
EasyChair Preprint
№ 1713

LgTTBFT : Effective Byzantine Fault Tolerance
Algorithm Based on Structured Network and
Trusted Execution Environment

Rihong Wang, Na Li, Quanqing Xu, Lifeng Zhang and
Congying Xing

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 18, 2019



 

 

LgTTBFT:Effective Byzantine Fault Tolerance Algorithm Based on 

Structured Network and Trusted Execution Environment 

RiHong Wang1 ,Na Li1(),Quanqing Xu2,LiFeng Zhang1 and Congying Xing1 

1 Qingdao University of Technology, Qingdao Shandong 266520, China 

congyinglee121@gmail.com 

2Ant Financial, Hangzhou Zhejiang 

Abstract. The BFT consensus algorithm provides 100% security rather than probability, but it has 

not been widely used due to its high resource consumption and low consensus efficiency. The 

blockchain community has also been optimized on the basis of traditional Byzantine fault tolerance, 
trying to actually apply the BFT protocol to the consensus layer of the blockchain. 

  In this paper, we propose Loop-Grouping Tree and TEE BFT (LgTTBFT), a simple and efficient 

Byzantine fault tolerant consensus strategy. At the heart of LgTTBFT is a new tree topology (LgTree) 

and Trusted Execution Environment (TEE). We constructed a structured network and multi-

reconstructed multi-way tree structure LgTree as the node organization structure of the network layer 

of the blockchain system. Compared with MinBFT and Ethereum, it provides a simpler network 

structure and more efficient routing efficiency. The special tree structure also performs well in terms 

of load balancing and stability. The use of TEE has greatly improved system efficiency from both 

the number of replicas and the communication process: reduce the minimum number of replicas 

from 3f +1 to 2f +1, The communication phase of the consensus process is reduced from three phases 

of PBFT to two phases, and the communication complexity of the PREPARE phase is reduced from 

O(n2) to O(n). Experiments have shown that the combination of structured network and trusted 

execution environment provides better throughput and latency. 

Keywords :  Blockchain,  Byzantine fault-tolerance,  structured network,  trusted components, 

state machine replication 

1. Introduction 

The surging interest in blockchain technology has revived the exploration of the Byzantine fault tolerance 

consensus. The bottleneck of blockchain is mainly concentrated on its performance problems of low 

throughput and high latency, which is actually the result of the trade-off between decentralization and 

efficiency. Classic distributed consensus algorithms such as Paxos [1] and Raft [2] cannot solve the 

Byzantine fault tolerance problem, however, the consensus algorithms of public chain systems such as 

PoW [3] and PoS [4] cannot meet the performance requirements in specific scenarios due to their huge 

energy costs or design defects of the protocol itself. In contrast, the BFT (Byzantine Fault Tolerant) 

consensus algorithm can tolerate a certain number of nodes to deviate from the protocol in any way. 

Byzantine error is the worst-case error in distributed systems.  

The blockchain network is a decentralized P2P (Peer-to-Peer) network. The characteristics of no 

central node give the blockchain system reliable security. The shortcomings of this topology are also 

obvious: distributed node deployment makes communication between nodes very inefficient. This led to 

two classes exploring in the future work: unstructured P2P networks and structured P2P networks. The 

former is inefficient and unstable, while the latter is efficient in searching but complex in structure [5,6,7]. 

The P2P network of the Bitcoin main network is unstructured, but the Ethereum's P2P network is 

structured. The underlying distributed network of Ethereum uses the classic Kademlia [8] network. The 

core data structure of the network consists of a routing table called K-bucket, and the entire network 

topology is a binary trie. K-bucket is sorted according to the logical distance from the target node, a total 

of 256 K-buckets, and each K-bucket contains 16 nodes. KRaft [39] is a Raft algorithm, and the process 

of Leader election and log replication in the Raft algorithm was optimized by using Kademlia protocol. 

 

 



 

 

Experimental results showed that TPS increased by 41%. The Kad communication protocol in Ethereum 

is a UDP-based P2P node discovery protocol, which can quickly and accurately route and locate data in 

a distributed environment, but the network structure is too complicated. 

Trusted Execution Environment (TEE) is a technology that protects data and programs in an isolated 

manner, providing a secure area that ensures the security, confidentiality, and integrity of the code and 

data loaded into the environment. The Intel SGX [9] (Software Guard Extensions) module provides 

support for TEE. Combined with blockchain technology, it can solve blockchain data privacy problems 

and support for complex calculations without affecting the decentralization of blockchain and the 

inflexibility of data. Applying TEE at the consensus level can reduce the number of replicas and the 

communication phase of the BFT protocol by setting trusted counters. 

In this paper, we present LgTTBFT, a simple and efficient Byzantine fault-tolerant consensus strategy. 

The core of LgTTBFT is a multi-way tree structure based on structured network, which we called LgTree. 

Its unique tree topology provides low storage overhead and high efficiency, while achieving good load 

balancing. In addition, the introduction of TEE reduces the number of replicas in the network to 2f +1, 

while reducing the communication overhead of the PREPARE phase to linear. 

Our experiments show that, compared to the MinBFT we evaluated also using the Trusted Execution 

Environment but not adding a structured network, the throughput of LgTTBFT is at least twice that of 

MinBFT, and the performance advantage is more obvious as the number of replicas increases. 

In summary, we make the following contributions: 

● The LgTree structure is proposed and its construction algorithm is implemented. The tree structure 

is used as the node organization structure of the network layer of the blockchain, and a simple and 

efficient BFT consensus mechanism is realized. 

● A node routing algorithm based on LgTree is proposed to achieve efficient search efficiency. 

● The LgTTBFT and related BFT systems were evaluated and the results showed that it is superior to 

BFT variants such as MinBFT and Ethereum in efficiency (throughput and delay). 

2. Preliminaries 

In this section, we describe the known BFT protocol and existing optimizations, and provide a brief 

overview of the key technologies used in the LgTTBFT protocol. 

2.1 BFT Consensus Optimization 

Byzantine Generals Problem and its initial solution were proposed by Lamport in 1982 [10], The OM(m) 

and SM(m) algorithms, in addition to requiring numerous assumptions, the exponential algorithm  

efficiency also makes it stay Interest in theory. The emergence of PBFT (Practical Byzantine Fault 

Tolerance) [11] in 1999 reduced the complexity of the algorithm from exponential to polynomial, which 

really made the Byzantine fault-tolerant algorithm feasible in practical system applications. Even so, 

applying PBFT to a blockchain scenario can not meet its performance requirements. 

Many research efforts in recent years have helped to make the BFT system more feasible [12, 13, 14]. 

It mainly includes improvements in these two aspects: 1) In terms of algorithm complexity, MinBFT  

[15] simplifies the traditional BFT consensus communication round through the introduction of Trusted 

Execution Environment (TEE), and the communication cost reduction achieves higher throughput than 

PBFT; CheapBFT [16] implements an optimistic BFT strategy while introducing a trusted execution 

environment, requiring only f +1 active replicas to participate, and normal use of passive replication to 

save resources, aiming to establish a resource-saving BFT system; Both MinBFT and CheapBFT have 

improved the communication efficiency of the PREPARE phase in PBFT, and the introduction of 

FastBFT [17] has brought the performance of the BFT consensus algorithm to a new level. Its core is a 

novel message aggregation technology that combines the trusted execution environment with lightweight 

secret sharing. It optimizes the communication efficiency of the COMMIT phase for the first time and 

reduces the algorithm complexity to O(n); 2) In the fault-tolerant rate, the introduction of the trusted 

execution environment reduces the fault tolerance of the BFT consensus algorithm from 3f +1 to 2f +1 

(that is, only 2f +1 nodes can tolerate f fault nodes); With the Optimistic BFT strategy, only f +1 active 

replicas need to participate in the consensus in normal case. 

From a specific application scenario, the BFT consensus algorithm is optimized for the public chain 



 

 

mainly from the following two aspects: 1) Combined with Nakamoto consensus (including NEO's DBFT 

(Delegated Byzantine Fault Tolerant) [18], Stellar's FBA (Federated Byzantine Agreement) [19], 

Tendermint BFT [20], etc.); 2) Cryptographic-based optimization (including ByzCoin [21], Zilliqa [22] 

using aggregated signatures, Algorand [23] using verifiable random functions, VBFT [24], and 

HoneyBadgerBFT [25] using threshold signatures. These BFT consensus algorithms are applicable to 

specific application scenarios, with different degrees of trade-offs between decentralization and 

algorithm efficiency. 

These consensus mechanisms use different technologies and strategies to improve the BFT algorithm 

to varying degrees, so that the BFT consensus can be truly applied to the production environment. 

However, for a system as a whole, the improvement of the consensus layer may be limited, and the 

improvement with other layers can achieve better efficiency. As far as we know, there is no consensus 

algorithm to optimize the node organization structure of P2P network. Therefore, we propose effective 

Byzantine fault tolerance based on structured network LgTree and Trusted Execution Environment (TEE). 

2.2 Structured P2P network 

Unstructured P2P networks, such as the fully distributed Gnutella [26] network, need to traverse the 

entire P2P network when performing search requests, and the bandwidth consumption increases 

exponentially with the increase in the number of users. In addition, nodes may leave the network 

frequently, so the Gnutella network structure is very unstable and inefficient, and cannot be applied to 

the actual environment. 

The structured P2P network is established on the logical network, for example, forming a ring network 

or a tree network, and the route query algorithm can be designed according to the logical structure, 

thereby avoiding flooding-search and obtaining high communication efficiency between nodes. 

Distributed Hash Table (DHT) is a typical implementation of structured networks [27]. The core idea is 

that each client is responsible for a small range of routes and is responsible for storing a small amount of 

data, thereby addressing and storage of the entire DHT network is achieved. Chord [28], Pastry [29] and 

Kademlia are typical DHT implementation algorithms. 

In this paper, we have carried out a similar design to Ethereum, and proposed a network node 

organization model and corresponding routing algorithm. The design of this structure is more concise 

and efficient than Ethereum. 

2.3 Trusted Execution Environment (TEE) 

Currently, hardware security mechanisms have been widely used on commercial computing platforms. 

Intel SGX provides a trusted execution environment called "Enclave" that prevents other applications, 

including operating systems, BIOS systems, from snooping and tampering with the state and data of 

protected applications. 

Byzantine algorithms can tolerate nodes deviating from the protocol in any way. In a protocol based 

on the state machine replication model, the implementation of trusted counters can provide a trusted 

sequence of operations so that malicious replicas cannot allow different correct replicas to perform 

different operations. Compared to other trusted services (such as A2M [30], TrInc [31], EBAWA [32], 

ZZ [33]), Intel SGX is currently the simplest tamper-proof component. In this paper, we implemented a 

trusted counter using SGX. 

First, the trusted monotonic counter generates an unforgeable counter value and can only use some 

kind of cryptographic primitive-based authentication. Second, the counter binds the sequence numbers 

to the operation, which assigns a unique serial number to the client request, which guarantees that the 

same identifier will never be assigned to two different messages. In addition, the tamper-proof component 

generates a signature certificate that demonstrates the binding of Numbers to messages and the 

incrementation of counters. 

3. LgTTBFT Overview 

Both MinBFT and CheapBFT introduce a trusted execution environment, but there is no improvement 

to the consensus model at the network layer. The MinBFT algorithm only introduces a trusted execution 

environment, but does not use a structured network. Each node must establish a connection with all nodes 

when it starts up, which is very inefficient and wasteful resources in P2P networks. As the number of 



 

 

nodes increases, the load on each node will also increase greatly. 

CheapBFT is actually a Speculation-based Byzantine protocol that uses a more optimistic strategy. 

The assumption of this strategy is that the server is in a normal state most of the time. Under normal 

circumstances, only f +1 active replicas participate in the protocol, and the other replicas are passively 

copied. However, when a Byzantine server exists in the system, system performance will drop 

dramatically. 

  Since FastBFT has proposed the use of secret sharing techniques to optimize PBFT, we have not 

applied secret sharing techniques to this consensus algorithm in this paper. Perhaps the combination of 

structured network and secret sharing technology can better optimize the BFT algorithm, which is worthy 

of further study. 

  Although the introduction of TEE into BFT has been proposed by many previous work (MinBFT, 

CheapBFT, FastBFT), as far as we know, the combination of TEE and network layer improvement 

(structured P2P network) has not been explored by the research team. In this paper, we have combined 

with TEE based on the proposed efficient structured network, and have achieved high performance 

through experiments. 

3.1 System Model 

Our BFT system is based on the traditional state machine replication model. Unlike PBFT, the 

introduction of TEE requires only 2f +1 nodes to tolerate f faulty nodes. It operates in the same 

environment as PBFT and requires weak synchronization to maintain liveness. We assume that each 

replica has a hardware-based TEE that is used to maintain a monotonic counter. In addition, we designed 

and implemented a structured network layer node distribution, enabling the entire system to achieve high 

routing efficiency and load balancing while having a simple architecture. 

The network situation of a distributed system is complex, and the network may cause loss, delay, 

reordering, or misdelivery of messages that are passed between the replica and the client. For simplicity, 

we used an abstraction of the FIFO channel when implementing the protocol. 

In this paper, we only discuss the architecture and efficiency of the system in normal case, and we will 

not consider the situation of view-change. But view-change is a very important part of the BFT consensus, 

which deserves our continued research in future work. 

3.2 Normal-case Operation 

LgTTBFT follows a message exchange pattern similar to PBFT (see Fig. 1), but provides a simpler 

communication phase and communication complexity. Figure 1 depicts the detailed differences between 

the messages passed by LgTTBFT and PBFT during the consensus process. For the message mode, the 

message pattern generated by simply using TEE to improve the communication process is about the same. 

This message pattern is similar to MinBFT and EBFT. Here we mainly describe the simplification of the 

Prepare phase brought by TEE. See Section 6 for the performance gains associated with the combination 

of TEE and structured networking. 



 

 

 

Fig. 1. Message patterns of LgTTBFT. 

The sequence of events in normal case is as follows: 

Request. Client c requests the execution of operation o by sending a signature message <REQUEST, 

o, t, c > σc to the primary. Here seq is a request identifier used to ensure one-time semantics, requesting 

to sign using the client's private key. After sending the request, the client waits for a reply from f +1 

different replicas s. Since the maximum number of failure replicas is f, this ensures that at least one reply 

is from the non-failure replica. 

Prepare. After receiving the request from the client, the primary uses the trusted counter to obtain a 

Unique Sequence Identifier (USIi) and binds the value to the request. The primary si then multicasts the 

request to all replicas via the <PREPARE, v, si , m, USIi > message. 

Commit. After receiving the PREPARE message, each replica sj will perform a series of verifications 

on the content of the message. After the verification succeeds, the message m is resent to all other nodes 

through the <COMMIT, v, si , sj , m, USIi , USIj > messages. Here, each COMMIT message carries the 

sender's unique sequence identifier USIj, so no two messages have the same identifier, and the replica 

can check that the identifier they received is valid for the message.  

Reply. After received f +1 correct COMMIT messages and verified, the replica performs operations 

to obtain the result res and send a REPLY message to the client. 

It can be seen that the LgTTBFT algorithm has one communication step less than the PBFT, and the 

communication complexity of the PREPARE phase is O(n) instead of O(n2).  

4. LgTree Structured Network 

The LgTree (Loop-Grouping Tree) structured network we designed is aimed at build a simple and 

efficient network node organization structure, and provide high routing efficiency and load balancing by 

designing corresponding routing algorithm.  

4.1 LgTree Structure 

We organize all the nodes in the network into a tree structure. The constructor only needs to calculate the 

number of groups g and the number of elements e of each group as input to construct the tree structure. 

The calculation methods for g and e are given in Algorithm 1: 



 

 

 

Compute g and e. Let the total number of nodes in the network be n. According to the design of the 

following virtual matrix, we assume g×e≥n. Therefore, first take the square root of n to get the result 

sqrtValue, if the fractional part of sqrtValue is less than 1/2, then 

g = ⌈√𝒏 ⌉  ；e = [√n ]                               (1) 

the values of g and e are the result of rounding up and rounding, respectively. If the fractional part of 

sqrtValue is greater than or equal to 1/2, then e must also be rounded up, otherwise g×e＜n, ie  

g = e = ⌈√𝒏 ⌉                                   (2) 

Node ID. The ID of each node consists of two parts: gID and eID. Where gID indicates that the node 

is located in which group, and eID indicates that the node is which element in the group. For example, if 

there are 10,000 nodes, then g = e = 100 and the ID of the first node is 001001. As shown in Fig. 2, we 

use different colors to represent different eIDs, group all nodes and loop coloring within each group. 

Virtual matrix. As shown in Fig. 2, let the total number of nodes be n, we imagine that all nodes are 

grouped to form the following virtual matrix (Taking 28 nodes as an example, according to Algorithm 1, 

get g = 6, e = 5, that is, 28 nodes are divided into 6 groups of 5 elements each): 

 

Fig. 2. Virtual matrix formed by all nodes 

Note that this is just a virtual matrix we imagined, and it won't be stored, just to make it easier for us 

to understand the building process of the tree next.  

LgTree. The core of LgTTBFT is the LgTree structure, a multi-reconstructed multi-way tree. Here, 

"multiple-reconstructed" means that each subtree stores all the nodes in the network in different 

structures. We store all nodes as e subtrees of different colors, each of which contains all nodes. The 

nodes in the color-root layer represent the colors of different subtrees, that is, different eIDs; the node of 

the color-1 layer represents the first node of each color tree; the node of the color-2 layer represents the 

node of the current color remaining in each color tree (ie, the same node as the eID of the color-1 layer 

node); Finally, the nodes of the leaf layer represent nodes of all other colors. First remove the color-1 

layer and color-2 layer columns according to the position in the matrix, and then add the remaining nodes 

as children of the color-2 layer node in rows, until they are added to e children, Fig. 3 shows the LgTree 

structure for 28 nodes. For space reasons, only two subtrees are drawn. 



 

 

 

Fig. 3. LgTree structure (partial) 

It is worth noting that if the total number of nodes is not the square of an integer, that is, the formed 

virtual matrix is not a square matrix (as shown in Fig. 2), then the nodes of the color-2 layer of the 

incomplete column (the last two columns of the matrix) (nodes 24, 34, 44, 54 and nodes 25, 35, 45, 55) 

is unable to store all other color nodes (here nodes 61, 62, 63 can not be stored). At this point we store 

the remaining nodes in the last node of the color-2 layer (such as nodes 54 and 55), which at most stores 

more e other nodes (when the matrix of g = e is not full). 

Storage. It can be seen from the construction of the multi-way tree that this is a tree with a small depth 

but a large width, and each subtree stores all the nodes, so if the entire tree structure is stored at each 

node, it will cause a large storage overhead. In this paper, we draw on the Kademlia algorithm and store 

only the node information associated with itself. Also, we only need to store the parent and child nodes 

of the nodes in the color-1 layer and color-2 layer in each subtree to store the entire tree structure. 

4.2 Automated Construction 

The construction process of the LgTree structure is given in Algorithm 2. The specific process is as 

follows: 

1) Since the subtree we are constructing is e color trees, the outermost loop starts by traversing the 

element number e. Here we are using the random number generation function in Golang. In order 

to make the random numbers generated each time different, we also provide different seeds for the 

generator (the current system time obtained). The random number generation here occurs in the 

TEE but is not publicly verifiable. 

2) After selecting the eID, start adding nodes one by one. For each node, we only store its parent and 

child nodes. If the node is a node of the color-1 layer, then its parent is its gID, child nodes is the 

same node as its own eID. 

3) For the nodes of the color-2 layer, since the child nodes are added horizontally by the row, it is 

divided into whether or not to traverse from the first node of the virtual matrix. Only the first node 

of   the color-2 layer is added from the beginning, and the rest is marked with an id (lastGroupID 

in the algorithm) as the last position of the previous group, and then added from the next node. 



 

 
 



 

 

4.3 Simple and Efficient Routing  

The routing algorithm for LgTTBFT is given in Algorithm 3. Each subtree stores all the nodes, so any 

node can be found in any subtree. The specific routing process is as follows: 

1) In order to ensure load balancing, any subtree is randomly selected, that is, a random eID is 

generated within a certain range (the random value must not exceed the value of e). 

2) Then separate the gID of the node to be searched, and make a rough judgment based on the gID. 

That is, the node with the same gID is found from the node of the color-2 layer (the node is called  

nodeC2), and the child nodes of nodeC2 are searched. 

3) If the last node in nodeC2's child node (called lastChild) happens to be the node to be searched, the 

search succeeds and the node is returned; if lastChild is greater than the id of the node to be searched, 

then look forward; otherwise, look in the next group. 

 

4.4 Structural Advantages  

Although the width of the tree structure is large and the nodes between the subtrees are redundant, each 

node does not store the entire tree structure. Only the nodes of the color-1 layer and the color-2 layer are 

stored in each subtree, and the parent node and the child nodes are stored. Thus for the entire tree, each 

node stores its associated nodes and there is no duplicate storage. In addition to storage efficiency, the 

LgTree architecture brings many performance and efficiency advantages: 

● Communication efficiency. As can be seen from our routing algorithm, the node search efficiency 

is very high. At most, only e+2 steps are needed to find the node, thus providing O(n) search 

efficiency. 



 

 

● Load balancing. One problem with a single tree structure is that it does not guarantee a fair load 

distribution. It is possible that the upper node assumes all forwarding loads and the leaf nodes do not 

bear any forwarding load. According to the routing algorithm designed by our LgTree structure, we 

first randomly select a subtree when searching for nodes, and then search under the subtree, which 

gives all nodes equality. That is to say, the nodes in the subtree as color-1 layer and color-2 layer 

become leaf nodes in other subtrees. At the same time, the structure ensures the load balancing in 

each subtree while ensuring load balancing. 

● Reliability. A tree structure consisting of a single tree is not sufficient to ensure reliability, and an 

upper node failure will result in the loss of data for all of its child nodes. The construction of LgTree's 

multiple subtrees improves the reliability of the system. Although it seems redundant, the storage 

overhead is small. 

5. Trusted Execution Environment (TEE) 

The introduction of the trusted execution environment brings about a reduction in the number of replicas 

and an increase in communication efficiency for the BFT consensus algorithm. 

One possible failure in the Byzantine fault-tolerant algorithm is "equivocates", where a node sends a 

conflict proposal to another replica. As in PBFT, it is possible for a malicious Leader to send inconsistent 

messages to replicas. In order to prevent this possible failure, an additional communication step (PRE-

PREPARE phase in PBFT) is required to verify that the messages sent by the Leader are consistent, 

thereby ensuring that all non-failure replicas execute the same proposal. 

In addition to adding additional communication steps, another solution is to provide trusted services 

[30, 31, 16, 34], using a monotonically increasing trusted counter to securely assign a trusted counter 

value to each message and make the following guarantee: 1) Never bind the same counter value to a 

different message, 2) Never assign a value lower than the previous counter value (monotonically 

increasing), and 3) Never assign a discontinuous counter value (sequence). Therefore, in order to ensure 

that these three points can be achieved in any accidental or malicious situation, the counter must be 

implemented in a trusted component. 

The number of replicas. In the traditional BFT fault-tolerant model, 3f +1 replicas is required to 

tolerate f failure replicas only when the failure replica and the malicious replica are different replicas. In 

this paper, the introduction of the trusted counter avoids the occurrence of equivocates, that is, avoids the 

possibility of the replica to do evil, so the number of minimum replicas in BFT system is reduced from 

3f +1 to 2f +1 by preventing equivocates. 

Communication steps. The purpose of the PRE-PREPARE phase in the PBFT model is to verify the 

reliability of the messages sent by the Leader. This method of adding communication steps creates 

additional communication overhead. The use of a trusted counter to bind different messages to a 

monotonically increasing counter value ensures a consistent and irreversible modification of a broadcast 

message, thereby saving a communication step. 

Communication complexity. In the three-phase protocol of the PBFT model, there are four message 

broadcasts, two of which are all-network full-node broadcasts, which causes two O(n2) communication 

complexity and consumes network bandwidth. The LgTTBFT algorithm reduces the communication 

overhead of the PREPARE phase to O(n), which greatly improves communication efficiency. 

In addition, TEE technology is also an effective way to solve the privacy problem of Blockchain. The 

fundamental reason for the challenge of blockchain privacy protection is usually that there is no trust 

assumption in the blockchain architecture, and the complexity of the solution is therefore very high. If in 

some scenarios we can accept trusted assumptions about technologies such as hardware, platform 

solutions will be more efficient, versatile, and secure. TEE technology (Trusted Computing Environment 

Technology) can help solve blockchain privacy issues through isolation and verifiability. 

6. Evaluation 

In this section, we implemented LgTTBFT, which simulates protocol execution under normal conditions 

and compares it to MinBFT. Our implementation is based on Golang and uses the Intel SGX to provide 



 

 

hardware security support to implement the TEE part of LgTTBFT. Due to the limitation of experimental 

conditions, the test we carried out was single-machine simulation test. That is, using different ports to 

simulate different replicas, each running in a different process. Replicas were running on an Intel(R) 

Core(TM) i5-8265U CPU equipped with 16 GB RAM and Intel SGX. 

For BBFT, which is also a hierarchical topology, because we don't have open source code, we don't 

have time to reproduce its experimental results, so we won't compare here. 

    

Fig. 4. Evaluation results for LgTTBFT and MinBFT 

Performance for LgTTBFT and MinBFT. To illustrate the performance gains of structured 

networking, we chose to do a comparison with MinBFT because MinBFT also uses a trusted execution 

environment but does not use a structured network. Our results show that under normal circumstances, 

as the number of replicas increases, the throughput of LgTTBFT is always higher than that of MinBFT, 

and the latency is always smaller than MinBFT. As shown in Fig. 4, when n≤48, the throughput of 

LgTTBFT is more than twice that of MinBFT; when n≥64, the throughput of LgTTBFT is more than 

three times that of MinBFT. In terms of latency, the LgTTBFT rises steadily, with a latency of only 7ms 

in the case of 128 nodes. Therefore, the performance advantage of LgTTBFT is more obvious when the 

number of replicas is larger. The Ethereum, which is also a structured network blockchain, has a 

throughput of only 10-40 tps and performance is much lower than LgTTBFT. 

  

Fig. 5. Evaluation results for LgTTBFT and CheapBFT 

Performance for LgTTBFT and CheapBFT. The two cores of CheapBFT are TEE and Optimistic 

BFT. This Speculation Byzantine protocol brings about a reduction in the number of executions and the 

number of protocol messages, thereby achieving resource savings. Compared with CheapBFT, our 

system does not adopt speculative strategy, but organizes nodes into a tree structure at the network layer 

to improve road efficiency. To illustrate the increased efficiency of the combination of structured 

networks and TEE, we conducted a comparative test with CheapBFT. Our results show that under normal 

circumstances, as the number of replicas increases, the throughput of LgTTBFT is always higher than 

that of CheapBFT, and the latency is always smaller than MinBFT, as shown in Fig. 5. 



 

 

  

Fig. 6. Evaluation results for different faulty replicas 

Impact of faulty replicas. We also evaluated the impact of the number of faulty replicas on the 

performance of the algorithm. Due to the introduction of TEE, a faulty replica cannot perform different 

operations on different correct replicas. The simplest failure scenario is a crash failure on the backup 

replicas, so the crash failure model we set here is offline for the faulty replicas. We set the number of 

faulty replicas to the maximum, that is, there are f faulty replicas in 2f +1 replicas. We compared a single-

faulty replica and f-faulty replicas under a certain number of replicas. The experimental results show that 

the number of faulty replicas has a large impact on the overall performance of the algorithm. As shown 

in Fig. 6, when n≤41, the throughput of the single-faulty replica algorithm is more than twice the 

algorithm throughput of f-faulty replicas; when n≥61, the throughput of the single-fault replica algorithm 

is more than three times the algorithm throughput of f-faulty replicas. Performance is significantly 

reduced when the number of faulty replicas reaches a maximum because the message must be collected 

for all remaining f +1 non-faulty replicas. Similarly, as the number of replicas increases, the performance 

advantages of LgTTBFT become more pronounced. 

In this section we only tested a small, consensual portion, but in terms of our network architecture, 

Due to the provision of a structured P2P network (as described in Section 4), so scaling out to the entire 

system and larger node sizes should perform better. 

7. Related Work 

Recently, the Libra project [35] released by FaceBook has attracted widespread attention. The LibraBFT 

[36] consensus mechanism used in this project is a new BFT consensus mechanism based on HotStuff 

[37]. Compared with variants of classic PBFT algorithms such as Tendermint and Algorand, HotStuff 

combines with chained structure and uses threshold signature to reduce the complexity of the most 

expensive View-change step in the BFT algorithm to O(n). The algorithm is more efficient and secure. 

View-change in Byzantine fault tolerance has a lot of overhead and can achieve up to O(n4) complexity. 

Aardvark [38] is a Byzantine agreement in an attack situation designed to effectively tolerate Byzantine 

behavior and reduce the system's performance differences in the presence or absence of Byzantine errors. 

Based on the PBFT communication model, an adaptive mechanism is designed to ensure the security and 

liveness of the system: MAC-Signature Hybrid Authentication prevents clients from doing evil; more 

actively trigger view-change to avoid the Byzantine behavior of the Leader; P2P technology replaces 

broadcasting to improve communication efficiency; network separation (multiple network cards) to 

prevent traffic attacks. This algorithm provides fault tolerance rate of 3f +1. 

In terms of network liveness, HoneyBadgerBFT [25] is the first well-known asynchronous BFT 

protocol that can run in asynchronous networks where the message latency has no explicit upper limit. 

The protocol uses two methods to increase consensus efficiency: 1) Mitigating the bandwidth bottleneck 

of a single node by splitting transactions , and 2) Improve transaction throughput by selecting random 

trading blocks in batch transactions and matching threshold signatures. Compared with PBFT, the 

efficiency is significantly improved, and the fault tolerance rate is also 3f +1. 

The most prominent contribution of LibraBFT is that the complexity of the View-change step is 

reduced to O(n). And what we did was to reduce the communication complexity from O(n2) to O(n) in 

the Prepare phase. From this point of view, LibraBFT's contribution is even greater. 



 

 

We didn't discuss View-change in this paper, and Aardvark is a protocol designed specifically for 

View-change scenarios, with the goal of reducing the system's differences in the presence or absence of 

Byzantium. This work is a good complement to the LgTTBFT algorithm and deserves our reference in 

future research. 

LgTTBFT is a weakly synchronized BFT consensus protocol, and HoneyBadgerBFT is an 

asynchronous consensus protocol, which is the main difference between the two protocols. In terms of 

fault tolerance, the HoneyBadgerBFT system assumes that there is a reliable communication pipe 

connection between every two nodes, and the total number of nodes in the entire network must be greater 

than 1/3 of the faulty nodes. Therefore, HoneyBadgerBFT provides a fault tolerance of 3f+1, which is 

not as good as LgTTBFT. 

8. Conclusion and Future Work 

LgTTBFT proposes a new tree topology and routing algorithm, which achieves higher search efficiency 

and better reliability than MinBFT. The introduction of TEE further reduces the number of replicas of 

the protocol and improves communication efficiency. Experiments show that the effective combination 

of these two cores can provide better consensus efficiency and improve the current technical level. 

There are also some imperfections in the agreement that are worth exploring in the future work. First, 

the view-change was not implemented. Only the normal running process was considered. The consensus 

efficiency when the Byzantine failure occurred was not optimized. Second, the tree construction 

algorithm is more complicated and worth further optimization. 
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