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Abstract: Offshore oil extraction presents several challenging scenarios from exploration to operation. 

Limitations in physical space impose restrictions on the construction of vessels that have sufficient 

capacitance to absorb the accentuated load variations to which this process is subject. This factor, allied 

to the turbulent nature of the flow into the risers, which causes occasional slugs, brings high complexity 

to treatment and separation vessels level control, upon which the quality of the final products depends. 

The present work takes advantage of recent advances in process identification techniques to develop a 

NARX-type neural network to carry out a Digital Twin implementation of a three-phase separator of an 

offshore unit, located in the Campos basin, Brazil. The Digital Twin allows simulations of different 

control techniques to be tested in a realistic simulation environment, as it uses heuristics and machine 

learning techniques capable of inferring even nonlinear relationships between variables, mirroring the 

physical twin behavior. The main goal is to enable these simulations to be run and achieve enhanced 

process control. The results obtained in the present work show that it is possible to obtain a Digital Twin 

using NARX-type neural networks with Mean Absolute Percentage Error marks below 1% in test 

situations to predict main chamber and oil chamber levels, which can be used to simulate and benchmark 

advanced level control strategies. 
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1. INTRODUCTION 

Currently, the Oil and Gas industry is responsible for 

approximately 13% of Brazil’s Gross Domestic Product 

figure (Agência Nacional do Petróleo, Gás Natural e 

Biocombustíveis, 2020). In 2021, 97% of the country's oil 

and gas production was extracted offshore (Agência Nacional 

do Petróleo, Gás Natural e Biocombustíveis, 2022). This is a 

very challenging production environment for several reasons, 

among which is possible to highlight the low availability of 

physical space, which generates difficulties for the 

controllers, given the separation vessels' low capacitance. 

Therefore, production facilities are not able to absorb the 

extreme load variations caused by well production flow 

instability (Campos et al., 2015). There are many reasons that 

can cause well production flow instability like the transients 

caused by production wells opening and closing, the 

turbulent characteristics of multiphasic flow, and slugs, 

among others. Slugging flow is one the most common 

perturbation causes and one with higher severity potential, 

overloading separators, causing gas flaring, harming 

separation efficiency, and potentially even damaging 

equipment like heat exchangers, valves, and pipes, that may 

result in elevated maintenance and operational costs 

(Nnabuife, Tandoh, and Whidborne, 2022). Fig. 1 (Hansen et 

al., 2022) shows an oil extraction and treatment schematic 

vision, from the reservoir to the treatment plant.  

 

 

Fig. 1 Offshore Oil Extraction plant. 

In figure 1 it is possible to observe that the three-phase 

separator is the first equipment in the process and is 

responsible for receiving the crude oil stream, which is a 

mixture of gas, produced water, and oil, and dividing it into 

three streams that are processed individually to achieve the 

production standard parameters. Therefore, given the 

importance of the three-phase separator in the process and 
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how prone the wells’ production flow is to be unstable, it 

becomes evident the need for control strategies that have 

enough robustness to maintain process stability even in the 

most severe conditions, while also having the quickness to 

respond to abrupt load variations. PID control is often used in 

offshore oil extraction platforms, even though it does not 

perform well enough when the process dynamics vary too 

much. Frequently used in the refining and petrochemical 

industry, advanced control techniques are still scarcely 

applied in the offshore petroleum industry. (Campos et al., 

2015) Historically, there are a few hurdles that have been 

imposed to the wide use of advanced control in oil platforms 

(Campos et al., 2009). However, in order to avoid many of 

these hurdles, it is possible to model and simulate the 

processing plant's behavior, allowing further testing and 

comparative evaluation that is close to the real plant 

behavior. According to Tuegel et al, 2011 “a Digital Twin is 

an integrated Multiphysics, multiscale, probabilistic 

simulation of an as-built system that uses the best available 

physical models, sensor updates, historical data, etc. to mirror 

the life of its corresponding physical twin” and present 

benefits in comparison with commercial simulation software 

since it is a rigorous integrated representation of the process 

chosen. The Digital Twin development is a huge advance in 

industry, given the possibility of running realistic simulations 

in the virtual world, allowing, for example, the simulation 

and comparison of different process control strategies. The 

obtained model while developing a Digital Twin can be very 

precise and specific, allowing for more audacious tuning, by 

following the idea that a digital twin has roughly the same 

response as the physical one (Kritzinger et al., 2018).  

Several techniques are being applied to Digital Twins 

development lately, as it is rapidly gaining steam and 

popularity in the industry these days. Among these 

techniques, the use of neural networks can be highlighted, 

owing to their capability of emulating even the most complex 

functions behavior. Given the real processes nature, the most 

commonly used neural networks are the ones that consider 

past states of variables of interest, dividing the field of study 

into two main streams: Recurrent Neural Networks (RNNs) 

and Autoregressive Neural Networks. The main difference 

between them is the way they learn long-term dependencies. 

In RNNs there are signal feedback mechanisms, propagating 

them through the network for a set amount of time, 

influencing the upcoming outputs for a while. As a downside, 

these networks are prone to the vanishing gradient problem, 

that arises in deeper networks and results in learning 

difficulties and overall inaccuracy of the networks (DiPietro 

et al., 2018). Autoregressive networks approach this feedback 

situation differently, using the past variable states as new 

inputs, which can be viewed as an orthogonal way of dealing 

with past states, concerning common RNNs (Liu et al., 

2020). The information flows differently in NARX neural 

networks compared to RNNs, given that NARX models are 

fed the n-latest outputs as well as the inputs at every new 

iteration, while RNNs resonate the past states inside their 

architecture by using sequencial processing. In the present 

work, NARX Neural Networks are used in order to develop 

the Digital Twin of a three-phase separator located in an 

offshore oil extraction platform located in the Campos basin. 

This Digital Twin can predict the levels' behavior by looking 

at the actual and past states of inlet pressure, oil, gas, and 

water outlets, and the levels. In this paper, the separator 

pressure is considered constant, given how quick the pressure 

control is in comparison to every other variable behavior. The 

main goal of this work is to allow for realistic level control 

simulations and enable the implementation of advanced 

control techniques while establishing a working methodology 

and benchmark values. 

2. PETROLEUM TREATMENT 

The fluids produced by oil and gas wells are made up of 

mixtures of natural gas, crude oil, and salt water. Such 

mixtures are difficult to handle and measure, and their 

transportation poses environmental risks and is economically 

unviable. For this reason, exporting oil and gas from 

extraction sites (offshore platforms or onshore wells) to 

storage or refining sites requires a treatment step known as 

Primary Oil Processing (Abdel-Aal, Aggour, and Fahim, 

2003). 

The first separation equipment is the three-phase separator, 

from which currents of water, oil, and gas are extracted and 

sent to specific treatments to adjust these products to 

standardized parameters of humidity, oil, and grease content, 

among others. From there, the oil goes to electrostatic 

treaters, which aim to perform the agglutination of water 

droplets present in the oil by electrostatic means, to speed up 

the separation process. The water coming from the three-

phase separators and electrostatic treaters, in turn, goes to the 

hydro cyclones, where the first stage of oil removal is 

performed by whirling, increasing separation velocity caused 

by the density difference between water and oil. Next step, 

the water goes to the flotation vessels, for the final removal 

of the oily residue by dissolved gas flotation and injection of 

coagulant/flotation products, such as polyelectrolyte, and is 

then discarded into the sea or reinjected into the injection 

wells. The gas prevenient from the separation process goes to 

the compression unit where its pressure is raised to the 

working pressures of the fuel gas, gas lift, and exportation 

plants. This gas goes through several stages of dehydration 

and particulate removal to meet the standards and avoid 

hydrates formation (Triggia et al., 2001). A typical control 

performed in the three-phase separator has 3 controllers: 

- Pressure controller: responsible for relieving the separation 

pressure, while still maintaining sufficient pressure to ensure 

the flow of the separation products. Opening the pressure 

control valve sends the gas to the treatment and compression 

stages. In this paper, the Digital Twin is developed 

considering the pressure as a constant, given how quickly the 

pressure controller response is in comparison to every other 

variable behavior; 

- Main chamber level controller: it is the separator main 

controller, responsible for establishing the cut-off point 

between the fluid in the main chamber and the fluid that 

pours into the oil chamber, through the weir. Level sensors 

measuring the oil-water interface are not accurate enough to 

guarantee a permanent setpoint adjustment. The choice of 

setpoint is an interactive process of observing the quality of 



 

 

     

 

the products (oil and water) and thus evaluating the quality of 

separation for the choice of interface level. This also varies 

with the process temperature, which can help or hinder the 

breaking of emulsions and can cause the need of a higher or 

lower set of the interface. The stability of this controller is 

paramount to ensure an adequate separation process and to 

avoid the accumulation of water pockets in the oil chamber, 

or even the flow of oily products to the water outlets. 

- Oil chamber level controller: Responsible for maintaining a 

column of liquid between the three-phase separator and the 

rest of the oil treatment process, avoiding the passage of gas 

to the rest of the treaters. The controller behavior directly 

influences the flow oscillation to the equipment downstream 

of the separator, hence being the controller responsible for 

the electrostatic treater load control. Fig. 2 (Campos et al., 

2015) shows a very didactic graphical representation of how 

the fluids flow in the three-phase separator. 

 

Fig. 2 Flowlines detailing the separation process. 

In figure 2 it is possible to see how the difference in density 

between oil and water is responsible for the separation 

process, and the division inside the separator into two 

chambers: the main chamber and the oil chamber. The oil, 

having less mass density than water, flows in the upper 

section and can overflow the weir, a wall that is responsible 

for dividing the chambers. Given the variations in crude oil 

composition, it is crucial that the interface level is controlled 

carefully since the separation quality will be a direct result of 

the main chamber level control. Lower levels in the main 

chamber may result in oil that has less water concentration, 

but on the other hand, may result in water being contaminated 

with more oil and emulsion. Higher levels in the main 

chamber prevent oil from being sent to the water outlet but 

also can result in oil receiving bigger quantities of water. 

These situations described here demonstrate the importance 

of having good control of the main chamber level, as 

variations also can be detrimental to product quality. As for 

the oil chamber level, its level control is important for having 

a seal that does not allow gas to migrate to the oil stream, so a 

minimum level is needed. Also important is to maintain the 

valve variations to a minimum, since its modulation is what 

dictates the electrostatic treaters' load input. The objective is 

to absorb level fluctuations without losing the liquid seal that 

protects the oil stream from gas contamination.  

 

 

3. NARX NEURAL NETWORKS 

A NARX network is a Non-linear AutoRegressive model that 

has eXogenous inputs, which means that this model relates 

current and past data from a time series with current and past 

data from the exogenous series, that is, the network's output 

signals are fed back to the input to participate in a next stage, 

giving this network the ability of temporal comprehension. 

The main difference between NARX networks and other 

well-known RNNs such as LSTM (Long Short-Term 

Memory) and vanilla RNNs, is the output data feedback 

architecture. In most of the RNNs proposed in the literature, 

an important limitation lies in the vanishing gradient issue, 

which is the loss of information as the number of layers in the 

network increases, being a detriment to performing learning 

for problems that require more long-term memories. One of 

the alternatives to circumvent this problem is the advent of 

LSTM networks, using activation functions and layer by-pass 

gates that allow the propagation of past signals over a longer 

time interval, giving the networks greater memory retention 

capacity. Differently, NARX networks adopt a perpendicular 

approach concerning common RNNs and LSTM networks by 

using past state signals as inputs simultaneously with current 

signals, in a parallel manner, differing from the sequential 

feedback used by common RNNs, allowing greater control 

over the number of past responses and the amount of time 

that must be considered when predicting a future output 

(Henaff, Szlam, and LeCun, 2017). Fig. 3 (DiPietro et al., 

2018) illustrates the information flow differences between 

LSTM networks, simple RNNs, ordinary NARX networks, 

and NARX networks with exponential delay. 

 

Fig. 3 Common RNNs x LSTM x Simple NARX x 

Exponential NARX. 

In figure 3 the information flow is represented by slurs, and it 

can be seen how common RNNs are serialized and receive 

always the last output state, influencing the next prediction. 

NARXNNs, on the other hand, can be fed with many past 

states that can even be non-linear, as can be seen in example 

d), which uses exponential delays to feed the neural network. 

NARX networks can perform black-box modeling, mapping 

their neurons in such a way as to infer non-linear and even 

initially unknown relationships, simplifying the realization of 

modeling complex systems without necessarily simplifying 

the model itself (Liu et al., 2020). This type of approach also 

allows the level of expertise required to implement a model 

to be much more basic, requiring only the ability to critically 

evaluate the results and their suitability as a solution to the 

problem at hand (Henaff, Szlam, and LeCun, 2017). A typical 

NARX neural network configuration is shown in Fig. 4. (Liu 

et al., 2020) 



 

 

     

 

 

Fig. 4 NARXNN architecture in detail 

As shown in figure 4, there is a pre-defined number of delays 

being fed back to the network, represented by the n letter. In 

order to evaluate and make a decision about the number of 

delays (or lags) that are going to be used, the autocorrelation 

of these variables is calculated. The decision is up to the 

network designer, but the premise here is that the best values 

are the ones that have high autocorrelation and can represent 

well how these variables behave through time. It is also 

important to notice that choosing a high number of lags is 

going to make the network bigger, and more computationally 

expensive to train. 

4. METHODOLOGY 

4.1 Data Extraction, Transformation, and Loading 

The process data was collected from the data system used at 

Petrobras: OSISoft Plant Information (PI). The system is 

widely used in other industries to support operation and 

process control, with the possibility of plotting historical 

process data trends and viewing values in real time. To 

collect this data for the development environment 

implemented in Python programming language, using Jupyter 

Notebooks, the open-source library PIconnect was used. 

Once the data was imported, the Pandas library was used to 

create data frames, which facilitates the manipulation and 

treatment of the data to make it ready to use at later stages. 

With Pandas it was also performed treatment for missing 

data, performing the data imputation using the last valid read 

data, following good practices for time-series. 

4.2 Autocorrelation evaluation of inputs and outputs 

To perform the autocorrelation evaluation step of the 

variables, it was used the Statsmodels library, which already 

has appropriate functions to perform the calculation and plot 

of autocorrelation functions. With the autocorrelation 

information of each variable available and easy to visualize, 

it is possible to determine the number of lags to be used for 

each input or output variable, as well as the number of 

internal layers and neurons in the internal layers, following 

this criteria established by the authors: choose a number of 

lags that is big enough to represent well the internal state and 

inertia of the variables, while also being small enough so that 

the model does not gets too big and complex that would be 

computationally expensive to train. 

4.3 Data preprocessing 

After this decision-making process, it is possible to start the 

implementation of the data preprocessing and neural network 

creation steps. For these two steps, the Scikit Learn and 

Pytorch libraries were used. The Scikit Learn library has 

several very useful tools for preparing data for network 

training, and in this work, a normalization function called 

RobustScaler was used. This normalization is very suitable 

because it can transform data into a distribution extremely 

robust to outliers by the calculations performed using the 

median, instead of the mean, and the standard deviation, 

greatly facilitating the training of the neural network and 

accelerating its convergence.  

4.4 Structure of the developed algorithm 

The neural network architecture was then implemented using 

Pytorch, using linear activation functions. Once the network 

was created and the data prepared, the model was trained. 

Since this is a time-series dataset, the training and validation 

datasets were obtained from the same time window, being the 

first 90% of the data used for training and the 10% final used 

for validation. The method used to evaluate the results was 

interactive, adjusting the number of variable lags, as well as 

the size of the net (number of internal layers, number of 

neurons in the internal layers, optimizers, evaluation metrics, 

etc.). Once the model construction was finished, a test step 

was performed, predicting the behavior of the variables of 

interest using new datasets from other periods of the process 

plant, in order to evaluate the robustness and generalization 

capacity of the digital twin. For results visualization, the 

Seaborn library was used, for its simplicity in generating 

visually comfortable and easily distinguishable graphs, and 

for its orientation for easy customization of the visualizations.  

Fig. 5 shows a schematic diagram of the libraries and 

functions used by the authors to construct the network design 

and training, with the detailing of their respective roles in the 

application. 

 

Fig. 5 Libraries and functions used in this work. 

 



 

 

     

 

4.5 Evaluation metrics 

In order to perform the evaluation of the obtained models and 

interactively adjust the hyperparameters and number of lags 

of the NARX neural network, 4 evaluation metrics most 

commonly used in time series prediction were chosen (Matta 

et al., 2021): (a) Mean Squared Errors (MSE); (b) Root Mean 

Squared Errors (RMSE); (c) Mean Absolute Error (MAE); 

(d) Mean Absolute Percentage Errors (MAPE); 

- MSE - Is the mean of the squared errors. Due to the 

exponentiation of the errors to the second power, they are 

considered independently of negative or positive errors, and 

their measurement is very sensitive to larger errors. This 

property is very valuable when you want to find a model that 

generally approximates real behavior, but it can be an overly 

harsh metric when outliers occur (Büyükşahin and Ertekin, 

2019). 

 

- RMSE - Derived from MSE, but uses the square root of the 

mean square errors. Less susceptible to outliers than MSE, 

also does not consider the sign of the prediction error.  

 

- MAE - Mean Absolute Error. Using the modulus of the 

prediction error is an even more robust measure of the 

presence of outliers than RMSE.  

 

- MAPE - Absolute Mean Percent Error, this measure 

considers the percent ratio between the prediction error and 

the amplitude of the true variable. 

 

5. DISCUSSION AND RESULTS 

5.1 Detailing the input and output variables 

The variables selected for reading and training the model 

were based on process experience and observation of their 

interaction with the desired outputs. They were:  

- Separator vessel inlet pressure (Inlet Pressure): important to 

infer the arrival of more liquid or more gas, from the 

relationship with output flow rate variations and knowing that 

liquids are incompressible; 

- Gas Flow: indicates the response of the gas outlet valve, in 

this work considered fast enough to ensure constant pressure 

in the separator vessel. Very important for the detection of 

bubbles with the passage of pockets of gas; 

- Water Valve Opening: final control element in the main 

chamber level controller of the of the three-phase separator. 

The signal from the water exit flow meter could also be used, 

but it only totals the hourly flow rate, thus losing much of the 

data of interest to this work; 

- Oil Valve Opening: final control element in the oil chamber 

level controller of the three-phase separator.  

- Oil Flow: represents the process output and is used here in 

an apparently redundant manner with the oil valve opening 

percentage. But as this system is interconnected to the oil 

treater and suffers pressure variations depending on the load 

variation, the flow measurement is of great importance to 

infer the process flow despite pressure oscillations. It is also 

an instrument that requires more frequent calibration than the 

outlet valves, which usually have deposits and scales that 

compromise its proper flow control.  

An example visualization of input variables already 

normalized is shown in Fig. 6. 

 

Fig. 6 Input variables visualization. 

The output variables are the level values in the main chamber 

and the oil chamber. A demonstration of the normalized 

output behavior can be seen in Fig. 7.  



 

 

     

 

 

Fig. 7 Output variables visualization. 

The collected data used in this work was selected by looking 

for periods where there were huge loads variation in the 

separator, and periods where the producing flow was in an 

unstable regime. The choice for this type of period was based 

on the premise that this would be the worst case for the 

process, being challenging to model. It also allows a better 

visualization since the curves of the process variables are 

quite pronounced in this situation, allowing a better 

comparative view. After modeling and testing, this premise 

was re-evaluated by using stable producing flow pattern data, 

and it showed even better accuracy than unstable flows, 

serving as a validation for this premise. The data collected for 

training and validation refers to an operating period of 18 

representative hours. 

5.2 Data preprocessing 

With the data prepared, a normalization step was performed 

using the Scikit Learn library, taking the precaution to avoid 

the problem known as data leakage between training and test 

data (Kaufman, Rosset, and Perlich, 2011). The next step was 

to evaluate the autocorrelation of each of the input and output 

variables, in order to select the number of lags to be used. 

After some stages of training and evaluation, it was possible 

to realize that the use of older data with high correlation 

(values greater than 0.9) resulted in models with high 

prediction performance, but the choice of a bigger number of 

lags (20-30 lags per variable) resulted in excessively slow 

models for training and with a large number of parameters to 

be trained. The data sampling time used was 1 second, but it 

was possible to observe that even the variable with the 

sharpest decline in the autocorrelation curve, which was the 

inlet pressure, presented a correlation above 0.95 for lag 

values less than or equal to 5. Thus, to avoid changing the 

sampling time so that there would be no loss of training data, 

it was decided that the number of lags adopted for the 

NARXNN would be using values with 5 samples of 

separation i.e.: 5t − , 10t − , 15t − , etc.,  thus reducing the 

number of neurons in the net, while still managing to 

preserve the amount of data and temporal information of the 

process.  

5.3 Network Training 

A commonly used starting point in establishing the number 

of hidden layers in the network is to select a simpler 

architecture for initial testing, and if the model obtained 

shows underfitting behavior, then new hidden layers are 

added. In the present work, the architecture with one hidden 

layer was chosen, as it proved to be sufficient for the 

complexity of the problem in question. Of the various 

methods proposed, it is not yet possible to say that any of 

them is suitable for all cases, and a case-by-case evaluation is 

needed in a careful and interactive manner (Vujičić et al., 

2016). The error metric of the training algorithm chosen was 

MSE, and the optimizer that obtained the best convergence 

was Adam. After fine-tuning the model iteratively, the neural 

network obtained had 25 nodes in the input layer, 2 nodes in 

the output layer and 16 nodes in the hidden layer. The 

learning rate used was 0.01, training for 100 epochs.  

5.4 Validation Results 

The validation was performed using the portion with the final 

10% of the training dataset, obtaining results for the 

prediction of the main chamber and oil chamber levels, which 

can be seen in Fig. 8 and Fig. 9, respectively: 

 

Fig. 8 Model Prediction vs Real Values for the Main 

Chamber Level in validation. 

 

Fig. 9 Model Prediction vs Real Values for the Oil Chamber 

Level in validation. 

These results show that the Digital Twin model was very 

accurate in predicting the levels even in challenging 

situations like sharp tendency changes. Some error is still 



 

 

     

 

present, but the simulated process is capable of following 

roughly the same trend and values as the real process. 

5.5 Test Results 

The tests were performed using data collected during periods 

of production instability as well as periods of stability. In 

order to validate the robustness of the Digital Twin, the test 

#1 was collected from a period approximately 11 months 

after the training and test dataset, comprising 7h30m of 

operating data. The results can be seen in Fig. 10 and Fig. 11. 

 

Fig. 10 Model Prediction vs Real Values for the Main 

Chamber Level in the test set. 

 

Fig. 11 Model Prediction vs Real Values for the Oil Chamber 

Level in the test set. 

It can be seen that the levels’ prediction in the test set is very 

much accurate and precise, which is a promising sign about 

the resilience of the model since this test dataset was 

collected from a period so distant from the validation set. 

This is a testament to the Digital Twin generalization 

capability and a good sign that the model is not overfitting 

training data. 

Besides Test #1, another 4 tests were conducted comprising 

of 8-12 hours of data each, with periods of stability and 

instability, which demonstrate how well the Digital Twin can 

generalize. The consolidated results of the evaluation metrics 

for testing and validation can be seen in table 1. It is possible 

to see that the metrics are all extremely low, especially 

important the MAPE metric, which is a percentage error. The 

MAPE metrics results below 1% show that the Digital Twin 

is being able to mirror closely the physical twin's behavior in 

various conditions. 

Table 1 – Metrics Results 

error  MSE RMSE MAE MAPE (%) 

Validation 0.007 0.085 0.063 0.41 

Test #1 0.005 0.071 0.052 0.98 

Test #2 0.006 0.076 0.052 0.47 

Test #3 0.005 0.073 0.043 0.62 

Test #4 0.011 0.104 0.075 0.79 

6. CONCLUSION 

The results demonstrated the ability to develop a Digital 

Twin of the three-phase separator, using NARX neural 

networks, with high prediction accuracy even for the 

proposed tests situation, which represented a challenge to the 

developed model. The time difference between the training 

and test #1 datasets (11 months) represents a rather large time 

window. However, still, the digital twin demonstrated 

robustness and prediction capability, with a MAPE error 

metric of around 0.98%. Tests #2, #3, #4, and #5 were 

conducted using data from stable and unstable periods, 

between 3 – 9 months later than the data used to train and 

develop the model, with very accurate results as well. The 

methodology established in this work can be replicated for 

the development of Digital Twins for other equipment, and 

especially for simulation to achieve process control 

improvements. The implementation of a Digital Twin brings 

to the simulation environment the necessary realism to 

achieve huge advances in process efficiency without the need 

for large investments in equipment or structure, and this work 

represents a precise and achievable way of implementing 

that. 
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