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PREDICTING EPISODIC VIDEO MEMORABILITY USING DEEP 

FEATURES FUSION STRATEGY 

Abstract:  

 Video memorability prediction has become an important research topic in computer 

vision in recent years. The movie's input is highly remembered that gains much attention with 

unbounded time constraints. Episodic memory is a fascinating research area that needs much 

attention using video processing tools and techniques. Episodic memories are long-lasting 

with complete detail. Movies are one of the best instances of episodic memory. This paper 

proposes a novel framework to fuse deep features to predict the probability of recalling 

episodic events. Memories are reproducible and sensitive to sophisticated set of properties 

rather than low-level properties—the proposed framework pin up the fusion of text, visual 

and motion features. A fuzzy-based FastText model, a supervised text extraction module, is 

designed to extract the annotations with their relevant classes. The colour histogram analysis 

is done to determine the dominant colour region that performs as a connected fragment to 

form episodic video sequences. A novel Faster R-CNN is designed to discover the scene 

objects using an informative regional proposal network formation. Here, the modified loss 

function sorts out the lowest overlapping regions yielding the best proposals. The 'high-level' 

properties are collected using Principal Component Analysis (PCA) to form episodic shots. 

These are fused to estimate the memorability score. The proposed framework is implemented 

in Mediaeval 2018 datasets. A superior spearman's rank correlation result is achieved as 

0.6428 short-term and 0.4285 long-term memorabilities than the latest comparable methods.   

Keywords:  Video memorability prediction; episodic memory; Faster R-CNN; Fuzzy based 

FastText; Regional Proposal Network & MediaEval 2018 datasets.  

 

 

1. Introduction 

 Digital users are more likely to share videos online with the advent of information 

processing tools and technologies. In the era of information overload, it isn't effortless to get 

in the information they are interested in. People tend to recall fascinating events in the short/ 

long term. Creating unique video content is crucial for engaging digital users with profitable 

marketing campaigns [1-3]. Henceforth, predicting and perceiving the video's memorability 

is one of the significant parts of the video analysis task [4,5]. Episodic memory is a late-

developing approach that remembers and recalls the interesting events relevant to past 

experiences. It is described as the memory system that takes charge of preserving, encoding, 

and retrieval experienced events interacted with the accurate information of spatial and 

temporal context of encoded features. Episodic memory is not a typical memory system 

which probably unique to humans. It takes mental time to travel to recollect and re-

experience the events from the present to the past through auto noetic awareness. Episodic 

learning-based video memorability prediction is the minor focused research area that 

motivates us to delve into this study [6].   

 Episodic learning systems portray as the essential foundation of our recollections. 

Human brains incessantly bombard the rich set of collective events. However, only a tiny 

fraction of events are recalled and crystallized into episodic memories. Many studies have 

stated that all events are not transformed into episodic memories. A human brain selects and 

interprets certain events and transforms them into narrative forms, represented as ‘episodic 

memories’. It is significant to characterize each event and its learning modules to evaluate 



those memories by learning the structural pattern of episodic memories. The memory recalls 

analysis relies on multiple factors such as  

 Intrinsic information of subjects towards oneself, i.e. age, domain construction 

 Relatable content evaluation, i.e. single item analysis, the similarity between formed 

events.  

 Probing the memories concerning time, i.e. validation of encoding and testing 

 Evaluation of recollection using objective and subjective metrics. 

 

 A movie is one of the stimuli that help investigate the memories of real-life events. 

Several aspects of episodic information collect from a movie [7, 8]. However, the information 

deduction from a single item is a complex process because it involves temporal sequences, 

spatial and temporal context, affective components and an underlying narrative. Though the 

subject is quite interesting, the collection of comprehensive memories for movie is assessed 

by an effective recall rate with précised information. Likewise, specific scenes create a more 

significant impact on human minds in the short term and the long term. Object detection is 

one of the well-known areas widely explored by deep learning algorithms in terms of the 

better scenes detection process. The objects can't be detected properly with the limited set of 

feature information [9, 10]. Due to their fixed dimensional locations, generating the fittest 

anchors in object detection is still a challenging task. A considerable number of anchors is 

required to estimate a recall rate that holds many irrelevant samples enclosed during the 

anchor extraction module. The general anchor generation method will have such problems, 

resulting in poor detection performance that lowers the memorability score predictions.   

 

     This paper proposes a novel video memorability framework using multi-modal features by 

improvising the combinational feature sets. This method can provide better short-term and 

long-term memorability score prediction comparable to the latest methods. The enrichments 

done in this paper are: 

                                                       

a) A novel FastText-FIS model is designed to compute the short-term and long-term 

annotations with their text classes. In order to maintain the strength of semantic tasks 

of the sub-words, the proposed module has improved the weight estimation using 

fuzzy logic. 

b) A visual attention feature is extracted using a colour histogram that leverages the 

colour of the frames to create better visual information.  

c) A novel FR-CNN model is designed to detect the objects scene with the classified 

text. The modified loss estimation removes the irrelevant regions of a frame with the 

required proposals.  

d) The best combinations of annotations, dominant colours and scenes objects are trained 

and tested on the Mediaeval 2018 datasets. 

e) Experimental results have proved the efficacy of the proposed framework in terms of 

spearman’s rank correlation, recall, mAP and F-measure metrics.    

 

 This paper arranges into sections:  

  

   “Literature Survey” that portrays the merits and demerits of the existing studies is 

given in Section 2.  

  “Proposed framework” that portrays working steps of each module in Section 3. 

   “Experimental Results and Discussion” that portrays the simulation setup, 

performance metrics and the achieved results in Section 4.  

   “Conclusion” that portrays the findings of this study is given in Section 5. 



 

2. Literature Survey    

 The previous works related to features engineering, i.e. text, audio and motion for a 

better video memorability prediction model, are discussed.  The review study conducts in two 

aspects, namely, text and visual feature analysis and motion feature analysis.  

 

2.1 Text and visual feature analysis: 

 In [11], some deeply learned visual and textual features were extracted by Glove, C3D 

and I3D. These extracted features were trained and tested using regression models. Finally, 

the fusions of all features were passed through different regressor lines to estimate the 

memorability score. Though label information helps, it is not proper to use one-hot vectors. A 

practical set of features play a crucial role to address the continuous emotion in movies. Thus, 

the features such as Video Compressibility and Histogram of Facial Area (HFA) [12] were 

extracted and fed into the Mixture of Experts (MoE) that adaptively merged the emotional 

information. Finally, the Expectation-Maximization (EM) algorithm has estimated the 

memorability score. Different emotions are available in movies. However, the familiar 

emotions are considered by limiting the high-level semantic information. Convolutional 

Neural Network (CNN) was employed to extract the visual features, and then, the score was 

predicted using Long Short Term Memory (LSTM) network [13]. Inception V3-CNN and 

C3D features were also considered. In [17], the AMNet was an end-to-end architecture with 

soft attention and LSTM network. The transfer learning module and LaMem datasets were 

used to estimate the memorability score. It was observed that the highest attention maps of a 

video frame depict the highly memorable visual contents. Regardless, concept and semantic 

representations of the video frame are not focused.   

   A combination of visual approaches has been studied to predict the memorability 

score using the weighted average method [19]. I3D, ResNet -152 and ResNet-101 were 

concatenated on the video frames. Each frame is represented with captions to derive the local 

embedding’s. Likewise, the captions were analysed using the combination of textual features 

such as self-attention, BERT and bag of words. The memorability decay of a scene is still not 

addressed. A hybrid approach was designed to compute the media memorability using fusion 

strategy [20]. The caption data were fed into the different embedding and recurrent layers of 

ResNet and AMNet. Then, data features were reduced to the required dimension levels until 

estimating a memorability score. The semantics information of video has described the 

efficiency for short-term videos. GloVE [21] is a Global Vector for Word Representation that 

depicts the fine-grained semantic and syntactic information. Creation of word vectors 

comprises two stages, viz, global matrix factorization and local context window methods. 

Finally, the weighted least square model trained the global word-word co-occurrences counts. 

However, the semantic features of each sub-word are not appropriately trained.   

 

2.2 Motion features analysis  

 

 Feature extraction of informative regions using Local Binary Pattern (LBP) [14] was 

studied to determine the context's significance in the particular area. Compared to the SIFT 

feature descriptors, the LBP towards the region presented more intrinsic frame information. 

Human detection using a histogram of gradients [15] was studied. The collection of motion 

features from a video is a challenging task that was scrutinized by the histogram of edge 

pixels. However, the resolution of a frame distorts the specified region detection. Densenet 

CNN [16] was introduced to develop deep connection layers in a feed-forward fashion. 



Feature maps helped gain collective knowledge of the network that kept the feature maps 

unchanged. This quality of CNN has minimized the loss function on deep network 

architectures. It has resolved the overfitting reduction in the region discovery process. 

Convolutional networks are widely adopted in various benchmarks. The computational 

efficiency and the low parameters optimization are the factors that deprive the object 

detection. Thus, the factorized convolutions and aggressive regularization [18] were 

computed on the ILSVRC 2012 classification datasets. It has achieved substantial gains with 

a lower error rate. 

 AMNet with the attention memorability estimation [22] was designed to generate an 

attentive mechanism on image regions. The incremental recall score via recurrent network 

has increased the performance gain of image regions and then classified using transfer 

learning. Finally, the classified images were grouped to estimate the memorability score. The 

attention map generation creates a sparsity issue in the more significant regions. In [23], 

spatiotemporal features’ using 3D convolutional networks was studied on the large supervised 

video dataset. The compactness of the video descriptor is not achieved using C3D features. 

Action classification is one of the subsets of the object detection approach. Two-Stream 

Inflated 3D ConvNet (I3D) [24] was designed to detect the objects with their respective 

action classes. The kinetics information helped in the pre-training module for the faster 

classification module. The transferability of I3D models has increased the processing time on 

the test sets, and longer videos are not appropriately studied. In [25], the temporal segment 

networks were formulated by the idea of long-range temporal structure modelling. The longer 

videos were supervised using ConvNets to achieve faster action recognition. However, it 

yielded better outcomes for the limited training samples. 

 

 The conducted reviews show that the best combination of feature sets has a profound 

contribution to memorability score estimation. The features like text, visuals and motion have 

been limited according to the study’s requirements.   The collective set of events will impact 

the cognition ability, and thus, interpretations of the attentive features necessitate a better 

feature space transformation process. The memorability score prediction of episodic memory 

formation on movie events develops a tedious task using text and motion features.  

 

3. Proposed Framework:  

  

The proposed framework resolves the following research questions:  

 

RQ-1: What are the key features that impact the cognitive ability for long-lasting? 

RQ-2: How does the fused set of features impact the recall of recollecting the events?  

RQ-3: How to effectively fuse and achieve the best combinational sets from the extracted 

features? 

 

The proposed framework is explained as follows:  

 

 3.1 Video into Frame conversion:  

 

 The input videos are collected from the public repository, MediaEval 2018, which 

contains the set of Hollywood movies. As an initial step, the video converts into a set of 

frames. A rich set of information frames is considered to estimate the memorability score. 

Thus, the theme of the proposed study is to select the frames with rich data using multi-modal 

in-depth features selection process. 



3.2 Text features:  

 FastText method is a word embedding technique that embeds the words with the 

available set of captions. New words affect the estimation of semantic information loss, 

which is resolved by designing a novel FastText method. The conventional FastText method 

performs on continuous skip-grams without eliminating the morphology of words. It takes 

each word as character n-gram. This model provides a vector for unknown words during the 

training process. Though it preserves sub-word information, it ignores the internal structure 

words. Hence, the novel FastText method improves the word embeddings during the 

representation of unknown words. Firstly, it trains the word vectors by the FastText model 

and fills in unknown word vectors by combining n-gram models. Secondly, the Fuzzy 

Inference System (FIS) idea is used to discover the multiple word vectors similar to the 

unfamiliar words. Finally, the numerous word vectors are fused to form a new representation 

of word vectors by the gate mechanism. The proposed steps of fuzzy-based FastText model 

are:  

i) Embedding layer:  

 FastText embedding by way of 500 dimensions signifies video captions. A 

fundamental preprocessing step, i.e. stopwords and space, are removed. And every unique 

word is taken to create a dictionary. Likewise, a unique index is created for each individual 

word. Therefore, the input captions will combine uncommon words with their respective 

index. It is collectively represented as word embedding. For instance, let C be the caption 

holding complete sentences; a word embedding wordi means each word in the captions C. 

Here, wordi ∈  Td and d are the dimension of the word embedding. In the proposed 

implementation, 500-dimensional FastText embedding is used and thus, it is stacked together 

to form a word embedding matrix WE mat where WE mat   ∈  𝑇𝑙𝑒𝑛𝑔𝑡ℎ ×𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 . Here, length 

denotes the maximum length of the sentence.   

ii) Fuzzification:  

 Here, the crisp input values, WEmat are transformed into a membership degree in the 

company of membership function. The input and output variables are represented in linguistic 

terms. The membership functions of the linguistic terms are obtained from the video captions 

data. The triangular membership functions are used to model the membership degrees of all 

variables under FIS. IMDB dataset [27] is used to design fuzzy rules.  The range of the input 

variable, WEmat under FIS are represented as, very high (VH), high (H), medium (M), low (L) 

and very low (VL). Finally, the range of  𝑤𝑒𝑖𝑔ℎ𝑡WEmat is represented as high (H), medium 

(M) and low (L) membership functions.  

iii) Fuzzy rules:  

 Relied on the final weight of each sentence on the input variable, WEmat , the if-then 

rules are expressed as follows:   

  If (WEmat is VH and label is positive) then (𝑤𝑒𝑖𝑔ℎ𝑡WEmat=H).  

iv) Defuzzification:  

 Standard centroid estimation estimates the weight for every sentence index with the 

baseline from aggregated output fuzzy set.   



 

Fig. 1. Proposed Fuzzy based FastText model 

3.3 Visual features: 

 The visual features play a significant role in generating episodic memories. 

Especially, colours have a unique ability to recollect interesting events. The colour histogram 

method is widely used in this study to derive the colour of the frames. Colour is a stimulus of 

human vision about Rd (red), Gr (Green) and Bl (Blue), which forms a colour space. Every 

region pixel is quantized from RGB colour space to HSV colour space. The HSV colour 

space [26] is formulated as: 

𝐻 =
𝑐𝑜𝑠 (

(𝑅𝑑−𝐺𝑟)+ (𝑅𝑑−𝐵𝑙) 

2
)

√(𝑅𝑑−𝐺𝑟)2     +(𝑅𝑑−𝐵𝑙)(𝐺𝑟−𝐵𝑙)
  

𝑆 = 1 − (
3

𝑅𝑑+𝐺𝑟+𝐵𝑙
) × 𝑚𝑖𝑛(𝑅𝑑, 𝐺𝑟, 𝐵𝑙)  

𝑉 =
1

3
 (𝑅𝑑 + 𝐺𝑟 + 𝐵𝑙) 

 Here, greys' hue value is defined as '0' for easy computation. Each colour component 

is quantified as H=20 bins, S=4 bins and V= 4 bins. At last, 16 * 4 * 4 histograms are 

concatenated to get a 256-dimensional vector. The colour histogram value is computed once 

the frame is converted into the HSV.   

3.4 Motion features: 

 The motion features of the input video are extracted using a novel Faster Region 

Convolutional Neural Networks (FR-CNN). This step aims to segment the objects for an 

effective recall rate on memorable objects. The proposed FR-CNN is divided into four parts: 

Convolutional layers, Region proposal networks, Region of Interest (RoI) pooling, and 

classification layers.   

 

 

 

 

 

 



3.4.1 Convolutional layers:  

 The traditional CNN contains 13 Conv layers, 13 ReLu layers, and 4 pooling layers. 

Here, the input matrix's length and width will change to half of the original length and width 

in the pooling layers.   

3.4.2 Region Proposal Networks (RPN):  

 The frames with the objects are identified using RPN, which increases the 

identification speed of the frame generation process. It contains two steps: one is to estimate 

the softmax function using positive and negative anchor classification, and the other is to find 

the anchor points using bounding box regressions. Finally, the proposal layer synthesizes the 

positive anchor point with the relevant bounding box regression values. The proposals with 

small and out of boundary points are eliminated. 

a) Anchors:  

  Let p be the maximum number of candidate boxes at each sliding window position. 

Each candidate box represents the class background, including a 4p regression layer a 2p 

classification layer. Then, the p candidate frames are parameterized, known as anchors. In 

general, the anchor is the middle point of the sliding window aspiring to the scale and aspect 

ratio. It is concluded that the convolution feature map size W* H including an aggregate of 

W* H * p anchors.  

b) Estimating the anchors:  

 After estimating class background using feature map extraction, the convolution 1 *1 

is employed to check the nine anchors at each pixel belonging to positive or negative classes 

from H * W * 18 matrix. The use of the softmax function is to determine whether objects are 

presented.   

c) Bounding box regression:  

 The role of bounding box regression is to screw up the detection box spot. As we have 

taken the movie dataset, the anchor may contain multiple objects and thus, it is to be fine-

tuning accurately. Assume a sliding window use 4-dimensional vector (m,n,h,w) representing 

the centre point coordinates (m, n), height (h), and width(w). Let, 𝐴𝑛𝑐 =
(𝐴𝑛𝑐𝑚, 𝐴𝑛𝑐𝑛, 𝐴𝑛𝑐ℎ , 𝐴𝑛𝑐𝑤) be the anchor and 𝐺𝑇 = (𝐺𝑇𝑚, 𝐺𝑇𝑛, 𝐺𝑇ℎ, 𝐺𝑇𝑤) be the ground 

truth, then the regression of identifying the frame is done by transformation 𝐺𝑇` = 𝐹(𝐴𝑛𝑐) 

such that 𝐺𝑇` ≈ 𝐺𝑇. This is proposed in the FR-CNN.  The proposed transformation network 

consists of four functions representing, 𝐹 = {𝑑𝑚(𝐴𝑛𝑐), 𝑑𝑛(𝐴𝑛𝑐), 𝑑ℎ(𝐴𝑛𝑐), 𝑑𝑤(𝐴𝑛𝑐)}  that 

translates the center points, and scales the height and width as:  

𝐺𝑇𝑚
` =  𝐴𝑛𝑐𝑤𝑑𝑚(𝐴𝑛𝑐) + 𝐴𝑛𝑐𝑚 

𝐺𝑇𝑛
` =  𝐴𝑛𝑐ℎ𝑑𝑛(𝐴𝑛𝑐) + 𝐴𝑛𝑐𝑛 

𝐺𝑇𝑤
` =  𝐴𝑛𝑐𝑤  exp (𝑑𝑤(𝐴𝑛𝑐𝑤)) 

𝐺𝑇ℎ
` =  𝐴𝑛𝑐ℎ exp (𝑑ℎ(𝐴𝑛𝑐ℎ)) 

By taking the ground truth and anchors on the regression function, the output is given as:  

𝑑 ∗ (𝐴𝑛𝑐),∗ ∈ {𝑚, 𝑛, 𝑤, ℎ} 

𝑑∗(𝐴𝑛𝑐) = 𝑊∗
𝑇∅(𝐴𝑛𝑐) 



Where, 

 ∅(𝐴𝑛𝑐) - The feature map input.  

  The modified loss function is:  

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝐿𝑜𝑠𝑠 = 𝑡𝑎𝑏𝑙𝑛 (𝑂𝑏𝑊∗
𝑇∅(𝐴𝑛𝑐))  

Where,  

𝑡𝑎𝑏 represents the offset between ground truth and anchor 

𝑂𝑏(𝑥𝑎, 𝜃) represents the output for the given input.  

𝑙𝑛 is the natural log.  

𝑡𝑚 =
𝐺𝑇𝑚−𝐴𝑛𝑐𝑚

𝐴𝑛𝑐𝑤
  

𝑡𝑛 =
𝐺𝑇𝑛−𝐴𝑛𝑐𝑛

𝐴𝑛𝑐ℎ
  

𝑡𝑤 = ln (
𝐺𝑇𝑤

𝐴𝑛𝑐𝑤
) 

𝑡ℎ = ln (
𝐺𝑇ℎ

𝐴𝑛𝑐ℎ
) 

The function W is optimized as:  

 �̂�∗ = arg 𝑚𝑖𝑛𝑤∗  ∑ |𝑡∗
𝑖𝑆

𝑖 − 𝑊∗
𝑇∅(𝐴𝑛𝑐)| + 𝛾|𝑊∗ | 

 

Fig. 2. Proposed Anchor generation 

d) Proposal layer:  

 The role of the proposal layer is to estimate an accurate proposal from the coordinates 

of regression matrix H × W × 4p. The steps are:  

 Finding the proposal from the above estimated RPN predicted offset and positive 

bounding box. 

 Processing the bounding box that goes above the frame boundary 

 Eliminating the bounding box more minor than the threshold 



 Sort all (proposal, objectiveness score) pairs from the highest to the lowest value.  

 Take the top (N) of all proposals.  

 Estimate the non-maximum suppression on the positive bounding box.  

 Again take the top (N) of all proposals.  

 Exit the remaining proposal. 

  

e) Region of Interest (RoI) pooling layers:  

 The role of RoI pooling is to modify each proposal concerning the size of W* H 

through pooling layers. The maximum pooling is analyzed on each part of W* H grid. 

f) Classification layers:  

 Finally, this layer estimates the object class of each proposal by using proposal feature 

maps, fully connected layers and softmax layers. The class probability vector is achieved 

using bounding box regression until the required target frame is detected.   

3.5 Feature reduction process:  

 The extracted features' dimensions are reduced using Principal Component Analysis 

(PCA). Since the proposed study intends to develop an episodic memory, the dimensions of 

the extracted features are reduced. PCA determines the eigenvectors of a covariance matrix 

with the highest Eigenvalues by following certain steps. The steps in PCA are:  

 

 Let X= {x1, x2,….,xn} be the set of features for each video frame. 

 Finding the mean for text, visual and motion features for each video stream 

 Estimating the correlation matrix for all features.   

 Finding the Eigen vectors and Eigen values from the correlation matrix.  

 Finding the principal components (PC) 

 Representing each frame as a linear combination of basis vectors.   

 

 To improve the descriptiveness, the PCs are reduced to 256 dimensions. Each video 

sequence has motion information, and thus, it is transformed into a single feature vector. The 

temporal dimensional issue is also handled here by generating a vector of fixed dimensions. 

After this process, two memorability scores are computed for each video sequence. 

3.6 Late fusion  

 The final memorability score is calculated. The best combination of all features and 

their respective memorability score is optimized for the vth video is given as: 

arg 𝑚𝑖𝑛𝑞𝑛(𝑞𝑛 𝑦𝑛 − 𝑙𝑎𝑏𝑒𝑙𝑣) 

Where,  

𝑦𝑛  Memorability score given by nth stream of a video;  

𝑙𝑎𝑏𝑒𝑙𝑣   Memorability label of the vth video;  

𝑞𝑛  Weight assigned to 𝑦𝑛 

 

 



 

Fig. 3. Proposed episodic memorability framework- 3 deep features 

 

4. Experimental settings:  

 The MediaEval 2018 dataset is analyzed to certify the efficacy of the proposed 

framework. It contains 6000 labelled videos with the text description and varied types of 

scene. The videos are labelled with the two memorability scores ranging from 0-1 

representing the short-term and long-term memorability. The movie videos are divided into 

two sets, namely, 5000 training set and 1000 testing set. Since the video memorability 

prediction is viewed as a regression problem; the performance of the proposed framework is 

measure using spearman’s rank correlation,𝜌 ∈ [−1, 1]. The proposed framework is trained 

separately for short-term and long-term memorability score estimation. Then, both the scores 

are fused together according to the generation of episodic memory.  The proposed framework 

is implemented in MATLAB 2019A.  

 

4.1 Evaluation metrics:  

 The proposed framework is compared with the state-of-the-methods to show the 

efficiency of the proposed framework in terms of estimating the spearman rank coefficient, 

recall and F-measure for both the short-term and long-term memorability.   

 

a) Spearman’s rank coefficient:  

 Spearman’s rank coefficient is to discover and test the linear relationship between 

ground truth and the predicted truth sets of data. It is expressed as:  

𝑟 = 1 −
6 ∑ 𝑑2

𝑛3 − 𝑛
 



Where,  

d  difference between ground truth and the predicted truth data.  

n  number of data samples.  

 

b) Recall:   

 

 Recall defines the ability of the predictor system. It is a statistical measure that aligns 

with the ground truth values and the predicted values to the test video.  It is expressed as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ (𝑎𝑗−�̅�𝑇

𝑗=1 )(𝑔𝑗−�̅�)

√∑ (𝑎𝑗−�̅�𝑇
𝑗=1 )2   √∑ (𝑔𝑗−�̅�𝑇

𝑗=1 )2
       

Where, 

T  the aggregate count of test frames;  

𝑔𝑗  the ground truth value of jth frame; 

�̅�   the mean ground truth value; 

𝑎𝑗 the predicted value of the jth frame; 

�̅�   the average predicted value 

 

c) Mean Average Precision (mAP):  

 

 Mean Average Precision (mAP) is estimated from the detection of objects using FR-

CNN. It is estimated from the ratio of proposal regions between predicted bounding box and 

ground truth bounding box. It is expressed as follows:  

 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑘

𝑁

𝑘=1

 

Where,  

N  Number of proposal regions  

d) F-Measure:  

 It is computed by harmonic mean analysis between the achieved mean average 

precision (mAP) and recall values. It is expressed as,  

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑚𝐴𝑃 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑚𝐴𝑃 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

4.2 Results and Discussion: 

  Here, 5000 labelled videos are taken to build the training predictor system.   The 

training predictor module is done separately for short-term memorability and long-term 

memorability.   

   



 

 

 

 

 

 
 

 

 

Fig. 4. Sample frames for short-term collected from 127-hours movie. 

 

 

 

 

 

 

 

 

 

Fig. 5. Sample frames for long-term collected from 127-hours movie. 

 

 To begin the experiments, the captions are analyzed using the fuzzy based FastText 

model. IMDB dataset is used for labelling purpose.  

Table 1: Sample captions and their word embeddings 

Sequence Name  No. of 

captions  

1 2 3 4 5 

127_hours_2000_20

10_1 

10 0.4 0.52 0.7 0.4 0.2 

127_hours_2182_21

92_5 

10 0.75 0.46 0.43 0.7 0.8 

127_hours_271_281

_1 

10 0.94 0.67 0.45 0.43 0.75 

127_hours_285_295

_2 

10 0.5 0.56 0.45 0.78 0.2 

2001_A_Space_Ody

ssey_1110_1120_4 

10 0.23 0.32 0.47 0.68 0.2 

2001_A_Space_Ody

ssey_1205_1215_5 

10 0.46 0.81 0.49 0.67 0.93 

 

Table 2: Fuzzy rule formation 

Rule  Word 

embeddings 

matrix  

Label  Weight of the 

word embedding 

matrix  

R1 Low Negative Low 

R2 High Negative Medium  

R3 Low  Positive Medium  

R4 High Positive High 



 

   Table 3: Performance of the Fuzzy based FastText model:  

Sequence Name Precision  Recall F-

measure  

No. of 

rules  

127_hours_2000_2010_

1 

89.42% 64.23% 75.34% 12 

127_hours_2182_2192_

5 

79.18% 76.92% 74.89% 56 

127_hours_271_281_1 59.23% 71.95% 68.23% 34 

127_hours_285_295_2 67.02% 43.23% 81.40% 87 

2001_A_Space_Odysse

y_1110_1120_4 

84.32% 80% 66.34% 15 

2001_A_Space_Odysse

y_1205_1215_5 

73.91% 89.19% 58.18% 34 

 

 

 The table 3 presents the performance analysis of the fuzzy based FastText model. The 

word embedding matrix is used as input to leverage the weight of the word embeddings. The 

fuzzy values are small and the numbers of captions are different for each video sequence.  

 Pertaining to this, the visual features are extracted using colour histogram values. The 

colour look-up table is referred to extract the histogram values of the captured frames in 

short-term and long-term. The main use of color histogram values is to find out the dominant 

and non-dominant regions for better visual perceptions.  Finally, novel FR-CNN is employed 

to extract motion features by forming transformative regional proposal networks. It is quite 

common issue that, a frame can have multiple objects which is effectively resolved in this 

study. The impacts of the number of groups on multiple regions are considered.  The 

proposed framework increases the detection performance by adjusting the intersected group 

of regions. The size of the object is limited in this study.  

 

  Table 4: Proposal network training – Parameter settings 

Network parameters Values 

settings 

Initial learning rate 0.01 

Gamma 0.1 

Momentum 0.9 

Weight decay 0.005 

Max. number of 

iterations 

60,000 

Learning rate for first 

10,000 iterations 

0.01 

Learning rate for next 

50,000 iterations 

0.001 

Number of intersected 

regions 

1 to 5 

 

         The detection performance of novel FR-CNN is evaluated using mean Average Precision 

(mAP). The modified loss function minimizes the computational complexity of proposal 

joining network during training process. It is fine-tuned according to the network parameters. 

The mAP value increases significantly when the number of intersected regions increases from 



1 to 3. Therefore, the detection efficiency is achieved by considering the number of intersected 

regions to be 3.  

 
Table 5. Number of intersected regions with respect to the text feature extraction module.   

Number of intersected regions  Time (sec) mAP (%) 

1 2 3 4 5 

      1.24 72.34% 

       1.56 77.01% 

        1.67 79.23% 

         1.89 74.34% 

          1.64 77.09% 

 

 

Table 6: Performance of Recall and F-Measure for episodic video sequences.  

Metrics  Short-term 

memorability 

Long-term 

memorability  

Recall  90.4762 90.4762 

F-measure  90.6706 94.0325 

 

 

Table 7: Spearman’s rank correlation – Comparative values for different methods 

Existing Method  Short-term 

memorability  

Long-term 

memorability  

DCU-Ensembles 0.553 0.272 

EFDF 0.518 0.261 

TVM 0.522 0.277 

LM-VSF 0.508 0.278 

DFAN 0.496 0.249 

ARN 0.494 0.265 

VT-CRF 0.472 0.216 

HF 0.470 0.266 

Late fusion 0.5577 0.3443 

Proposed  0.6428 0.4285 

 

            After the training process is completed, the testing set of 1000 videos is validated 

using the spearman’s rank coefficient, recall and F-measure metrics. The table 6 & 7 presents 

the samples spearman’s rank coefficient value for short-term and long –term memorability. It 

is clearly understood from the results that the proposed yields better memorability score than 

the existing methods. Each scene in episodic video sequence creates the impact on human 

cognitive ability. The main features like annotations, dominant colors and the relevant scenes 

objects creates a long-lasting impact on the human minds according to the time frame. The 

best combination of feature set is achieved by the PCA method. The sequence of the frames is 

splitted into shots using the proposed framework to detect the cuts between two consecutive 

frames. The ‘high-level’ properties describing the relevant text, visual and scene data are 

considered in the episodic memory experiment to compute the short-term and long-term 

memorability score. The success of the proposed framework is quite remarkable, considering 



that, the proposed technique uses an only a single frame with the rich set of information that 

formulates the entire narrative of the movie. 

  

5. Conclusion  

     

 This paper develops a new video memorability prediction model from multi-modal 

features using deep learning techniques. The fittest combinational features sets are fused to 

estimate the memorability score. Therefore, the feature extraction and reduction process are 

given more importance in this proposed study. Initially, the text features are extracted using a 

fuzzy-based FastText model that portrays the annotations of a frame with the classified texts. 

The dominant colours of a frame are performed using the colour histogram method. The 

novel Faster R-CNN improves the region proposal network with an enhanced anchor 

generation module that minimizes information loss. The 'high-level' properties are collected 

using Principal Component Analysis (PCA) to form episodic shots. These are fused to 

estimate the memorability score. The proposed framework is implemented in Mediaeval 2018 

datasets. The achieved results convey the importance of the best combinational features 

selection strategy, which is not exploited by existing methods.    
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