. In addition, once the chaincodes 
are deployed and executed, it is more difficult to be updated and 
deleted. Therefore, it is extremely important to discover 
potential risks in the chaincodes and improve their quality 
before the chaincodes are deployed. 

At present, there is related research on potential risk 
detection of the chaincodes developed by general-purpose 
programming languages. The general-purpose programming 
languages have their own detection tools, such as Gosec[4] and 

staticCheck[5], which are usually used to identify grammatical 
errors in the Golang language programming process, but they 
cannot effectively identify the potential risks associated with 
the characteristics of smart contract. Zhang et al. [6] 
summarizes the non-deterministic risks in the chaincodes of 
Hyperledger Fabric. Huang Y et al. [7] introduced Chaincode 
scanner, which can only detect 9 risk items related to the non-
determinism risks and logical security risks in the chaincodes. 
Yamashita K et al. [8] designed a static detection tool based on 
the Abstract Syntax Tree, this tool can detect 14 risks items 
mainly related to the non-determinism risk and logical security 
risk in the chaincodes.  

Although some papers have summarized some risk items 
related to chaincode, the introduction of these risk items is not 
comprehensive enough. In addition, Current tools detect 
potential risks in the chaincodes based on the Abstract Syntax 
Tree, the accuracy and coverage of these tools are limited. 
Particularly, they have shortcomings in detecting potential risks 
items related to the private data security, these items are also 
often ignored by developers, and most users are concerned. 

In response to the above problems, our article makes the 
following contributions: 

1) This article more comprehensively summarizes the 
three types of potential risks in the chaincodes, including Non-
determinism Risk, Logical Security Risk, and Private Data 
Security Risk. 

2) For detecting different risks of Hyperledger Fabric 
smart contract, a new static analysis method is proposed, which 
is based on Abstract Syntax Tree, Package Dependency 
Analysis, and Functional Dependency Analysis. 

3) A potential risks detection system of the chaincodes is 
designed based on the new static analysis method. it can detect 
16 risk items with high accuracy, of which the Data Privacy 
Security Risks are more comprehensively detected, and just 
makes up for the deficiencies of other tools. 

Organization: This article is divided into 6 sections. 
Section II introduces transaction flow of Hyperledger Fabric, 
and summarizes potential risks in the chaincodes, Section III 
Section IV provides our system’s architecture, and presents the 
design and implementation of our system. Section V discusses 
the results and our system. Section VI draws our conclusions. 

II. POTENTIAL RISKS IN HYPERLEDGER FABRIC 

A. Hyperledger Fabric 

To better understand potential risks in the chaincodes of 
Hyperledger Fabric, we briefly introduce the transaction flow 
of Hyperledger Fabric version 1.0 or later. There are the 
following four steps to complete a transaction, requiring the 



participation of Peers (acting as endorsing peer or comitter 
peer), Orderers and Clients [9], as shown in Figure 1. 

Clent/SDK
OrdersOrdersOrdersOrdersOrders

Peer(Endorser)Peer(Endorser)Peer(Endorser)
Peer(Comitter)Peer(Comitter)Peer(Comitter)

Sync

 3. Send the transaction 

 

Figure 1 The transaction flow of Hyperledger Fabric 

1) Initiate a transaction. The client sends a transaction 
proposal to the corresponding endorsing peers. 

2)Transaction endorsement. Each endorsing peer takes 
the received transaction proposal inputs as arguments to invoke 
the chaincodes, simulates transaction execution, and finally 
sends the transaction results back to the client. Then, the client 
packages all transaction results received into a transaction 
request to Orderers via the endorsing peers. 

3)Generating new blocks. The Orderers order the 
received transactions, generate new blocks, and then deliver 
these blocks to comitter peers (all peers) on the channel.  

4)Transaction validation. When receiving the new 
blocks, each comitter peer validates the transaction, and then   
appends the new blocks to the chain. Simultaneously, the result 
of each valid transaction is generated and stored in the current 
state database. 

The above is the general transaction flow of Hyperledger 
Fabric. However, if there are potential risks in the chaincodes, 
it will not only cause the transaction to fail and affect the stable 
operation of the entire system, but also bring challenges to the 
user’s information security. This article analyzed the 
chaincodes of Hyperladger Fabric, and summarized the three 
types of potential risks in the chaincodes: Non-determinism 
Risk, Logical Security Risk and Privacy Data Security Risk. 

B. Non-deterministic Risk 

Parameters of the transaction

Peer 1 (Endorser)

Are the outputs the same?

Transaction failed

Docker(Chaincode) Docker(Chaincode) Docker(Chaincode)

Output

NO

Input

Peer 2 (Endorser) Peer 3 (Endorser)

Input Input

Output Output

 

Figure 2 The process of transaction failure caused by non-
deterministic risk 

In Hyperledger Fabric, transaction failure caused by Non-
determinism Risk is reflected in the transaction endorsement 
step, as shown in Figure 2. Distributed and independent 
endorsing peers input the same parameters of the transaction, 
and then execute the chaincodes with Non-deterministic Risk 
to simulate transactions. But the transaction results from 
different endorsing peers are not the same, this violates the 
consensus rules of Hyperledger Fabric and causes the 
transaction to fail [10]. Hence, it is necessary to find the Non-
deterministic Risk in the chaincodes. The Non-deterministic 
Risk mainly comes from Non-deterministic Data Sources, Non-
deterministic Execution Process and Non-deterministic 
External Calls. 

Definition 1: Non-deterministic Data Sources are objects 
or variables, which may have different values when running in 
different peers, including Random Number Generation, System 
Timestamp, and Reified Object Addresses.  

Since each endorsing peer stimulates the chaincodes in 
different environments, it is difficult to ensure that the 
timestamp functions and random functions of the chaincodes 
running in different endoring peers have the same result for 
each peer. Similarly, Reified Object Addresses are addresses of 
memory, which may be different in different environments. 

Listing1: example of Non-deterministic Data Sources 

1 // User set a value 
2 setValue := arg[0]   
3 rand.Seed(seed)    //random function 
4 sel := rand.Intn(10) 

5 if setValue == sel { a → b} 
6 else{ a ← b} 

Listing 1 shows an example of the Non-deterministic Risk 
from Non-deterministic Data Sources. In this example, if 
setValue equals sel, User a transfers a sum of funds to user b. 
However, the random function in the chaincodes running in 
different endoring peers generates different numbers for each 
peer, so this transaction will be difficult to succeed. 

Definition 2: The Non-deterministic Execution Process 
refers to the process in which the internal logic execution 
sequence of the same function of the chaincodes in different 
peers is different, or the values of their same variables become 
different, which leads to uncertain transaction results.  

The factors that cause the Non-deterministic Execution 
Process are as follows: Global Variable, Field Declarations, 
Concurrency of Program, Map Structure Iteration. 

 1) Global Variables and Field Declarations: Due to the 
differences in the endorsement policy of each peer, not every 
peer simulates the same transaction, so this may cause the 
values of the Global Variables and the Field Declarations in 
each peer to become different. 

2) Concurrency of Program: Using Golang language to 
develop the chaincodes, Concurrency of Program makes the 
execution order of the chaincodes impossible to determine.  

3) Map Structure Iteration:  Map Structure Iteration 
may result in a different sequence of key-value pairs, as shown 
in Figure 3.  

key: 0,value: Blockchain A

key: 1,value: Blockchain B

key: 3,value: Blockchain D

key: 2,value: Blockchain C

key: 1,value: Blockchain B

key: 2,value: Blockchain C

key: 3,value: Blockchain D

key: 0,value: Blockchain A

Different results

The first

 traversal

The second 

traversal

 
Figure 3 Non-deterministic results coming from Map 

Structure Iteration 
Definition 3: Non-deterministic External Calls refer to 

visits from outside the blockchain that lead to uncertain 
transaction results, including External File Accessing, External 
Library Calling, Web Service, and System Command 
Execution.  

Non-deterministic External Calls may have different 
execution logic or uncertain data sources in different peers, so 
the results obtained by running are not guaranteed to be 
consistent. Therefore, when encountering Non-deterministic 
External Calls, developers need to be clear about what results 
are obtained. 

C. Privacy Data Security Risk 

Definition 4: Privacy Data Security Risk refers to the risk 
of transaction failure due to operating authority issues, or 
sensitive data leakage due to lack of security measures when 
simulating the chaincodes. It includes Cross Channel 
Chaincode Invocation, Unencrypted Sensitive Data, and 
Unused Privacy Data Mechanism. 

1) Cross Channel Chaincode Invocation: Hyperledger 
Fabric provides the function of the Cross Channel Chaincode 



Invocation. The chaincodes can invoke other chaincodes on the 
same channel to access or modify the state database, but cannot 
call other chaincodes on a different channel to create a new 
transaction. Therefore, when using cross-channel calling 
functions, developers should avoid calling the chaincodes on 
another channel to create a new transaction. 

2) Unencrypted Sensitive Data: If there is Unencrypted 
Sensitive Data in the chaincodes, the plaintext of sensitive 
transaction data is stored in the ledger, which may cause the 
leakage of transaction data. 

3) Unused Privacy Data Mechanism: For the protection 
of sensitive data, Hyperledger Fabric also provides a Private 
Data Mechanism to enhance the security of transaction data 
[11-12]. If there is Unused Privacy Data Mechanism in the 
chaincodes, the security of transaction data may be weakened. 

D. Logical Security Risk 

Logical Security Risk mainly discusses the risk arising 
from the state database operation of Hyperledger Fabric, such 
as Range Query Risk and Read Your Write. 

1) Range Query Risk: Hyperledger Fabric provides some 
range query methods to access the state databases, such as 
GetQueryResult(), GetPrivateDataQueryResult(), and 
GetHistoryForKey(). These methods are executed during the 
endorsement phase, but are not re-executed during the 
verification phase. Therefore, these methods cannot be used to 
modify the ledger in the chaincodes, and can only be used to 
query the transaction of the ledger. 

2) Read Your Write: In Hyperledger Fabric, the operation 
of writing the transaction data of the blockchain into the ledger 
is executed after the transaction is completed and verified. 
Therefore, there cannot be a write-and-read operation on a 
variable of the same process in the chaincodes, that is, Read 
Your Write are not supported in Hyperledger Fabric. 

III. DESIGN AND IMPLEMENTATION OF OUR 

SYSTEM 

A. Architecture of Our System 

In order to find out potential defects and risks in the 
chaincodes of Hyperledger Fabric, we propose a detection 
technology based on static analysis and implement a detection 
system for the chaincodes developed by the Golang language, 
as shown in Figure 4. The system mainly includes three 
modules: Chaincode Static Analysis, Detection Execution and 
Generating Visual Report. 

Detection Execution

Logic DetectionInstruction DetectionPackage Detection

The Feature Library

Generating visual report

Potential Defect and Risk Items Development Suggestions

Chaincode Static Analysis

Abstract Syntax Tree Analysis Package Dependency Analysis Function Dependency Analysis

Chaincodes of Hyperledger Fabric

match match match

 

Figure 4 Architecture of our tool 

1)Chaincode Static Analysis. In this module, the 
chaincodes of Hyperledger Fabric are analyzed to obtain static 
structure information such as abstract syntax tree, package 
dependency, and functional dependency. 

2) Detection Execution. This module is designed to 
determine the types and locations of potential defects and risks 
by matching a feature library composed of static features of the 
risks of chaincodes. 

3)Generating Visual Report. The report includes 

descriptions and locations of potential risk items in the 
chaincodes, and development suggestions to eliminate these 
items.  

Chaincode Static Analysis and Detection Execution 
module are the core parts of our detection system. The 
following mainly introduces the design and implementation of 
these modules. 

B. Chaincode Static Analysis 

Chaincode Static Analysis is to perform Abstract Syntax 
Tree Analysis, Package Dependency Analysis and Function 
Dependency Analysis on the chaincodes to obtain their static 
structure information: Abstract Syntax Tree, Package 
Dependency Relationship, Function Call Relationship, as 
shown in Figure 5. 

Chaincode

Token

Sequences

Abstract Syntax 

Tree

Intermediate Representation

Package Dependency 

Relationship

Function Call 

Relationship

Lexical Analysis

 Syntax Analysis

Package 

Dependency 

Analysis

Semantic 

Analysis

Function 

Dependency 

Analysis

 

Figure 5 Simplified diagram of Chaincode Static Analysis 

C. Abstract Syntax Tree Analysis 

Abstract Syntax Tree Analysis is the process of obtaining 
the Abstract Syntax Tree (AST) of the chaincodes by using 
Lexical Analysis and Syntax Analysis in the compiler [13].  

The chaincodes are used as input to generate recognizable 
token sequences through Lexical Analysis. Then through 
Syntax Analysis, the generated Token sequences are rewritten 
to construct the AST of the chaincodes using the bottom-up 
analysis method, which is constructed from subtrees, gradually 
merged upwards, and finally assembled into a complete tree. 
As shown in Figure 6, the AST of the chaincodes takes the 
entire file ast.File as the root node, and other nodes describe the 
grammatical structure of different levels in the file from top to 
bottom, and each node has its detailed structure declaration and 
definition, which represents its location in the chaincodes and 
the relationship with other files.   

*ast.File(Name:main)

*ast.Ident *ast.Decl *ast.ImportSpec

*ast.Ident*ast.Tok *ast.Specs

*ast.FuncDecl*ast.GenDecl *ast.BasicLit

*ast.ValueSpec

Decls ImportName

Type Functions

FunctionInit

func Init

func Invoke

func main

type chaincode struct

chaincode

struct

package

import shim

import peer

package main

 

Figure 6 Abstract Syntax Tree of the chaincodes 

D. Package Dependency Analysis 

Package Dependency Analysis is a process of analyzing 
the AST of the chaincodes to obtain the dependencies between 
the packages called by the chaincodes. 

Algorithm 1: Package Dependency Analysis 

1 begin 
2 // Convert the AST of the chaincodes into the IR 

3 IR := SemanticAnalysis (AST) 

4 //Get the parameters of the top-level package 
5 root,pkgName,level,imported:= getTopPackage(IR) 



6 processPkg(root, pkgName, level, imported ) { 
7 // Level is not greater than maxLevel 
8 if level++; level > *maxLevel {return nil;} 
9 //Get the dependent package list of this layer 
10 pkg := buildContext.Import(pkgName, root) 
11 //Get the path of the dependent package 
12 importPath := normalizeVendor(pkgName) 
13 pkgs[importPath] = pkg 
14 // Recursive 
15 for _, imp := range getImports(pkg) { 
16 if _, ok := pkgs[imp]; !ok {  
17 processPkg(pkg.Dir, imp, level, pkgName) } 
18 } 
19   } 
20   return pkgs; 
21 end 

 
 The algorithm of Package Dependency Analysis is 

shown in Algorithm 1. This algorithm first uses semantic 
analysis to convert the AST of the chaincodes into the 
intermediate representation (IR) with Static Single Assignment 
(SSA) [14]. Then, the name, path and other parameters of the 
top-level package are obtained from the IR as the input of the 
processPkg function, which is used to read the import keyword 
in the specified package name to get the list of the dependent 
packages. The algorithm further traverses the list of the 
dependent packages and calls the processPkg function 
recursively to get the list of the dependent packages of each 
layer. Among them, root is the path of the top-level dependent 
package, pkgName is the name of the top-level dependent 
package, level is the level of the current package. When the 
algorithm recursively reads the list of dependent packages from 
the IR, the standard library provided by Golang language can 
be read at the third layer at most, so maxLevel is set to 3 [15-
16]. Finally, the package dependency relationship of the 
chaincodes is obtained, as shown in Figure 7. 

ChainCode

encoding/

json
fmt strconv

github.com/username/

gitpackage

os/exec

ChainCodes

import

encoding/

json
fmt strconv

github.com/hyperledger/fabric/

core/chaincode/shim

os/exec

github.com/hyperledger/fabric/

protos/peer  
Figure 7 the package dependency relationship of the 

chaincodes 

E. Function Dependency Analysis 

Function Dependency Analysis uses inclusion-based 
pointer analysis to analyze the intermediate representations of 
the chaincodes, which have the characteristics of the SSA, and 
constructs Function Call Relationship inside the chaincodes.  

Algorithm 2: Function Dependency Analysis 

1 begin 
2 //Select the package with the main function 

3 mains:=MainPackages(IR) 
4 //Obtain the original function callgraph 
5 CallGraph := pointer.Analyze(mains) 
6 // Traverse all edges of CallGraph 
7 CallGraph.GraphVisitEdges(){ 
8     // Remove irrelevant callgraph 
9     CallGraph.RemoveUnwantedEdge() 
10 } 
11 //Return the function call relationship needed 
12 return CallGraph.GetCallGraph() 
13 end 

The algorithm of the Function Dependency Analysis is 
implemented as shown in Algorithm 2. The algorithm first 
analyzes the intermediate representation of the chaincodes to 
select the packages with the main function. Subsequently, the 

Analyze function in the pointer library officially provided by 
the Golang language is used to further analyze the selected 
package to construct the original function callgraph[17], which 
contains a lot of call relationships with Edges and Nodes. Then, 
using the method of depth first search traverses each Edge of 
the original function callgraph. At the same time, the algorithm 
removes the irrelevant call Edges, such as shim, peer packages 
related call edges, the underlying library related call edges, and 
retains the call relationships useful for subsequent detection. 
Finally, a clear function call relationship in the chaincodes is 
constructed. 

F. Chaincode Detection Execution 

Chaincode Detection Execution undertakes the task of 
detecting potential risks of the chaincodes. We extract the static 
structural features of the known risks of the chaincode to form 
a feature library. Then, the Chaincode Detection Execution 
matches the static structural features of the chaincodes obtained 
by the Chaincodes Static Analysis with the feature library to 
obtain the detection results. It realizes the detection of different 
risk items through the package detection module, the 
instruction detection module, and the logic detection module. 

The package detection module uses the Depth First Search 
to search the Package Dependency Relationship of the 
chaincodes. In the process of searching the Package 
Dependency Relationship, if a risky package is found, there is 
a corresponding risk in the chaincodes. Otherwise, if there is a 
recommended package, there is no risk. The risk items detected 
by this module, risky packages, and recommended packages 
are shown in Table I. Since the time packages may introduce 
the logic of obtaining system time, developers should take care 
to avoid the non-determinism risk using such packages. In   
contrast, the crypto/des packages may introduce the function of 
data encryption, this is a package recommended for developers 
to increase the protection of private data. 

TABLE I 
THE DIFFERENT RISKS RELATED TO THE PAKAGES 

The risk items  The risky packages 

Random Number Generation crypto/rand, math/rand, …… 

System Timestamp time.Date, time.Now, …… 

System Command Execution os/exec, …… 

External Library Calling not standard libraries , …… 

Web Service net/http, …… 

External File Accessing ioutil, os, …… 

The risk items The recommended packages 

Unencrypted Sensitive Data crypo/md5, crypo/des, …… 

 
The instruction detection module uses the node 

characteristics of the AST of the chaincodes to determine the 
potential risks. For example, Global Variables are determined 
based on the Tok value and ValueSpec value of the ast.Decl 
node under the root node of the AST. The risk items that this 
module can detect are shown in Table II.  

TABLE II 
THE RISK ITEMS DETECTED BY THE INSTRUCTION 

DETECTION MODULE 

The risk items 

Global Variable 

Field Declarations 

Map Structure Iteration 

Reified Object Addresses 

Concurrency of Program 

Cross Channel Chaincode 
Invocation 

Unused Privacy Data 
Mechanism 

The logic detection module detects potential risks 
according to the path characteristics of the function call 
relationship inside the chaincodes. The risk items detected by 



this module include Range Query Risk and Read Your Write. 
For Range Query Risk, it mainly confirms whether there is a 
call path from the Invoke function to the data range query 
function, such as GetPrivateDataQueryResult(), 
GetQueryResult(). If the path exists, the risk item exists. 

IV. EVALUATION 

A. Experimental Setup 

After the potential risk detection system of the chaincode 
is designed, we evaluate the efficiency and accuracy of our 
system. We use a crawler to collect 300 chaincode samples 
developed by Golang on the Github. These chaincode samples 
come from different business scenarios, such as quality 
performance certification, car transactions. Our system runs on 
a Linux operating system computer, which has an Intel Core i7 
CPU and 8.00 GB Ram. The system first detects the collected 
chaincode samples and counts the number of occurrences of 16 
risk items, the number of false positives and the number of false 
negatives. Then, we calculate the false positive rate (FPR), false 
negative rate (FNR) and Accuracy of each detection module of 
the detection system based on the statistical data of the risk 
items of the chaincode samples. Finally, the false positive rate 
(FPR), false negative rate (FNR) and Accuracy of the detection 
system are also calculated.  

B. Evaluation Result 

Through testing, it was found that 212 chaincode samples 
in 300 chaincode samples had potential risks, covering all of 16 
risk items. This shows that the chaincode developed by the 
Golang language needs to be tested to discover the potential 
risks before deployment. At the same time, we calculated the 
false positive rate (FPR), false negative rate (FNR) and 
accuracy of each detection module of our system, as shown in 
Table III. According to the results in Table III, we can see the   
accuracy of each detection module of our system is higher than 
95%, and the false alarm rate and false alarm rate of each 
detection module are less than 5%, so the detection results have 
certain reference value. Therefore, our system can assist 
developers to develop more secure and reliable chaincodes.  

TABLE III 
THE FPR, FNR, ACCURACY OF EACH DETECTION 

MODULE 

The detection module of 
our system 

FPR  FNR  Accuracy 

The package detection 
module 

4.8% 2.5% 96.1% 

The instruction detection 
module 

1.8% 4.5% 97.3% 

The logic detection module 3.4% 4.4% 95.4% 

TABLE IV 
RISK ITEMS THAT APPEAR FREQUENTLY 

Global 
Variable 

Random 

Number 

Generation 

Unused 

Privacy Data 

Mechanism 

Unencrypted 

Sensitive 

Data 

35.6% 28.2% 40.3% 26.8% 

 
In addition, among the 16 risk items, the following risk 

items frequently appear in the chaincode samples, the specific 
results are shown in the in Table IV. These risk items are easy 
to ignore in the chaincode development process, so developers 
should pay attention to these risk items that occur frequently, 
and consider the use of private data mechanism and data 
encryption more according to specific scenarios. 

In the process of detecting chaincode samples, we can 
analyze the chaincodes and get the analysis result in a few 
seconds. The user experience is better. 

C. Compared with other mainstream tools 

The current potential risk detection tools of the chaincode 
include Chaincode Scanner (CS) and Fujitsu smart contract 
detection tool. Among them, the CS developed by 
ChainSecurity is the first smart contract risk detection platform 
in the world. Our system has been compared with them in terms 
of covering potential risk items, and the specific comparison 
results are shown in Table V. 

TABLE V 

COVERING POTENTIAL RISK ITEMS OF EACH TOOL 

The potential risk items The CS  Fujitsu Ours 

1)Random Number Generation √ √ √ 

2)System Timestamp √ √ √ 

3)Reified Object Addresses √ √ √ 

4)Global Variable √ √ √ 

5)Field Declarations √ √ √ 

6)Concurrency of Program √ √ √ 

7)Map Structure Iteration √ √ √ 

8)External File Accessing × √ √ 

9)External Library Calling × √ √ 

10)Web Service × √ √ 

11) System Command Execution √ √ √ 

12) Range Query Risk  √ √ √ 

13) Read Your Write  × √ √ 

14) Cross Channel Chaincode Invocation × √ √ 

15) Unused Privacy Data Mechanism × × √ 

16) Unencrypted Sensitive Data × × √ 

Through comparison, it is found that our system realizes 
the detection of common risk items that are mentioned by other 
researchers, especially, it can detect more potential risk items 
in terms of the Data Privacy Security Risk, which just makes 
up for the deficiencies of the other two detection tools, and can 
guide developers to strengthen the protection of sensitive data. 

V. CONCLUSION 

In Hyperledger Fabric, this paper focuses on potential 
risks of the chaincodes developed by the general-purpose 
programming language, and summarizes 16 risk items, which 
are divided into three categories: Non-determinism Risk, 
Logical Security Risk, and Private Data Security Risk. In order 
to detect different risks of the chaincodes, a new static analysis 
method is proposed. Compared with the previous static analysis 
method, this method performs the Package Dependency 
Analysis and Functional Dependency Analysis on the basis of 
the abstract syntax tree to obtain static characteristics that can 
better express different risk items. At the same time, using our 
static analysis method, we designed a risk detection system of 
the chaincodes developed by the Golang language, and a lot of 
experiments have been carried out on the system. The results 
show that the system can locate the risk location with high 
accuracy. It also makes up for the shortcomings of the 
mainstream detection tools of the chaincodes in privacy data 
risk detection.  

With more and more applications of Hyperledger Fabric, 
potential risky cases of the chaincodes developed by the 
general-purpose programming language will continue to be 
discovered, so the feature library of our system needs to be 
continuously updated. Since our system can only detect the 
chaincodes developed by Golang language, this is not enough. 
Our system also needs to update to detect the chaincodes 



developed by other general-purpose programming languages, 
such as Nodejs and Java. As the number of risky chaincode 
samples continues to increase, we can also consider the use of 
artificial intelligence methods to achieve the detection of 
potential risks of the chaincode.  

REFERENCES 

[1] Androulaki E ,  Manevich Y ,  Muralidharan S , et al. 
Hyperledger fabric: a distributed operating system for 
permissioned blockchains[C]// the Thirteenth EuroSys 
Conference. 2018. 
[2] Foschini L ,  Gavagna A ,  Martuscelli G , et al. 
Hyperledger Fabric Blockchain: Chaincode Performance 
Analysis[C]// ICC 2020 - 2020 IEEE International Conference 
on Communications (ICC). IEEE, 2020. 
[3] D. Harz and W. J. Knottenbelt. Towards safer smart 
contracts: A survey of languages and verification methods. 

CoRR, pages 1–20, 2018. 
[4]Gosec.https://github.com/securego/gosec[EB/OL].2019. 
[5] Staticcheck.https://staticcheck.io/[EB/OL].2019. 
[6] Zhang S, Zhou E, Pi B, et al. A Solution for the Risk of Non-
deterministic Transactions in Hyperledger Fabric[C]//2019 
IEEE International Conference on Blockchain and 
Cryptocurrency (ICBC). IEEE, 2019: 253-261. 
[7] Huang Y, Bian Y, Li R, et al. Smart contract security: A 
software lifecycle perspective[J]. IEEE Access, 2019, 7: 
150184-150202. 
[8] Yamashita K, Nomura Y, Zhou E, et al. Potential risks of 
hyperledger fabric smart contracts[C]//2019 IEEE International 
Workshop on Blockchain Oriented Software Engineering 
(IWBOSE). IEEE, 2019: 1-10. 
[9] Cachin C. Architecture of the hyperledger blockchain 
fabric[C]//Workshop on distributed cryptocurrencies and 
consensus ledgers. 2016, 310(4). 
[10]Performance Modeling of PBFT Consensus Process for 
Permissioned Blockchain Network (Hyperledger Fabric)[C]// 
2017 IEEE 36th Symposium on Reliable Distributed Systems 
(SRDS). IEEE, 2017. 
[11] Ma C, Kong X, Lan Q, et al. The privacy protection 
mechanism of Hyperledger Fabric and its application in supply 
chain finance[J]. Cybersecurity, 2019, 2(1): 1-9. 
[12] Benhamouda F, Halevi S, Halevi T. Supporting private 
data on hyperledger fabric with secure multiparty 
computation[J]. IBM Journal of Research and Development, 
2019, 63(2/3): 3: 1-3: 8. 
[13] Kitlei R . The reconstruction of a contracted abstract 
syntax tree[J]. Studia Universitatis Babeș-Bolyai Informatica, 
2008, 53(2). 
[14] Liu X ,  Yin W ,  Yin Q , et al. A SSA-based 
intermediate representation technique[C]// 2010 International 
Conference on Computer, Mechatronics, Control and 
Electronic Engineering. IEEE, 2010. 

[15] Varghese S . Using Standard Library Packages[M]. 

Apress, 2016. 

[16] Donovan A ,  Kernighan B W . Go Programming 

Language, The[M]. Betascript Publishing, 2015. 

[17]  Zhhuta V . Go Programing Language (GoLang).  

2015. 

 


