

The Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

May 7, 2021

The Riemann Hypothesis

Frank Vega

Abstract. Let's define $\delta(n) = (\sum_{q \le n} \frac{1}{q} - \log \log n - B)$, where $B \approx 0.2614972128$ is the Meissel-Mertens constant. The Robin theorem states that $\delta(n)$ changes sign infinitely often. We prove if the inequality $\delta(p) \le 0$ holds for a prime p big enough, then the Riemann Hypothesis should be false. However, we could restate the Mertens second theorem as $\lim_{n\to\infty} \delta(p_n) = 0$ where p_n is the n^{th} prime number. In this way, this work could mean a new step forward in the direction for finally solving the Riemann Hypothesis.

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. Let $N_n = 2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times p_n$ denotes a primorial number of order n such that p_n is the n^{th} prime number. Say Nicolas (p_n) holds provided

$$\prod_{q|N_n} \frac{q}{q-1} > e^{\gamma} \times \log \log N_n$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, log is the natural logarithm, and $q \mid N_n$ means the prime q divides to N_n . The importance of this property is:

Theorem 1.1 [5], [6]. Nicolas (p_n) holds for all prime $p_n > 2$ if and only if the Riemann Hypothesis is true.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$\theta(x) = \sum_{p \le x} \log p$$

where $p \leq x$ means all the prime numbers p that are less than or equal to x. We use the following property of the Chebyshev function:

Theorem 1.2 [2]. For a prime p big enough:

 $\theta(p) = (1 + o(1)) \times p.$

Let's define $S(x) = \theta(x) - x$. Nicolas also proves that

²⁰¹⁰ Mathematics Subject Classification: Primary 11M26; Secondary 11A41, 11A25.

Keywords: Riemann Hypothesis, Mertens theorem, Robin theorem, Prime numbers, Chebyshev function.

Frank Vega

Theorem 1.3 [6]. $\forall x \ge 121$:

$$\log \log \theta(x) \ge \log \log x + \frac{S(x)}{x \times \log x} - \frac{S(x)^2}{x^2 \times \log x}.$$

The famous Mertens paper provides the statement:

Theorem 1.4 [4].

$$\log\left(\prod_{q \le n} \frac{q}{q-1}\right) = \sum_{q \le n} \frac{1}{q} + \gamma - B - \frac{1}{2} \times \sum_{q > n} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > n} \frac{1}{q^3} - \cdots$$

where $B \approx 0.2614972128$ is the Meissel-Mertens constant.

Let's define:

$$\delta(n) = \left(\sum_{q \le n} \frac{1}{q} - \log \log n - B\right),$$

Robin theorem states the following result:

Theorem 1.5 [7]. $\delta(n)$ changes sign infinitely often.

In addition, the Mertens second theorem states that:

Theorem 1.6 [4].

$$\lim_{n \to \infty} \delta(n) = 0$$

Putting all together yields the proof that when the inequality $\delta(p) \leq 0$ holds for a prime p big enough, then the Riemann Hypothesis should be false.

2 Central Lemma

Lemma 2.1 For a prime p big enough:

$$0 < \frac{S(p)}{p} < 1.$$

Proof By the theorem 1.2, for a prime p big enough:

$$\frac{S(p)}{p} = \frac{\theta(p) - p}{p}$$

= $\frac{(1 + o(1)) \times p - p}{p}$
= $\frac{p \times ((1 + o(1)) - 1)}{p}$
= $(1 + o(1) - 1)$
= $o(1)$.

Since 0 < o(1) < 1, then the proof is finished.

2

The Riemann Hypothesis

3 Main Theorem

Theorem 3.1 If the inequality $\delta(p) \leq 0$ holds for a prime p big enough, then the Riemann Hypothesis should be false.

Proof For a prime p big enough, suppose that simultaneously Nicolas(p) and $\delta(p) \leq 0$ hold. If Nicolas(p) holds, then

$$\prod_{q \le p} \frac{q}{q-1} > e^{\gamma} \times \log \theta(p).$$

We apply the logarithm to the both sides of the inequality:

$$\log\left(\prod_{q \le p} \frac{q}{q-1}\right) > \gamma + \log \log \theta(p).$$

We use that theorem 1.4:

$$\log\left(\prod_{q \le p} \frac{q}{q-1}\right) = \sum_{q \le p} \frac{1}{q} + \gamma - B - \frac{1}{2} \times \sum_{q > p} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > p} \frac{1}{q^3} - \cdots$$

Besides, we use that theorem 1.3:

$$\log \log \theta(p) \ge \log \log p + \frac{S(p)}{p \times \log p} - \frac{S(p)^2}{p^2 \times \log p}.$$

Putting all together yields the result:

$$\sum_{q \le p} \frac{1}{q} + \gamma - B - \frac{1}{2} \times \sum_{q > p} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > p} \frac{1}{q^3} - \cdots$$
$$> \gamma + \log \log \theta(p)$$
$$\ge \gamma + \log \log p + \frac{S(p)}{p \times \log p} - \frac{S(p)^2}{p^2 \times \log p}.$$

Let distribute it and remove γ from the both sides:

$$\sum_{q \le p} \frac{1}{q} - \log \log p - B - \frac{1}{2} \times \sum_{q > p} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > p} \frac{1}{q^3} - \dots >$$
$$\frac{1}{\log p} \times \left(\frac{S(p)}{p} - \frac{S(p)^2}{p^2}\right).$$

We know that $\delta(p) = \sum_{q \le p} \frac{1}{q} - \log \log p - B$. Moreover, we know that $\left(\frac{S(p)}{p} - \frac{S(p)^2}{p^2}\right) > 0$. Indeed, according to the lemma 2.1, we have that $0 < \frac{S(p)}{p} < 1$. Consequently, we obtain that $\frac{S(p)}{p} > \frac{S(p)^2}{p^2}$ since for every real number 0 < x < 1, the inequality $x > x^2$ is always satisfied. To sum up, we would have that

$$\delta(p) - \frac{1}{2} \times \sum_{q > p} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > p} \frac{1}{q^3} - \dots > 0$$

Frank Vega

because of

$$\frac{1}{\log p} \times \left(\frac{S(p)}{p} - \frac{S(p)^2}{p^2}\right) > 0.$$

However, the inequality

$$\delta(p) - \frac{1}{2} \times \sum_{q > p} \frac{1}{q^2} - \frac{1}{3} \times \sum_{q > p} \frac{1}{q^3} - \dots > 0$$

never holds when $\delta(p) \leq 0$. By contraposition, Nicolas(p) does not hold when $\delta(p) \leq 0$ for a prime p big enough, In conclusion, if Nicolas(p) does not hold for a prime p big enough, then the Riemann Hypothesis should be false due to the theorem 1.1.

4 Discussion

The Riemann Hypothesis has been qualified as the Holy Grail of Mathematics [3]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution [3]. In the theorem 3.1, we show that if the inequality $\delta(p) \leq 0$ holds for a prime p big enough, then the Riemann Hypothesis should be false. Nevertheless, the well-known theorem 1.6 could be restated as

$$\lim_{n \to \infty} \delta(p_n) = 0$$

because of there are infinitely many prime numbers p_n . Indeed, we think this work could help the scientific community in the global efforts for trying to solve this outstanding and difficult problem.

References

- Peter B. Borwein, Peter Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller. The Riemann hypothesis: a resource for the afficionado and virtuoso alike, volume 27. Springer Science & Business Media, 2008.
- Thomas H. Grönwall. Some asymptotic expressions in the theory of numbers. Transactions of the American Mathematical Society, 14(1):113-122, 1913. doi:10.2307/1988773.
- [3] Gilles Lachaud. L'hypothese de Riemann: le Graal des mathématiciens. La Recherche Hors-Série, (20), 2005.
- [4] Franz Mertens. Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math., 1874(78):46-62, 1874. URL: https://doi.org/10.1515/crll.1874.78.46, doi:10.1515/crll.1874.78.46.
- [5] Jean-Louis Nicolas. Petites valeurs de la fonction d'Euler et hypothese de Riemann. Séminaire de Théorie des nombres DPP, Paris, 82:207–218, 1981.
- [6] Jean-Louis Nicolas. Petites valeurs de la fonction d'Euler. Journal of number theory, 17(3):375–388, 1983. doi:10.1016/0022-314X(83)90055-0.
- [7] Guy Robin. Sur l'ordre maximum de la fonction somme des diviseurs. Séminaire Delange-Pisot-Poitou Paris, 82:233-242, 1981.

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France Email: vega.frank@gmail.com

4