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Abstract

At Crypto 2019, A.Gohr made a breakthrough in the fusion of di�erental cryp-
toanalysis and deep learning on Round Reduced Speck. Inspired by his method-
ology, we apply deep learning to construct a neural-based integral distinguisher
scheme. To guage the advantage of our distinguisher scheme, we apply it on sev-
eral block ciphers including SPECK32/64, SIMECK32/64, PRESENT,RECTANGLE
and LBLOCK and compare it with bit-based division property as the state-of-the
art integral distinguishing method. To our great surprise, our neural network
based integral distinguisher extends the number of distinguished rounds of most
block ciphers by at least 1 additional rounds compare to bit-based division prop-
erty. In some cases, such as PRESENT block cipher, we could achive a 8-round
distinguisher, while, bit-based division property could only provide a 5 round
distinguisher. �ese observations illustrates that the fusion of deep learning and
integral cryptanalysis has a promising prospect. In addition, we apply di�erent
deep learning architectures, namely ResNet,ResNeXt and DenseNet . DenseNet,
as state of the art architecture, slightly outperforms the other architectures in
terms of the distinguishing accuracy. Further, we showcase the utility of Few-
Shot learning in reduction of training dataset to less than 100 instances. Finally,
we show that our neural distiguisher is not only helpful for block cipher de-
signers, but also assists a�ackers to mount key recovery a�ack. To this end, we
show how to exploit our distinguisher to mount key recovery a�ack and apply
it to SPECK32/64.
Keywords: Di�erential cryptoanalysis, Integral cryptoanalysis, division
property, Deep learning, SPECK, LBLOCK, SIMECK, PRESENT, RECTANGLE,
SIMECK
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1. Introduction

Deep Learning is a class of machine learning algorithms which is inspired
by learning architecture and information processing of the human brain. Novel
Deep Learning architectures has made a great breakthrough in various �elds
ranging from machine translation [1, 2], autonomous driving [3] to playing pro-
fessional abstract games beyond human level [4]. �eoretically, machine learn-
ing and cryptography have so much in common [5]. For instance, cryptographic
hardness assumption can be framed as learning tasks. However, practically, the
application of machine learning in cryptography has been mostly dedicated to
side-channel analysis [6, 7]. It was not until the work of Gohr [8] at CRYPTO’19
that the fusion of deep learning with cryptanalysis produces a�acks competitive
to state of the art classical cryptanalytic methods. �is work applies the learning
capability of deep learning to developing the classical di�erential distinguisher.
He developed a neural based di�erential distinguisher on round reduced SPECK.
To this end, they trained neural networks to distinguish the output of Speck with
a given input di�erence from random data.

1.1. Related work
Most of previous works have focused on the application of machine learn-

ing on side-channel a�acks. In this section, we brie�y review the few works
done on the use of machine learning, cryptanalysis and statistical techniques
for cryptanalytic purposes. Laskari et al. [9] applied evolutionary computing
methods to recovering additional subkey bits in four and six round reduced DES
a�er performing classical di�erential a�ack. Also, Klimov et al. applied genetic
algorithms and neural networks to break a proposed public-key scheme and com-
pared the results with two other methods. Gomez et al. [10] also achieved code
book recovery for short-period Vigenere ciphers using unsupervised learning
of neural networks. Although, their primary purpose had been to apply unsu-
pervised learning techniques for machine translation. Also, Abadi et al. [11]
tried to prevent reading communication tra�c by training two neural networks.
However, no cryptographic primitive nor cryptanalytic method was considered.
Greydanus [12] demonstrated that recurrent neural networks are able to simu-
late the restricted version of Enigma in a black box se�ing. �e breakthrough
in the fusion of machine learning and cryptanalysis was brought by Gohr [8] at
CRYPTO’19. He demonstrated that despite the common wisdom, machine learn-
ing has great potential in generating powerful cryptographic distinguishers. Fur-
ther, he applied a deep residual neural network to mount di�erential a�ack on
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nine rounds of Speck with a mean key rank roughly �ve times lower than an
analogous classical distinguisher. Further, they illustrated that neural networks
can be used to �nd optimum input di�erences using state of the art optimization
methods.

1.2. Contributions and Structure of the Paper
�is paper has three main contributions:

1. We exploit learning capability of deep learning to construct a neural net-
work based Integral distinguisher. In this regard, we train an integral clas-
si�er which tries to distinguish the output of block ciphers with a prede-
�ned input multi-set from the output of a random multi-set. Further, we
apply our neural-based integral classi�er to several state-of-the art block
ciphers, namely PRESENT [25] , RECTANGLE [39], LBLOCK [40], SPECK
[38] and SIMECK [38] and compare the results with the most recent inte-
gral method. i.e. bit-based division property [14]: As shown in Table 1, our
neural-based distinguisher can extend the number of distinguished rounds
for most block ciphers by at least 1 additional rounds. In some block ci-
phers such as PRESENT, we could extend the distinguished round for 3 ad-
ditional rounds. However, for SIMECK32, our neural-based distinguisher
downgrades the distinguished rounds by 3 rounds.

2. We compare the performance of di�erent state of the art CNN architec-
tures namely, ResNet, ResNeXt and DenseNet in training our neural dis-
tinguisher. �e results indicate that DenseNet is a more promising tool in
construction of integral distinguisher with slightly higher distinguishing
accuracy. We also demonstrate the utility of Few-Shot Learning in con-
struction of neural based Integral distinguisher which can train our neural
distinguisher with less than 100 dataset instances.

3. Our neural based integral distinguisher is not only helpful for block cipher
designers, but also assists a�ackers to mount key recovery a�ack. To this
end, we elaborate a key recovery a�ack based on our distiguisher in section
3 and mount it on block ciphers SPECK in section 4.
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Table 1: Distinguishing a�acks on several lightweight block ciphers using our
neural-based integral distinguisher

Cipher Block size Round
(previous)

Round
(Our Neural distng)

Round
(Few-Shot)

PRESENT 64 5 [14] 8 8
RECTANGLE 64 6 [14] 7 7
LBLOCK 64 8 [37] 10 10
SPECK32/64 32 3 [37] 5 5
SIMECK32 32 14 [37] 11 11

Structure of the Paper. In section 2, we give an overview of Integral crypt-
analysis and classical methods of �nding Integral distinguishers in block ciphers.
In section 3, we develop our neural based Integral distinguishers on round re-
duced PRESENT. Section 4 contains our experimental results on the application
of neural networks to �nding Integral distinguishers on round reduced PRESENT.
Finally, a conclusion is given in section 5.

2. Integral distinguisher

Integral distinguisher of block ciphers was �rst proposed by Daemen et al.
to analyze the security of SQUARE [15], and later formalized by Knudsen and
Wagner [16]. It is a chosen plaintext a�ack in which the adversary chooses a
multi set of plaintext values that contains all possible values for some bits and
a constant value for the rest of bits. Using the encryption oracle, the cipher is
prone to an integral distinguisher if the XOR of the corresponding ciphertexts
becomes 0. Many integral distinguisher have been discovered against di�erent
ciphers [17, 18, 19]. So far, three di�erent methods were suggested to �nding
integral distinguisher against block ciphers,i.e. integral property [16, 17] , de-
gree estimation [20] and division property [14, 18]. In the following, we brie�y
describe each method a�er reviewing the common notations in this context.

2.1. Notations
Denote the �nite �eld with binary elements by F2. Also, the n-bit string over

F2 is denoted by Fn2 . Here, Z and Zn represent the the integer ring and the set of
all vectors whose coordinates are integers respectively. Assuming a ∈ Fn2 , then
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a[i] denotes the i-th bit of a, and
∑n−1

i=0 a[i] represents the hamming weight of a.

Bit Product Function πu(x) and πu(x): πu(x) is a function from Fn2 to F2.
For any x ∈ Fn2 , the function πu(x) is de�ned as follows:

πu(x) =
n−1∏
i=0

x[i]u[i]

Also, for all u ∈ Fn0
2 ∗ Fn1

2 ∗ . . . ∗ F
nm−1

2 , and x = (x0, x1, ..., xm−1) ∈
Fn0
2 ∗ Fn1

2 ∗ . . . ∗ F
nm−1

2 the function πu(x) is de�ned as follows:

πu(x) =
m−1∏
i=0

πui(xi)

2.2. Integral property
Integral property based distinguishers are constructed by evaluating the prop-

agation characteristic of the integral property. Four integral properties are de-
�ned for every multiset as follows:

– ALL (A): Every possible value appears exactly once in the multiset.

– BALANCE (B): �e XOR of every value in the multi set is 0, but every
possible value may not necessarily appear in the multi set.

– CONSTANT (C): All texts in the multiset are �xed to a constant value.

– UNKNOWN (U): �e texts in the multiset are randomly distributed such
that they are indistinguishable from any n-bit random values.

However, this method fails to derive e�ective distinguishers against block
ciphers if they consist non-bijective functions, e.g., DES [21] and Simon [22].
In addition, this method doesn’t take into account the algebraic degree of block
ciphers. As a result, it fails to derive e�ective distinguishers against block ciphers
with low-degree round functions.

2.3. Degree estimation
Degree estimation or higher-order di�erential a�ack is another method of

�nding integral distinguisher which exploits the algebraic degree of block ci-
phers. �e cipher has the integral distinguisher with 2D+1 chosen plaintexts,
where D represents the maximum algebraic degree of the block cipher. By using
this method, Boura et al. [23] discovered integral distinguisher against Keccak
and Lu�a, respectively.
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2.4. Division property
As a generalized integral property method, division property �nds be�er

distinguishers by exploiting the properties hidden between traditional integral
properties, i.e. ALL (A) and BALANCE (B). Let X represent the multi-set in
which the value of its members are in (Fn2 )m, and k be a m-dimensional vec-
tor whose components lie between 0 and n. �e multisetX has division property
Dn,m

k(0),k(1),...,k(q−1) if and only if the parity of πu(x) over all x ∈ X is always even
for u ∈ {(u0, u1, ..., um−1) ∈ (Fn2 )m | W (u) ≯ k(0), ...,W (u) ≯ k(q−1)}

In [14], Xiang et al. applied MILP to automatically �nd integral distinguisher
of block ciphers. Assuming Dn,m

k as the division property of the initial multiset
in a block cipher with round function fr, the division property of the state a�er
r-th round ,DK

n,m
r , can be derived using the propagation rules described in [14].

Here, Kr, represents the set of m-dimensional vectors. �us, the block cipher
transforms the initial k to the set of vectors in Kr. In another words, assuming
DK

n,m
i as the division property a�er i-round propagation through fr, the fol-

lowing chain of division property can be derived in a block cipher with round
function fr:

{k} def
= K0

fr→ K1
fr→ K2

fr→ . . . .
fr→ Kr

For (k0, k1, . . . ., kr) ∈ K0 ×K1 × . . . ×Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r} , the vector set (k0, k1, . . . ., kr) is called a r-round division trail.
Here, Kr denotes the set of the last vectors of all r-round division trails, starting
from k.

Proposition (Setwithout Integral Property). �emultisetXwith division
property D1,n

K doesn’t have any useful integral property (Xor-sum of X doesn’t
balance on any bit) if and only if K contains all the n unit vectors.
To prove this proposition, assume that Kr+1 contains all the n unit vectors for
the very �rst time. In this case, a r-round distinguisher can be derived fromD1,n

Kr
.

Since, Kr doesn’t contain all the n unit vectors, a unit vector like e can always
be found such that e /∈ Kr. As a result, for all k ∈ Kr, it holds that e � k. So,
the parity of πu(x) is even. As a result, a balanced bit is found. In a similar
fashion, any missing unit vectors represent a balanced bit. Based on this rule,
to �nd out whether or not an r-round block cipher has integral property, it is
su�cient to check the vectors in Kr, or equivalently, to check the last vectors
of all r-round division trails. �is problem resembles a typical MILP problem
[24] in which the variables are the components of the r-round division trail, i.e.
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neural networks (CNN) architecture namely, ResNet,ResNeXt and DenseNet to
mount integral distinguishing a�ack on block ciphers. We also illustrate the
utility of few-shot learning in training our neural network based integral dis-
tinguisher framework with very low training data, i.e. less than 50 instances.
Mounting distinguishing a�ack is only useful for the block cipher designers. In
order to pave the way for the a�ackers to utilize our scheme, we further illus-
trate the feasibility of key recovery a�ack using our neural integral distinguisher
framework.

3.1. Training our neural based Integral distinguisher
To train our neural based integral distinguisher framework, we develop a

binary classi�cation problem in which the corresponding plaintext of every ci-
phertext is either an instance of a multi-set with speci�c integral property or a
set of random plaintexts. To this end, 220 multi-sets of plaintext were generated
and encrypted as the training data, as well as a corresponding vector of binary-
valued labels Y . Here, Y = 1 corresponds to the real multi-set where every
instance of the multi-set follows a speci�c integral property. Whereas, Y = 0
corresponds to the random multi-set wherein every instance of the multi-set is
generated in a random fashion. Figure 1 illustrates two multisets with di�erent
Y . �e multiset denoted by Y = 1 corresponds to integral properties of 1 active
and 3 constant bits. Whereas, Y = 0 corresponds to the random multi-set in
which no speci�c integral property is chosen.

Figure 1: Dataset instances of our neural based Integral distinguisher: �e mul-
tiset denoted by Y = 1 corresponds to integral properties of 1 active and 3 con-
stant bits. Whereas, Y = 0 corresponds to the random multi-set in which no
speci�c integral property is chosen.

Further, to validate the trained distinguisher, 216 multi-sets of plaintext and
their corresponding labels were generated similarly. In our implementation, it’s
very cheap to generate the training data. Such that it takes only a few seconds
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to generate a data set of size 220.

Training Pipeline
We run our training for 10 epochs with a dataset of size 107. �e datasets were
processed in batches of size 5000 with a validation ration of 30 %. Mean square
error loss function was used during the optimization with L2 weights regular-
ization using the Adam algorithm [36]. By using a cyclic learning rate schedule,
the learning rate li for epoch i is set to li := α + (n−i) mod(n+1)

n
(β − α), with

α = 10−4, β = 2× 10−3 and n = 9. �e best trained network was further evalu-
ated against a test set of size 106 that is not used in training or validation.

3.2. Convolution neural networks (CNN)
Convolutional Neural Network (CNN, or ConvNet) is a type of deep neu-

ral networks, which are widely applied in image and video recognition, recom-
mender systems [26], image classi�cation, medical image analysis, natural lan-
guage processing, and �nancial time series [27]. CNN consists of an input and an
output layer with multiple hidden layers in between �e hidden layers usually
consist of a series of convolutional layers that are convolved by multiplication.
�e input is a tensor of size (number of images)× (image height)× (imagewidth)
× (image depth). Upon passing through each convolutional layer, the input is ab-
stracted to a feature map of size (number of images) × (feature map height) ×
(feature map width) × (feature map channels). Each convolutional layer has the
following a�ributes:

• Convolutional kernels with speci�c width and height de�ned by hyper-
parameters.

• �enumber of input channels and output channels de�ned by hyper-parameters

• Convolution �lter (the input channels) depth should be equal to the chan-
nels (depth) of the input feature map.

Similar to the response of a neuron in the visual cortex to a speci�c stimulus,
Convolutional layers convolve the input and output the result to the next layer. In
all CNN architectures, the convolutional layers are applied successively to the in-
put, downsampling the spatial dimensions periodically while adding the number
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of featuremaps. Classical network architectures simply consist of stacked convo-
lutional layers. Examples of classic network architectures include LeNet-5 [28],
AlexNet [29] and VGG 16 [30]. However, modern architectures use novel ideas
to increase the accuracy of the learning. Inception [31], ResNet [32], ResNeXt
[34], DenseNet [35] are among modern network architectures:

• ResNet
Deep Residual Networks (ResNet) [32] were a breakthrough in develop-
ment of neural networks. �emotivationwas the observation of researchers
that despite intuition, adding more layers not only didn’t improve the per-
formance, but downgrades the �nal performance. �is phenomenon is
known as degradation problem or vanishing gradients [33]. Researchers
suggested residual blocks as a solution to this problem in which inter-
mediate layers utilize skip connections to learn a residual function with
reference to the input block (Figure 2). Skipping is a simple and e�ective
strategy which speeds learning by using fewer layers .In this way, we reuse
activation from a previous layer until the adjacent layer learns its weights.
Figure 2 illustrates the application of residual blocks to forming a residual
network.

Figure 2: A schematic of ResNet architecture

• ResNeXt
�e ResNeXt architecture is an extension of the deep residual network
which leverages a ”split-transform-merge” strategy as a replacement to
the standard residual block [34]. In simple language, instead of convolving
over the full input feature space, a few convolutional �lters is applied over a
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series of lower channel dimensional representation of the input block. �is
idea is similar to the group convolutions previously suggested in AlexNet
Paper [29], in which the input is divided into groups in channel-wise man-
ner, instead of applying �lters with the input’s full channel depth. Figure
3 illustrates the di�erence of standard convolution vs. group convolution.
In the original ResNeXt paper, a series of experiments are performed to
�gure out the relation of the increase of the number of groups (also known
as cardinality), depth and width with the performance accuracy. �e re-
sults indicate that increasing the cardinality is a more e�ective measure
to gain a higher accuracy rather than increasing the width or depth of the
network.

Figure 3: A schematic of ResNeXt architecture

• DenseNet
In dense convolutional networks, the feature map of each layer is concate-
nated to the input of every successive layer within a dense block. �is
technique paves the way for the deeper layers to reuse and exploit the
features of earlier layers. As argued by the author [35], feature-map con-
catenation results in higher performance, as the variation of the input of
subsequent layers is increased. In this way, the network is able to directly
use any previous feature map. �e number of �lters in each convolutional
layer is referred to as growth rate”, k, as each successive layer will bear k
more channel. A schematic of DenseNet architecture is shown in Figure 4.
Compared to the ResNet model, DenseNets provide higher accuracy and
performance with a lower data complexity.
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Figure 4: A schematic of DenseNet architecture

3.3. Application of Few-Shot learning in training our neural based integral distin-
guisher
As its name suggests, few-shot learning refers to training amodel with sparse

amount of training data, as opposed to training a conventional model with a large
amount of data. Suppose that we want to distinguish a block cipher of block size
b reduced to r rounds. To test whether our neural network can be trained via
few-shot learning, we performed the following experiment:

1. A simple neural network, N, with only one residual block is trained to dis-
tinguish the target block cipher reduced to s << r rounds with a speci�c
input integral property. A single epoch of 2000 descent steps was used
during the training with a batch size of 5000.

2. �e output of the second-to-last layer of the trained network ,N[-2], is pre-
served as a representation of the input data.

3. Small samples S (between 1-50) of the r round target block cipher’s out-
put multi-set with an input integral propertyDin of n active bits ,X1, was
generated along with the corresponding labels Y1. �is sample was com-
plimented with the same number of ciphertext drawn from random input
multiset,X0, which corresponds to label Y0.

4. �e sample S is treated as the input of the trained neural network in step
2. �e output of this network is denoted as Z.

5. �e r-round distinguisher is achived by applying ridge regression (with
regularization parameter α = 1) between labels Y = Y1||Y0 and pre-
dictions ,Z. To this end, the linear predictor L : Rb×2n → R determines
whether a given ciphertext corresponds to a real input multi-set with a
speci�c integral property if L(x) > 0.5. Otherwise, it belongs to a ran-
dom multi-set. To estimate the accuracy of this predictor, it was tested on
a sample of size 50000. �is experiment is summarized in Algorithm 2.
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Algorithm 2: Application of Few-Shot learning in training an integral distin-
guisher with input division property Din for a block cipher with block size b
reduced to r rounds Er given an auxiliary integral distinguisher N for a block
cipher reduced to s rounds Es with input division property Din

Require : N, r, t

1.X1 ← t multiset outputs of block cipher Er with input division property Din

of n active bits
2. Y1 ← (1, 1, ..., 1) ∈ Rt

3. X0 ← tmultiset outputs of block cipher Er with random input division prop-
erty
4. Y1 ← 0 ∈ Rt

5. N ′ ← N [−2] Here,N[-2] represents the second-to-last layer of N
6. Z, Y ← N ′(X0||X1), Y0||Y1
7. L← RidgeRegression(Z, Y )
8.Return L(N ′(X0||X1))

3.4. Key Recovery a�ack
In this section, we show that our neural based integral distinguisher is not

only useful for block cipher designer, but also is a handy tool for a�ckers to
recover round key bits. Given a r-round block cipher neural distinguisher for an
input multi-set with n active bits, we recover the (r+1)-th subkey of the block
cipher,Er+1, as follows:

1. Ask oracle for the r+1 round encryption of 2n plaintext with n active bits.
Obtain the corresponding ciphertexts as C1, ..., C2n .

2. For each possible value of the �nal subkey k, decrypt each ciphertext Ci

under k to get Ck
i .

3. Using the r-round neural distinguisher, get score Zk
i for each partially de-

crypted ciphertext.
4. For each k, denote vk as the combination of scores Zk

i for all 2n+1 cipher-
texts. We use the following formula to obtain the score of each candidate
key vk:

vk :=
n∑

i=1

log2(Z
k
i /(1− Zk

i )) (1)
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5. �e subkey with the highest score vk is chosen as the correct �nal round
key.

To gauge the accuracy of the key recovery a�ack, we performed the key recovery
a�ack for 100 times on each block cipher. Each time, we report the number of
candidate subkeys ranked higher than the true subkey. In the next section, we
report the result of key recovery a�ack on SPECK block cipher. Due to hardware
limtation, we couldn’t apply key recovery a�ack on other block ciphers with key
length greater than 16 bits.

4. Applications to PRESENT,RECTANGLE,LBLOCK,SPECKand SIMECK

In this section, we apply our neural based integral distinguisher to PRESENT,
RECTANGLE, LBLOCK, SPECK and SIMECK block ciphers. �e results are listed
in Table 1. In all experiments, the number of active bits of the input pa�ern is 4
bits. �e Round (Previous) column and Round (Our Neural distng) column repre-
sent the number of extinguished rounds of previous methods (bit based division
property) and our neural based distinguisher. Also, the column Round (Few shot
learning) represent the result of applying few shot learning on each cipher. �e
table shows that our neural-based distinguisher extends the number of distin-
guished rounds for all block ciphers(except for SIMECK32). All the experiments
are performed in Google Colab GPU VM platform 1. Also, all the source codes
are available at [37] . To be�er guage the capability of CNN in cryptoanalysis,
we apply di�erent CNN architectures namely ResNet, ResNeXt and DensNet to
train each block cipher and compare the accuracy a�er 10 epochs. �e results
are shown in Table 2. As expected, DensNet, as the state-of-the art CNN archi-
tecture, provides the most accurate distinguisher for all block ciphers. We claim
that we obtain a distiguisher only if the distinguisher accuracy is more than 52
%. Further, we mount key recovery a�ack on SPECK32/64 block cipher. Due to
resource and hardware limitation, we were unable to mount key recovery a�ack
on block ciphers with round key size larger than 30 bits.

1h�ps://colab.research.google.com/
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Table 2: Comparing the accuracy of di�erent CNN architectures in distinguish-
ing block cipher a�er 10 epochs

Cipher distinguished
round

ResNet ResNeXt DenseNet

PRESENT 8 78 % 82 % 86 %
RECTANGLE 7 76 % 81 % 85 %
LBLOCK 10 81 % 85 % 86 %
SPECK32/64 5 98 % 99 % 99 %
SIMECK32 11 67 % 70 % 72 %

4.1. Applications to SPECK & SIMECK
SPECK is a family of lightweight block ciphers publicly released by the Na-

tional Security Agency (NSA) in June 2013 [38]. SPECK is an add–rotate–xor
(ARX) cipher which supports a variety of block and key sizes. �e block always
consists of two words of 16, 24, 32, 48 or 64 bits in size. Also, the correspond-
ing key is 2, 3 or 4 words. �e round function includes two rotations, adding the
right word to the le� word, xoring the key with the le� word and then xoring the
le� word with the right word. Assuming the cipher state (Li, Ri) as the input,
the round function produces the state (Li+1, Ri+1) as follows:

Li+1 := ((Li � α)�Ri)⊕K,Ri+1 := ((Ri � β)⊕ Li+1 (2)
where α, β are constants speci�c to each member of the Speck cipher family.

We apply state of the art CNN architecture to train our neural based integral dis-
tinguishing scheme on SPECK32/64 block cipher. Also, we implement bit-based
division property in [37] to compare it with our neural based distinguisher. Us-
ing bit-based division property, we found a 3 round distinguisher for SPECK32/64
block cipher with 24 balanced output bits. �is distinguisher corresponds to an
input multi-set of 4 active bits in the right word, as illustrated below:

Input division: (cccccccccccccccc,ccccccccccccaaaa)
Output: (b�?bbbbbbbbbbb?,b�?bbbbbbbbbbb?)

c: constant bit , a: active bit , ?: unknown bit , b: balanced bit

SIMECK [38] is also another ARX based block cipher which inherits good
design components of Speck. Using bit-based division property, we found the
following 14-round distinguisher with 3 balanced output bits:
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Input division: (cccccccccccccccc,ccccccccccccaaaa)
Output: (b�������b,b�������?)

As shown in Table 1, for SPECK32/64, our neural based integral distinguisher
can extend the number of distinguished rounds from 3 to 5 with the same data
complexity i.e. 24.

Also, for SIMECK32 we could achieve a 11-round distiguisher which is 3
rounds less than the bit-based division property.

Further, we performed few-shot learning using a pre-trained auxiliary net-
work reduced to three and 10 rounds for SPECK32/64 and SIMECK32, respec-
tively. As shown in Table 1, we could achieve a 5-round distinguisher using a 2
digit number of training examples for SPECK and a 11-round distinguisher for
SIMECK.

In addition, the results of the key recovery a�ack on 6-round SPECK32/64
are shown in Table 3.

Table 3: Result of the key recovery a�ack on 6-round SPECK32/64. �e reported
values are based on 100 trials of key recovery a�ack. �e rank of a key is de�ned
as the number of subkeys ranked higher than the real subkey.

Cipher zero key rank key rank less than 10 key rank less than 100
SPECK32/64 3 12 42 %

4.2. Applications to PRESENT & RECTANGLE
In this section, we apply state of the art CNN architecture to train our neu-

ral based integral distinguishing scheme on PRESENT and RECTANGLE block
cipher. PRESENT [25] and RECTANGLE [39] are two SP-network block ciphers,
which use bit permutations in their linear layers. PRESENT is a SPN block cipher
suitable for extremely constrained environments [25]. As stated by the authors:
”we are not building a block cipher that is necessarily suitable for wide-spread
use; we already have the AES for this. Instead, we are targeting some very spe-
ci�c applications for which the AES is unsuitable.”

By supporting both encryption and decryption with the same physical re-
quirements, the PRESENT cipher turns to a lightweight block cipher that is still
smaller than an encryption-only AES. In addition, the encryption-only present is
an ultra-lightweight cipher. PRESENT consists of 31 rounds with a block length
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of 64 bits which supports two key lengths of 80 and 128 bits. In each of the 31
rounds, the round key Ki for 1 ≤ i ≤ 31 is XORed with the block input, where
K32 is applied for post-whitening. �en, a linear bitwise permutation and a non-
linear substitution layer is applied in each round. �e non-linear substitution
layer consists of a 4-bit S-box which is applied 16 times for the 64 bits of the
input. A schematic of PRESENT cipher is shown in Figure 5.

Figure 5: A schematic of PRESENT block cipher

In the following, we discuss each operation in detail:

addRoundKey. �is layer consists of xor operation between the current
state b63. . . b0 and the round key Ki = ki63. . . k

i
0 for 1 ≤ i ≤ 32.

bj → bj ⊕ kij for 0 ≤ j ≤ 63
sBoxlayer. �e S-box used in PRESENT cipher is a 4-bit to 4-bit S-box:

F42 → F42. Table 4 shows the detail of this box in hexadecimal notation.

Table 4: S-Box of PRESENT cipher

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

However, this table is hard to be implemented in neural networks 2. A bet-

2Specially, for large number of inputs, it takes days to execute the same box for each input. A
be�er way to increase the speed of the implementation is to use the parallelism in python using
Numpy array which can computes operations like xor, addition, rotation etc. in a parallel manner
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ter way to increase the implementation speed is to use algebraic normal form
(ANF) of PRESENT Sbox. Assuming x = (x3, x2, x1, x0) as the input and y =
(y3, y2, y1, y0) as the corresponding output, the ANF representation of PRESENT
Sbox would be:

y3 = 1⊕ x0 ⊕ x1 ⊕ x3 ⊕ x1x2 ⊕ x0x1x2 ⊕ x0x1x3
y2 = 1⊕ x2 ⊕ x3 ⊕ x0x1 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3
y1 = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3

y0 = x0 ⊕ x2 ⊕ x3 ⊕ x1x2

�e input of the sBoxLayer is b63. . . b0 which is considered as sixteen 4-bit
words, wherein the 4-bit S-box is applied on each word.

pLayer. �is linear layer is a bit permutation layer which acts on the output
of the S-box layer of i-th round (bi63. . . b

i
0) and the input of the (i+1)-th round

(ai+1
63 . . . a

i+1
0 ). �ese variables are related as follows:

ai+1
16j mod 63 = bij for j ∈ {0, 1, ..., 62}

ai+1
j = bij for j = 63

Previously, Wu et al.[13] found a 5-round distinguisher for PRESENT block
cipher with 1 balanced output bit. In the input multi-set of this distinguisher,
the le� most 60 bits are �xed to random constants and the 4 right most bits are
active bits. Using the same input multi-set, Xiang et al. [14] found another 5
round distinguisher with 4 balanced output bits :

Input: (ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccaaaa)
Output: (������������������������������bbbb)

RECTANGLE also has similar cipher structure [39], wherein the input block
is arranged in a 4*16 matrix. Using bit-based division property, Xiang et al. [14]
found the following 6 round distinguisher with 23 active bits:

Input:


ccccccccccaaaaaa
cccccccccccaaaaa
ccccccccccaaaaaa
ccccccccccaaaaaa

→ Output:


bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
??????????????bb
bbbbbb??????????


Surprisingly, for PRESENT block cipher, our neural based integral distin-
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Output: (��bbbb��bbbb��bbbb?b�bbbb,����������������)

To our great surprise, our neural-based integral distiguisher discovers a 10-
round distiguisher which is 2 rounds more than the previous method. In both
methods, only 4 bits of the input pa�ern are active. In addition, using few-shot
learning with a pre-trained auxiliary network reduced to 8 rounds, we could
achieve a 10-round distinguisher using only 100 training examples.

5. Conclusion

In this paper, we exploited learning capability of deep learning to develop
an integral distinguisher scheme and applied it to several block ciphers includ-
ing SPECK, LBLOCK, SIMECK , PRESENT, RECTANGLE and SIMECK. �e re-
sults indicate that our neural based integral distinguisher scheme outperforms
the state of the art classical integral cryptoanalysis method (bit based division
property).For most block ciphers, it extends the number of distinguished rounds
for at least 1 additional rounds. In some cases, such as PRESENT cipher, it pro-
vides an additional 3 rounds distinguisher. We also observed the superiority of
the most recent deep learning architecture, i.e. DenseNet over previous architec-
tures ,i.e. ResNet and ResNeXt in terms of distinguishing accuracy. Further, we
show how to use our distinguisher scheme to mount key recovery a�ack which
improves the utility of our scheme.
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