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EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 29, 2018



Fixed-point design methodology of the hyperbolic tangent function using 
lookup tables with performance evaluation on FPGA 
 

Santiago Tomás Pérez Suárez 
Signals and Communications Department 

University of Las Palmas de Gran Canaria (ULPGC) 
Las Palmas de Gran Canaria, Spain 

santiago.perez@ulpgc.es 
 
Abstract 
 
The sigmoid functions, including the hyperbolic tangent, are widely used in artificial neural 
networks. Usually, artificial neural networks are implemented on a computer, in training and testing 
phases, using floating point arithmetic. In some situations it is necessary to improve the 
performance of neural networks, in such cases the implementations are designed for specific digital 
devices, using fixed point arithmetic. This strategy increases the speed, and reduces the hardware 
resources and consumed power. The sigmoid functions are non-linear systems because include 
exponentials and divisions operations, so they are the bottleneck of the artificial neuron design and 
cannot be implemented directly in fixed-point format. For this reason, several methods of 
approximation are used, mainly based on piecewise approximations. One of the most common 
technique is to use Look-up Tables, which store samples of the function. This method needs a lot of 
hardware resources, but it reaches the highest speed. The first objective, using lookup table 
approximations, is to explore the set of solutions and study the effect of the number of bits. This 
can only be achieved if an advanced design methodology is used for experimentation, a second 
objective is to expose this fast and flexible design method. Thirdly, the measure of functionality 
associated with the error is reviewed. A new functionality measure is proposed associated with the 
concept of signal to noise power relation. The new measure allows compare different 
approximations; besides, some linearities are observed against the number of bits. Afterwards, the 
implementations are developed on some Field Programmable Gate Arrays and the performances 
are evaluated: hardware resources, speed and consumed power. Again, some linear behaviours are 
observed. Finally, a quality factor is proposed, which includes functionality and physical 
performances, this factor allows comparison between different implementations. 
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1. Introduction 
 
The sigmoid [1-20], particularly the hyperbolic tangent [10, 21-26], are widely used as transfer 
functions in Artificial Neural Networks (ANN) [27-31]. Although, sometimes it is possible to use fully 
or piecewise linear functions [32], which facilitates hardware implementation. The artificial neural 
networks are usually implemented on a computer or microprocessor system in floating point 
arithmetic, for the training and testing phases. This type of physical supports is enough when the 
requirements of speed, power and volume are reached. But sometimes these systems are not fast 
enough, in such cases the ANN implementation must be developed with others technologies for 
reach real-time operation. It is also necessary to change the ANN support if the level of power 
consumed or the necessary volume are exceeded. 
 



It is possible to use analog [10, 26, 33-37] or digital devices [38, 39]. Analog devices present 
behaviour deviations against variations in temperature, power supply and load impedance; besides, 
they present drifts with the aging. Digital devices do not present such abrupt changes with those 
parameters [40]. 
 
Floating point arithmetic can be used on digital devices, but these operations need a high number 
of clock cycles [41], great consumption of power and hardware resources [42-45]. However, floating 
point numerical representation has a wide range with a good resolution [46, 47]. It is possible to use 
fixed point versus floating point arithmetic, justified by its better performances. Fixed point 
increases the operating speed, the latency can be reduced to one clock cycle. The hardware 
resources and consumed power in fixed point are smaller than floating point. The drawback in fixed 
point is that the designer must care the range of the signals with the necessary resolution. This can 
be solved by signal studies with appropriate mathematical resources and strategies [48, 49]. It 
should be emphasized that in fixed point the data format is totally arbitrary, which improves the 
performances. On the other hand, the use of floating point requires the election of a standard [50], 
increasing the number of bits and decreasing physical performances. Using a non-standardized 
floating point representation complicates the design process. 
 
For these reasons, this study is based on fixed point, allowing to the sigmoid functions be included 
in ANN for high performance operation. One possibility is to use an Application Specific Integrated 
Circuit (ASIC) [19, 51, 52]. The ASIC designs must be sent to a factory for manufacturing the device; 
have little occupied area, low power consumption and high speed. As inconveniences they present 
high price, difficult debugging and verification, great time to market, not allow reprogramming and 
great cost of non-recurring engineering. 
 
On the other hand, can be used Digital Signal Processors (DSP) [39], which are cheaper than ASIC 
devices. The DSPs achieve higher clock rates than ASICs. Nevertheless, in DSPs the data rate is 
limited because the parallelism of the data and its format are restricted; and the pipeline is fixed. A 
Graphics Processing Unit (GPU), is a coprocessor specialized in image processing, can also be used  
[53, 54]. The GPUs have higher data rate than DSPs, they have multitude of arithmetic and logic 
units. 
 
Finally, Field Programmable Gate Arrays (FPGA) can be used [55-57], which are formed by logic 
circuit blocks, connection lines, switch arrays, and input-output pins. Logic circuit blocks concentrate 
the computing capacity of the FPGA, and have different names according to the manufacturer. In 
fact, the internal architecture of the logical blocks depends on the manufacturer and the FPGA 
family devices. The great advantage of FPGAs versus ASICs is that they are programmable by the 
designer, without having to be sent to a factory. Others FPGAs advantages are that they have low 
cost of non-recurring engineering, minimum development time, ease debug and verification, 
shorter time to market, high data parallelism, flexible data format, and flexible pipelined [30, 58, 
59]. Although, clock frequencies in FPGAs are not as high as in DSPs, with the above features FPGAs 
have greater data rate than DSPs. For few units, the price of FPGAs is lower than ASIC elements but 
higher than DSPs. Power consumption in FPGAs is higher than ASICs but lower than DSPs. For the 
previous reasons, FPGAs are suitable for prototype development whit high data rate. Anyway, the 
designs for FPGAs can be transferred to ASIC. For the reasons stated in this paragraph the modelling 
is presented for FPGA devices. 
 
Besides, many companies offer printed circuit boards with FPGAs and auxiliary devices. These 
boards contain: analog to digital and digital to analog converters, memories, audio and video 



devices, communication ports, etc. These boards avoid the tedious task of its design and 
manufacture; and most importantly, allow the creation of complete systems. 
 
 
2. Sigmoid functions 
 
Transfer functions used in ANNs are usually continuous and derivable, the derivability is a desirable 
requirement for ANN training algorithms. Normally, two sigmoid functions are used, which satisfy 
the conditions of continuity and derivability. 
 
One of them is unipolar, simply called sigmoid, or logsig in Matlab notation. Its mathematical 
expression is given by equation 1, and its representation is in figure 1. The output of this function is 
restricted to the interval (0,+1). 
(ݔ)ݕ  = (ݔ)݃݅ݏ݈݃ = ଵଵାషೣ    (1) 
 
The second function is bipolar and coincides with the hyperbolic tangent, called tansig in Matlab 
notation. Its mathematical expression is given by equation 2, other expressions with fewer 
exponents are possible; its representation is in figure 1. The output of this function is restricted to 
the interval (-1, +1). 
(ݔ)ݕ  = (ݔ)݃݅ݏ݊ܽݐ = శೣିషೣశೣାషೣ    (2) 

 

 
Figure 1. The unipolar and bipolar sigmoid functions. 

 
These functions can have weighting factors in exponents, which changes the growth rate; although, 
these are the expressions that Matlab uses in ANNs, in training and testing, when they are selected. 
It can be easily demonstrated that equations 3 and 4 are satisfied, which shows that they are 
analogous functions. The approximation of one function can be obtained from the other 
approximated function. Moreover, in fixed-point arithmetic multiplying or dividing by two consists 
on shifting the bits in the most or least significant bit direction; besides, only the addition or 
subtraction operation is necessary. 
 
(ݔ)݃݅ݏ݊ܽݐ  = (ݔ2)݃݅ݏ݃2݈ − 1    (3) 

 



(ݔ)݃݅ݏ݈݃ = ଵଶ ቂ݃݅ݏ݊ܽݐ ቀ௫ଶቁ + 1ቃ    (4) 
 
 
3. State of the art of hardware implementation for sigmoidal functions 
 
It should be emphasized that both functions are non-linear, because they include division and 
exponential operations, so they are the bottleneck of the artificial neuron design. The rest of the 
artificial neuron is formed by multiplications and sums. That is, the implementation of sigmoid 
functions is not immediate in fixed-point arithmetic and is usually approximated with some method. 
 
One approach is using Look-up Tables (LUTs), which store samples of the function; this method 
needs a lot of hardware resources but gets a high speed [11, 20, 60-66]. The LUTs can be 
implemented with memory elements, or using logical resources. The two solutions can have 
different benefits. In the first case, the design optimization depends on the type of memories 
available in the device; in the second case, it is possible to develop logical simplifications. Other 
approximation form is the Piece Wise Lineal (PWL), which approaches each section with a straight 
line, in this case a multiplication and a sum are necessary [18, 19, 21, 38, 44, 45, 63, 66, 68, 69, 70]. 
 
It is also possible to approximate each section with polynomials, usually of grade two [70] or cubic 
[71], which increases the number of multipliers. Other authors use piecewise Taylor approximations 
[72, 73]. In all previous cases, it is possible to reduce the error by increasing the number of sections. 
Other approaches propose specific shape functions that consider the characteristics of the sigmoid 
functions; firstly where its derivative tends to a constant, and secondly its symmetry characteristics 
[4, 11, 21, 26]. Other authors use functions that look like sigmoid functions [9, 13, 74, 75], in such 
cases the error is bounded. 
 
The comparison of these solutions is based on the functionality, which is measured with the error. 
There are several types of errors, and sometimes implementations are compared with different 
error values and error types [2, 47, 76, 77]. Once the functionality is fixed, there are three 
parameters to compare [78], which are the physical performances: the hardware resources, the 
consumed power and the speed of the system. 
 
It should be noted that the effect of the number of bits in the representation is chosen discreetly or 
arbitrarily by authors [11, 19, 20, 60, 61, 66, 67, 69, 70, 71, 75, 79, 80, 81], usually based on the 
experience or previous works. At most, a scan is performed for a discrete set of bit numbers, without 
performing a systematic study of the effect of the number of bits on the functionality. A small 
number of bits can cause degradation of system functionality. An excessive number of bits may not 
improve functionality, but increase area and consumed power, and decrease speed. 
 
Usually, authors extract area and speed, but almost never the consumed power [11, 19, 20, 45, 60-
64, 66, 67, 70, 71, 75, 79, 80-83]; with the exception of [69]. Power is the most complicated feature 
to evaluate, it must be estimated with specific tools and a set of parameters must be fixed by the 
designer. Consumed power becomes important with the use of portable personal devices and the 
autonomy of the batteries [84, 85]. Many authors study the speed as the latency of the system, 
number of clock cycles required, but without estimating the maximum frequency [70, 71]. 
 
 
 
 



4. Objectives 
 
The objective of this research is to fix a methodology for sigmoidal functions designed on digital 
programmable devices, in particular, the hyperbolic tangent. The approximation type will be based 
on LUTs implemented with logical elements. 
 
There are many design methods [86], this development focuses on Simulink [87] of Matlab [88] 
using fixed-point arithmetic. This design flow is fast and flexible, allowing to check different 
architectures and the effect of the binary format in different points of the system; this makes 
possible to scan the number of bits in a systematic and extensive form. 
 
A suitable parameter will be chosen to measure the functionality, which obviously will be associated 
with the representation error. This allows identifying different systems with similar functionality. 
 
Once the systems have been chosen, which reach the functionality with the smaller sizes of fixed-
point representation, from Simulink can be generated the project in a standard Hardware 
Description Language (HDL). One of them is Very High Speed Integrated Circuit Hardware 
Description Language (VHDL) [89, 90], and the other is Verilog [91, 92]. The generated project is 
formed by the digital implementation and files with input and output signals, to perform the 
necessary simulations. Besides, the physical performances of area, speed and power will be 
extracted for the chosen device. The speed will take into account the latency of the system, and also 
the maximum frequency. 
 
It is also possible to design in Simulink for the two main FPGA providers, which are Altera [93] and 
Xilinx [94]; with their own tools, which are respectively DSP Builder [95] and System Generator [96]. 
In the design tools of these manufacturers it is possible to extract the performances for the chosen 
device [97, 98]. 
 
To show this design method the manufacturer Altera has been chosen, and the project has been 
generated in Verilog language. In this work it is assumed that ANN training is performed outside the 
device, this is called offline type [99], so it is not considered the approximation of the first derivative 
of the function. For example, for offline training can be used the Neural Network Toolbox [100] from 
Matlab.  
 
 
5. The measure of functionality 
 
Therefore, there are four parameters that can be evaluated in digital implementations: the 
functionality, the area, the power and the system speed. The intention is to analyse approximations 
with equal or similar functionality; afterwards, the three remaining parameters are contrasted. The 
first question is how to measure functionality, clearly associated with the error, but with different 
versions. 
 
Let the function y=f(x) be the one to be approximated, and let ya=fa(x) be the expression of the 
approximation; the error is defined as E(x)=ya-y=fa(x)-f(x), which generally has null mean value. The 
absolute error is defined as Eabs(x)=|E(x)|. 
 
 



For comparing designs, the maximum value of the absolute error |E(x)|max can be used, as in [19, 
62, 63, 69, 70, 71, 79]. Although, this is an important measure, a good approximation can have a 
high value error only in a small interval; anyway, it is important to take it in account. 
 
Other measure is the mean value of the absolute error [19, 62, 63, 69, 70, 75, 79]; which measures 
an approximation on an interval, but high error values can be masked. Therefore, both measures 
can be combined, as in [16]. Occasionally, the square root of the mean value of the square error has 
been used [63, 75]. 
  
Previous measures are valid for comparing approximations of the same function; obviously, they 
are not valid for comparing approximations of different functions. 
 
The relative error, defined as Erel(x)=(ya-y)/y=(fa(x)-f(x))/f(x) can also be used, no reference of it has 
been found. The relative error can be used for comparing same type functions, or different type, for 
the same input range. The relative error grows enormously when the value to be approximated 
tends to zero; moreover, it is not defined if the function value is zero and the approximation value 
is not zero. The absolute peak value, or average absolute value, of relative error can be considered, 
with the same previous observations. The relative error allows compare different function types, as 
it is shown in figure 1, because the numerator introduces the error and the denominator introduces 
the value of the function; besides, it can be expressed in per centum values. 
 
To avoid uncertainty when the signal is zero, the error can be measured against the peak-to-peak 
function value (equation 5); as in [101-104], where it was used in per centum values. This value 
could be used to compare approximations of different functions. 
(ݔ)ܧ  = ா(௫)௬ೌೣି௬    (5) 

 
Different authors use different error types, which makes comparison difficult. A relative measure is 
proposed, which is the quotient between function and error, which can also be called signal and 
noise, respectively. The sampled signals, input x and output y, before quantizing and coding, are 
discrete time analog values; and also the generated noise signal. The signal to noise relation power, 
called Signal to Noise Ratio (SNR) [105], is defined in expression 6. 
 ܴܵܰ = ∑ ௬[]మೖసబ∑ ா[]మೖసబ     (6) 

 
The numerator is the energy of (k+1) samples of the signal to be approximated, the denominator is 
the energy of (k+1) samples of the corresponding error. Therefore, the equation 6 is the ratio of the 
energies of signal and error. The signals can be voltages or currents, and the load resistance can be 
1 ohm; or R ohms, which disappears in the quotient. The samples are produced every Δt seconds, 
and the full interval is T=(k+1)Δt seconds. The equation 6 coincides with the relation between the 
signal power and the noise power. This concept is common in analog and digital communications 
[106]. It should be emphasized that it is a relative measure between the function to be 
approximated and the generated noise. Often, this relation is expressed in decibels (equation 7) 
[105]; which differentiates small and close values, and makes possible to operate with smaller 
numbers for great values of SNR. 
(ܤ݀)ܴܰܵ  = 10݈ ଵ݃(ܴܵܰ)    (7) 
 



6. The model and its parameters 
 
The Simulink block diagram for the approximation is shown in figure 2, where the arithmetic used 
is two’s complement. The 1-D Lookup Table block is the element that stores the samples for the 
approximation. In figure 2 the LUT stores 16 words, so its address bus has 4 bits; Simulink type is 
denoted as ufix4, 4 bits unsigned fixed-point. The words in the LUT have 1 sign bit, 1 bit for the 
integer part and 7 fractional bits, (sfix9_En7, 9 bits signed fixed-point 7 bits fractional); so in the 
output the values ±1 are representable, and the function is saturable. Besides, the 1-D Lookup Table 
block does not allow using a sign bit without any bit for the integer part. The input format has 1 sign 
bit, 2 bits for the integer part and 6 fractional bits, (sfix9_En6, 9 bits signed fixed-point 6 bits 
fractional). Thus, the input values represented tend to [-4, +4] when the number of fractional bits 
grows. In fact, the represented input range is [-4, +4-2-6]. The multiplier and adder in figure 2, 
together with constants G and C, perform a conversion of the input x to the LUT address bus. In this 
case, the conversion is from [-3.75, +3.75] to [0, +15]. The constants G and C can be represented 
without error under certain conditions, this will be explained below. 
 

 
Figure 2. The Simulink approximation model for 16 words LUT. 

 
Figure 3 shows the hyperbolic tangent function for [-4, +4] input range; also, the approximation and 
the error are shown. It should be noted that the LUT samples are evenly spaced in the input range. 
The SNR measured is 23.36 dB, according to expression 7. 

 

 
Figure 3. The hyperbolic tangent function, 16 words LUT output and error. 

 
Once the model has been established, a set of parameters can be discussed: the format of the input 
signal, the number of words stored in the LUT, and the format of the words stored in the LUT. The 
number of words stored in the LUT is a power of 2; so this takes advantage of the address bus. Then, 
M words will be addressed by n address bits, such that M=2n. The output format has 1 bit sign and 
1 bit for integer part, as was explained previously. But the number of bits of the fractional part (nbfo) 
can be varied. 



In the input the size of fractional bits (nbfi) can be varied, which affects the resolution. The question 
is how many bits to use for the input integer part (nbii). When the number of bits of the input 
fractional part is large the input range tends to [-2nbii, +2nbii); in fact, the range will be [-2nbii, +2nbii-
2nbfi]. Then, with nbii equal to 1 the representation range is [-2, +2-2nbfi], with nbii equal to 2 the 
range is [-4, +4-2nbfi], with nbii equal to 3 the range is [-8, +8-2nbfi], etc. It is proposed to represent 
the function in an interval centred in the origin, and saturate the output to ±1 values outside that 
interval, since the function has two horizontal asymptotes. For this purpose, the SNR is measured 
when a sawtooth signal is introduced in the range [-16, +16]. Figure 4 shows the saturation error 
outside the range [-4, + 4], which is the input range with 2 bits for the integer part when the number 
of fractional bits grows indefinitely. That is, the saturation approximation is given by expression 8. 
The SNR obtained is 81.25 dB, which is a high value; the signal power is noise power multiplied by 
1.33·10+08. This is the maximum SNR for the input range [-16, +16] when the hyperbolic tangent is 
approximated in the interval [-4, +4]. 

 

 
Figure 4. The saturation error outside the range [-4, + 4]. 

(ݔ)ݏݕ  = ൝ −1 ݔ ൏ (ݔ)݃݅ݏ݊ܽݐ4− −4  ݔ  +4+1 +4 ൏ ݔ     (8) 

 
With the saturation out of the range [-2, +2], with 1 integer bit, the SNR for input range [-16, +16] is 
46.61 dB; a high value but easily surmountable. The saturation out of the range [-8, +8], for 3 integer 
bits, the SNR for input range [-16, +16] is 150.73 dB, extremely high and unnecessary value. Besides, 
using 3 bits for the input integer part increases the bit size and the range to be approximated, 
disperses the samples, and input values reached are too much high for most scenarios. Therefore, 
the number of integer bits in the input is set to 2, the approximation will be performed within the 
range [-4, +4], and the circuit will saturate outside that range (equation 9). For measure the SNR of 
the approximation, the input signal will be a sawtooth signal in the range [-4, +4]. This coincides 
with the assumption that all values in the input for that range are equally likely. 
(ݔ)ܽݏݕ  = ൝ −1 ݔ ൏ (ݔ)ܽݕ4− −4  ݔ  +4+1 +4 ൏ ݔ     (9) 

 
 
Finally, the parameters to be varied will be: the number of fractional bits of the input signal (nbfi), 
the number of bits of the LUT address bus (n), and the number of fractional bits for stored words in 
the LUT (nbfo). 
 



It is convenient to revise the final format of the input signal: 1 sign bit, 2 bits for the integer part and 
nbfi fractional bits. According to Simulink notation this is a sfix(1+2+nbfi)_En(nbfi) type. Similarly, 
the output signal has 1 sign bit, 1 integer bit and nbfo fractional bits; according to Simulink notation 
this is a sfix(1+1+nbfo)_En(nbfo). 
 
The conversion of the input signal to the LUT address is the expression 10; obviously, A (address) is 
an integer between 0 and (2n-1). 
ܣ  = ݔܩ)	ݎ݁݃݁ݐ݊݁	ݐݏ݁ݎܽ݁݊ +  (10)    (ܥ

 
The constants values G and C are given by expressions 11 and 12; where xmin is -4, xmax is +4 and M 
is 2n, where n is the number bits of LUT address. Since the extremes of x are entire powers of 2, and 
M is other integer power of 2, the constants can be expressed as powers of 2 and have an exact 
representation in fixed-point format. 
ܩ  = ெ௫ೌೣି௫ = 2(ିଷ)    (11) 

ܥ  = ܯ) − 1)/2 = 2(ିଵ) − 2(ିଵ)    (12) 
 
 
6.1 Scan of model parameters 
 
For n equal to 4 (M=16) the number of fractional bits in input and output (nbfi, nbfo) was varied 
between 0 and 24. The SNR was measured in dBs, table 1 shows the results until 16 bits. The 
maximum SNR obtained is 23.36 dB, and the system gets this value with 6 input fractional bits and 
7 output fractional bits. The maximum value of SNR could have been calculated, with signals of 
figure 3, by integration in time continuous domain. It should be emphasized that for 16 words LUT, 
were simulated 625 configurations. The fixed point output signal is stored in Matlab variables space 
in floating point format; afterwards, the SNR is measured in dBs. These simulations and 
measurements are very difficult to realize using a HDL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  nbfo 
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

nbfi 

0 13,75 14,01 15,33 14,62 14,65 14,85 14,91 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 14,93 

1 12,33 14,65 16,28 17,11 17,28 17,38 17,35 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 17,37 

2 13,35 16,04 18,91 20,46 20,79 20,94 20,91 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 20,94 

3 13,64 16,51 19,92 21,98 22,44 22,64 22,61 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 22,65 

4 13,73 16,59 20,23 22,44 22,94 23,15 23,13 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 23,17 

5 13,75 16,62 20,3 22,56 23,07 23,29 23,27 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 23,31 

6 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

7 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

8 13,75 16,63 20,33 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

9 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

10 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

11 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

12 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

13 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

14 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

15 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

16 13,75 16,63 20,32 22,60 23,11 23,33 23,31 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 23,36 

Table 1. The SNR in dBs against input and output fractional bits. 
 
Figure 5 shows the shape of SNR in dBs for 16 words LUT against input and output fractional bits. In 
other words, in order to reach the maximum SNR with the 16 words LUT, at least 6 input fractional 
bits and 7 output fractional bits are required, which is marked in figure 5. Increasing fractional bit 
numbers above these values do not increase the SNR. 
 

  
Figure 5. The shape of SNR in dBs for 16 words LUT. 

 
Figure 6 shows the previous behaviour in two dimensions. For each value of input fractional bits 
(nbfi), the SNR in dB is plotted against the output fractional bits (nbfo). A saturation zone is 
observed, for a number of output fractional bits (nbfo) greater than 7; the SNR is constant for each 
value of nbfi. For nbfo less than 7 a transition zone is observed; which is linear for small values of 
nbfo; for large values of nbfi the slope is 3 dB per bit. For nbfi greater or equal than 6 the SNR values 
are similar. Analogous results are observed if the SNR in dB versus nbfi is represented for each value 
of nbfo. 



 
Figure 6. The two dimensions shape of SNR in dBs for 16 words LUT. 

 
For the implementation the values 6 and 7 are chosen for nbfi and nbfo because the maximum SNR 
is obtained with the minimum number of bits, this system is shown in figure 2. From Simulink the 
Verilog project was generated for the Altera device EP2AGX260FF35I5 of Arria II GX family [107]. 
The project was compiled with Quartus II [108] and simulated with ModelSim-Altera Edition [109] 
and the Simulation Waveform Editor included in Quartus II. The schematic circuit is in figure 7; which 
shows the input and output of the function, the clock, the reset, and input and output enable signals. 
In short, only one FPGA implementation was generated, the most convenient case of the 625 
Simulink simulations. 
 

 
Figure 7. The schematic circuit of 16 words LUT. 

 
The ModelSim simulation is shown in figure 8 for 25 MHz clock frequency. Only the input and output 
signals are shown in this figure; avoiding auxiliaries signals for simplification. The simulation input 
rate is 25·10+6 values per second. The input and output registers, shown in Figure 7, set the latency 
of the system in 2 clock cycles. These registers, which are not shown in figure 2 for simplification, 
are necessary in Simulink for generating the clock signal in the project. The output Y_OUT of figure 
8 is equal to the output signal in Simulink. This can be ensured because when the project is 
generated from Simulink, the input and output test signals (testbench) are also generated. The fixed 
point input signal is used in circuit simulation with ModelSim. On the other hand, the output signal 
of this simulator is compared with the Simulink fixed-point output signal, at the end the message 
"test completed passed" indicates that output signals have the same values. In this case, 100 points 
were generated for each interval on the x-axis, a total of 1600 discrete time values. The Verilog 
description circuit occupies 203 lines and the testbench 3540 lines, including blank and comments 
lines, this is difficult to generate using manual implementation. 



 
Figure 8. The circuit simulation with ModelSim of 16 words LUT. 

 
In Quartus II hardware resources were estimated, for the previous device the area was evaluated as 
the number of Combinational Adaptive Lookup Tables (ALUTs); for this implementation were 
needed 8 ALUTs. With the TimeQuest Timing Analyzer of Quartus II it was found that the maximum 
operating frequency of the system was 909.09 MHz; for the worst case, which among other things, 
takes into account the temperature at which the device operates. Finally, with the PowerPlay Power 
Analyzer of the Quartus II, for a clock frequency of 25 MHz, a dynamic power of 0.80 mW and static 
power of 858.86 mW was obtained, that gives a total of 859.66 mW. Initially, only the dynamic 
power is interesting, which depends on the frequency; and not so much the static power, which 
depends on the continuous power supply. But the static power also increases with temperature; an 
increase of dynamic power, produces an increase of temperature, so this causes an increase of the 
static power. For this reason, the sum of the two powers was evaluated. 
 
The power estimation was done with a fixed clock frequency, in order to compare the consumed 
power of different designs for the same data rate. This clock frequency must be less than the 
smallest of maximum frequencies of the compared designs. On the other hand, all power 
estimations were made for an ambient temperature of 25°C, without heatsink and no forced air 
flow. The power estimation was performed after loading the Value Change Dump File, which sets 
the form of change of the input signals. This is an input file for the power analyzer, which stores the 
change rates and static probabilities of signals. The Value Change Dump File was generated with the 
Simulation Waveform Editor, where the clock frequency was set to 25 MHz and the binary input 
signals were randomly varied. 
 
 
7. Design flow 
 
Figure 9 shows the design flow process. The fixed point Simulink model is shown in Figure 2, where 
the input and output registers are not shown. Between the floating point input signal and the fixed 
point model, a data type converter block exists and is not shown for simplification in figure 2. 
Similarly, a data type converter block exists at the output of the Simulink model. These converter 
blocks are not implemented in hardware, the input and output of the approximate function are in 
fixed point format. The Simulink model can be loaded, from Matlab, with the number of LUT address 
bits (n), the number of input fractional bits (nbfi) and the number of output fractional bits (nbfo). 
 



 
Figure 9. The design flow process from floating point to FPGA implementation. 

 
The SNR is calculated with the exact floating point value of the hyperbolic tangent and the floating 
point values of the fixed point output signal. For the model with the desired functionality, and using 
HDL Workflow Advisor [110], it is generated the HDL project and the testbench. Not all Simulink 
blocks are supported by the HDL Workflow Advisor. In particular, only blocks of the HDL Coder 
library are implementable. But not all configurations of these blocks permit implementation, 
although they are simulable. Generating these files manually can be an impossible task, but this 
automatic generation can be performed in minutes. It should be noted that in HDL Workflow Advisor 
a synthesis tool is chosen, which has been installed previously in the computer; in this case Quartus 
II of Altera. Besides, the type of FPGA is chosen, and for the testbench allows set the clock, reset 
and enable signals. Once the HDL Workflow Advisor has completed the files generation, it is possible 
to implement the FPGA and obtain the hardware resources, the maximum frequency and the 
consumed power. With the Simulation Waveform Editor can be performed functional and timing 
simulations; also, testbench simulations can be performed with ModelSim. These last simulations 
take the input signal that was used in Simulink. On the other hand, ModelSim simulation compares 
its output with the Simulink output signal, which verifies the circuit operation. The implementation 
and simulations must not be dissociated, some simulations are necessary to set parameters for the 
power estimator. It would be possible to use Xilinx implementation software [98] since Matlab 
integrates Altera and Xilinx tools. It should be noted that in Quartus II it is possible to change the 
FPGA device, which avoids a new generation with HDL Workflow Advisor. Different designs are 
characterized by performances, underlined in figure 9: the functionality, measured as the SNR in dB; 
the area, hardware resources occupied in the FPGA; the speed, measured as the maximum 
frequency operation; and the consumed power for a certain operating frequency. 
 
 
 
 



8. Experiments and results 
 
In the previous section has been set: the model, the parameters, the design methodology and the 
measurement of performances. This section presents the results when the design parameters are 
varied. For this purpose the number of bits in LUT address bus (n) was varied until 16, the LUT 
reaches 64 kilowords. For each n value, the number of input and output fractional bits, nbfi and nbfo 
respectively, were varied from 0 to 24. A similar study to the previous section was done, the results 
of SNR were stored in matrices of 25 by 25 elements, similar behaviours were obtained to figure 5. 
For each n value, only the case of maximum SNR with the minimum numbers of bits was 
implemented, and its performances were evaluated. Figure 10.a shows the 16 responses obtained. 
Obviously, if the number of words in the LUT increases, the maximum SNR grows, but it is necessary 
to increase the number of input and output fractional bits; this tendency is observed in figure 10.b. 
In Simulink the number of simulations for generating figure 10.a was 10,000 (16x25x25), which were 
performed by running a loop for each n value. 
 

   
Figure 10. The SNR in dBs versus input and output fractional bits (a) and maximum SNR in dBs (b), 

 for each number of bits in LUT address bus. 
 
If it is desired to reach a SNR value, which coincides with a horizontal zone of figure 10.a for a n 
value, this n value and the smallest values of nbfi and nbfo would be taken. If it does not coincide 
and the horizontal plane of constant SNR intersects the curves, must be taken the minor n, and the 
lowest values of nbfi and nbfo; this involves minimizing the area. Anyway, this type of search can be 
done in the three-dimensional matrix where the SNR values are stored. 
 
 
8.1 Measurements and results with no device dependency 
 
Figure 11 shows the maximum SNR for each n value. The SNR is almost linear versus n, and increases 
6 dB per bit. The SNR in equation 6 is multiplied by 4 when the number of words is doubled in the 
LUT. 
 

(a) (b) 



 
Figure 11. Maximum SNR in dBs for each n value 

 
In figure 12 it is shown the input fractional bits versus the address bus size for the maximum SNR. 
In general, the number of input fractional bits is equal to the number of address bits plus four. This 
tendency indicates that it is necessary to increase one bit in the input when a bit is increased in the 
address bus; that is, the number of words in the LUT is doubled. 
 

  
Figure 12. The input fractional bits against the address bus size for the maximum SNR. 

 
Figure 13 shows the number of output fractional bits versus the size of the address bus, necessary 
to reach the maximum SNR, an almost linear tendency exists. In general, the number of bits required 
in the output is equal to the number of address bits plus four. It is necessary to increase one bit in 
the output when a bit is increased in the address bus; that is, the number of words is doubled in the 
LUT. 
 



  
Figure 13. The Output fractional bits against the address bus size for the maximum SNR. 

 
It should be emphasized that for 16 bits in the address bus the Verilog design size is 65,723 lines, 
and the testbench is 13,107,541 lines, including blank lines and comments; a hand coded design 
using a HDL would have been impossible to generate. 
 
 
8.2 Measurements and results with device dependency 
 
8.2.1 The Altera Arria II GX family 
 
For this family, the device EP2AGX260FF35I5 was chosen [107]. One implementation was developed 
for each size of the LUT address bus; it was for the maximum SNR and minimum numbers of input 
and output fractional bits. The results of area, speed and power performances are shown below. It 
should be noted that the HDL Workflow Advisor does not allow to generate the project for one bit 
in the address bus, two words in the LUT; as this is a trivial case, the study from 2 to 16 bits in this 
bus is presented. The area versus the number of words in the LUT is shown in figure 14, which has 
a nearly linear shape. The area blocks of this device are Combinational ALUTs (Adaptive Lookup-
Tables). It is true that area depends heavily on the number of words; but also depends on the word 
size. If the address bus increases in one bit, then the stored words are duplicated, but the words 
only increase in one bit. For this reason, the area depends heavily on the number of words but 
weakly on the number of bits. On average, 0.2 Combinational ALUTs per word stored in the LUT is 
needed. 
 

 
Figure 14. Hardware resources against the number of words in the LUT (Altera device 

EP2AGX260FF35I5 of Arria II GX family). 



The maximum frequency versus n, for the maximum SNR, is shown in figure 15.a, which is not linear; 
is also not linear versus the number of words, which is not shown. The minimum allowed period for 
each case is represented in figure 15.b, it has almost linear behaviour by zones. In any case, a clear 
tendency is not observed for the speed. 
 

  
Figure 15. Maximum frequency (a) and minimum period (b) against the size of the LUT address bus 

for the maximum SNR (Altera device EP2AGX260FF35I5 of Arria II GX family). 
 
Finally, the power was estimated for the previous cases (figure 16), the clock frequency was 25 MHz, 
smaller than the minimum in figure 15.a. The represented power is the sum of dynamic and the 
static powers, the behaviour is almost linear against the number of words (0.0026 mW/word). 
 

 
Figure 16. Consumed power against the number of words in the LUT for 25 MHz clock frequency 

(Altera device EP2AGX260FF35I5 of Arria II GX family).  
 
Finally, it is possible to define a Quality Factor (expression 13), which includes the physical 
performances and functionality; the SNR obeys expression 6, not in dBs. In expression 13 the 
maximum frequency is expressed in hertz, the area is the number of Combinational ALUTs and the 
power is introduced in watts. The Quality Factor has an almost linear behaviour for n greater than 
10, generally this value increases with M, according to figure 17. This factor can be used to compare 
different designs. For other systems the functionality must be measured with an appropriate 
parameter; for example, for a classifier may be the hit rate. 
ܨܳ  = ೌೣௌேோ∙௪    (13) 

  
  

(a) (b) 



 
Figure 17. Quality Factor versus the number of words in the LUT (Altera device EP2AGX260FF35I5 

of Arria II GX family). 
 
8.2.2 The Altera Cyclone IV GX, MAX 10 and Stratix V  families 
 
The following tables show the results for other devices of different Altera FPGA families: 
- the EP4CGX150DF31I7AD device of the Cyclone IV GX family [111]. 
- the 10M50SFE144I7G device of the MAX 10 family [112]. 
- the device 5SGXMBBR3H43I4 of the family Stratix V [113]. 
 

Cyclone IV GX EP4CGX150DF31I7AD 

Table 2. Performances and Quality Factor for Altera device EP4CGX150DF31I7AD of Cyclone IV GX 
family. 

 



MAX 10 10M50SFE144I7G 

 
Table 3. Performances and Quality Factor for Altera device 10M50SFE144I7G of MAX 10 family. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Stratix V 5SGXMBBR3H43I4 

Table 4. Performances and Quality Factor for Altera device 5SGXMBBR3H43I4 of Stratix V family. 
 
In the four devices the area is strongly linear versus the number of words in the LUT; for the speed 
is not observed a clear rule, vaguely the minimum period allowed in the clock signal is almost linear 
piecewise versus the number of bits of the LUT address bus; finally, the consumed power is strongly 
linear versus the number of words in the LUT. In all cases, the defined Quality Factor grows with the 
number of words; sometimes it is almost linear. 
 
It should be noted that the logical blocks of the previous FPGAs, as indicated in the area figures, are: 
- Combinational ALUTs (Adaptive Lookup-Tables), for Arria II GX family. 
- Logic Elements, similar but not equal, for Cyclone IV GX and MAX 10 families, 
- and Adaptive Logic Modules for the Stratix V family. 
 
For the largest circuit, with 16 bits in the LUT address bus; the area for the devices is shown in Table 
5. The Logic Elements of the Cyclone IV GX and MAX 10 families have similar behaviour for this 
design. Analogous, the Combinational ALUTs of the Arria II GX family and the Adaptive Logic 
Modules of the Stratix V are similar for implementing this design. For the area of this system, a 
Combinational ALUTs is equivalent to 3.5 Logic Elements; and an Adaptive Logic Module is 
equivalent to 3.8 Logic Elements. 

 
 
 
 
 



FAMILY DEVICE ELEMENT Area for 16 bits in 
LUT address bus 

Arria II GX EP2AGX260FF35I5 Combinational Adaptive Lookup-Tables 12828 
Cyclone IV GX EP4CGX150DF31I7AD Logic Elements 45108 
MAX 10  10M50SFE144I7G Logic Elements 45172 
Stratix V 5SGXMBBR3H43I4 Adaptive Logic Modules 12009 

Table 5. Hardware resources for 16 bits in the LUT address bus. 
 
 
9. Conclusions and future lines 
 
One of the objectives of this contribution is to show a fast and flexible design method for digital 
devices, which allows verifying different architectures and data formats for a system. In other words, 
the method allows exploring the space solutions. These advanced design techniques are embedded 
in Matlab for floating point models in files with Matlab extension [114] or for Simulink systems [115] 
and are connected to a digital synthesis tool. This method allows studying the effect of the number 
of bits in a wide range, which many authors only study in a discreet form by the limitation of the 
used method. Optimized systems can be transferred to FPGA or ASIC devices. 
 
Altera and Xilinx have their own environments for designing as a block diagram in Simulink; these 
are DSP Builder [95] and System Generator [96] respectively, but handling fixed point format is more 
difficult. 
 
The SNR has been introduced for measuring the functionality, this allows to compare the quality of 
an approximation of the sigmoid function (expression 1) to an approximation of the hyperbolic 
tangent (expression 2), for the same input range. On the other hand, the functionality estimation 
with the SNR in dBs allows observing linearities in performances. 
 
Another possible study is to take advantage of the odd symmetry for the hyperbolic tangent, storing 
only half of the samples; this will save area, but it would be necessary to measure and compare the 
speed and power. 
 
The developed approach uses intervals evenly spaced on the x-axis, which causes levels not evenly 
spaced on the y-axis. Some authors propose uniform intervals on the y-axis, which causes non-
uniform spacing in the x-axis. These alternative designs are only somewhat more complex; for the 
same number of levels the approximation is improved, the reason is that there are more levels on 
the x-axis when the signal y changes more quickly and has the highest first derivative. But this 
strategy forces to introduce a set of comparators in the input, which increases area. In any case, this 
architecture should be studied, in order to establish its benefits and make comparisons; not only of 
the SNR but also the area, speed and power. 
 
Other approaches are possible, using intervals or not, these can be implemented with the proposed 
method; on the same device for comparing the performances and Quality Factor. The evaluation of 
the area, speed and power are shown; but most authors do not estimate the power, which takes 
importance for the autonomy of batteries in mobile devices nowadays. Although power is the most 
complicated feature to evaluate. The delay of the systems depends on the latency and the clock 
period. In this case, the latency is two clock cycles, but with each cycle there is a valid value in the 
output; therefore, the data rate coincides with the clock frequency. 
 



In the proposed model, when the size of the LUT address bus increases, large area is needed, 
solutions with a high number of words may become not realizable. The study of these solutions was 
performed to evaluate the method and to show the observed linearities. However, in the future, 
the increase of hardware resources in digital devices can allow using these implementations in 
totally parallelized ANNs. 
 
Once the tansig function has been approached it is possible to approximate the logsig function using 
expression 4. According to this expression, the logsig function is approximated in [-8,+8] because 
the tansig function has been approximated in the interval [-4,+ 4]. On the other hand, the logsig 
function can be implemented directly using the same model with the appropriate settings. 
Furthermore, the logsig function approximation can take advantage of symmetry present around 
the point (0,0.5). 
 
Actually, the HDL file and the testbench generated could be carried to other implementation tools, 
since they are implemented in generic code and do not use Altera primitives, but the project must 
be created and managed conveniently. In this way, it would be possible to repeat the experiments 
for Xilinx devices, but it is more convenient to generate the project from the HDL Workflow Advisor. 
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