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Abstract— The protein structure prediction (PSP) is one of 

the major challenges in modern biology. Using new technology 

which have powerful tools to computation like quantum 

computation can decrease time of process and memory useless 

to find optimized solution of PSP. In this paper we introduce 

new approach to find optimal solution of 2D HP protein folding 

using quantum genetic algorithm which combination of 

advantages of quantum computation and genetic evolutionary 

process.  Our approach can find solution of problem faster and 

more memoryless that traditional genetic algorithm by 

maintaining accuracy. 
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I. INTRODUCTION 

One of the most important macromolecules in all living 
organisms are proteins [1-2]. Protein structure prediction 
(PSP) is a significant and very challenging interdisciplinary 
problem includes biochemistry, biophysics, structural 
biology, molecular biology and computational biology. In 
PSP relations between sequences and protein folding is the 
key to combating many fatal diseases such as Prion disease, 
Alzheimer’s disease, Parkinson’s disease and cancer [3-7] 
and the development of several applications in rational drug 
design, and biotechnology, so PSP is an important multi-
disciplinary research problem.  

Most of the methods to find solution of PSP follow the 
thermodynamics hypothesis, i.e., protein adopts the 
conformation under physiological conditions with the lowest 
Gibbs free energy [8]. It means that in this problem we are 
looking for minimize problem, and it can be divided into two 
sub-problems: (i) to declare an appropriate energy function 
that can find global minimum and is able to recognize 
feasible from infeasible folds; (ii) to introduce an efficient 
and strange algorithm which capable of dealing with a large 
search space. 

There are several methods for protein structures like X-
ray crystallography [9] and MRI (magnetic resonance 
imaging) and electron microscopy which are time-
consuming, cost-intensive and failure-prone and are not 

sufficient to fill the gap between the number of known 
protein sequences and the number of solved structures. 

Recently, many paper introduced evolutionary 
algorithms, such as genetic algorithm (GA) [10-13], for 
solving the PSP problem [14-20]. Recently, GA have been 
used to find solution of optimization problem in reasonable 
time. GA was first proposed by Holland inspired by 
Darwin’s principle of survival of the fittest. The first step in 
GA is defined a representation that describes the possible 
solutions for a problem. In GA, the possible solution of an 
optimization problem is encoded in chromosome and each 
chromosome includes some small parts which call gen. A 
group of finite chromosomes make population.  Every 
chromosome is evaluated by fitness function, and with 
fitness function we can compare chromosomes and 
recognize feasible from infeasible ones. If termination 
condition occurred,  GA shows best founded solution, 
otherwise it reproduces next population of chromosome by 
crossover and mutation.  

Quantum technology was introduced as a powerful tool 
for computation [21-22], it has received growing attention in 
recent years and researchers started to combined quantum 
computation with genetic algorithm [23-25] and first attempt 
was made by Narayanan and Moore to propose Quantum 
Genetic Algorithm (QGA). QGA makes computation of 
genetic evolutionary process faster by exploiting the power 
of quantum computation. Also, QGA has less population 
size, more powerful in global search, higher convergence 
rate, and less execution time. QGA can be used to find 
solution of various kind of problems such as combinatorial 
and functional optimization problems, image processing, 
identification and engineering optimization problems.  

Protein includes sequential-chains of amino acids that 
connected together by single peptide bonds. The fold of these 
connected chains can be shown in two-dimensional (2D) 
structures. In this paper, we present a new approach using 
quantum genetic algorithm for solving PSP problem in 2D 
HP lattice model. The proposed QGA for solving PSP 
problem has some advantages like speeds up computation of 
genetic evolutionary process, has more powerful in global 



search and has less population size. The rest of this paper is 
organized as followed: 

1. Introduce problem, genetic algorithm and 
describe quantum computation briefly 

2. Describe proposed quantum genetic algorithm 
for solving PSP which includes steps of 
quantum genetic algorithm, encoding 
chromosome, reproduces new population and 
compare steps of GA and steps of QGA 

3. Describe our proposed method in detail and 
simulate it. 

4. Simulation  

5. The conclusion 

II. PRELIMINARIES 

In this section, we first describe 2D HP protein folding, 

and problem detail, discus genetic algorithm and its steps, 

and finally we introduce quantum computation briefly. 

A. The 2D HP protein folding problem 

The highly simplified computer models that use for 
protein folding in computer is lattice protein [4]. We can 
simulate a few microseconds of protein behavior in complete 
atomic detail with current technology because proteins are 
large molecules, so they include hundreds or thousands of 
atoms, in other word, it is impossible to model real protein 
folding in computer simulation. Lattice protein, are 
simplified in two steps: (i) every atom in the amino acids is 
modeled as "beads", (ii) and all these "beads" are restricted 
to a rigid (usually cubic) lattice. It speeds up simulation 
process to find protein folding with minimal energy. 

 

Fig. 1. Representation of folding for HPHPPHHPHPPHPHHPPHPH 

sequence with free energy -9 . 

In this paper, we use the HP model, includes just two 
bead types: H (hydrophobic or non-polar) and P (hydrophilic 
or polar). Figure 1 shows an example of 2D lattice model. 
Red squares denote the hydrophobic amino acid, the black 
squares denote the hydrophilic and the green dotted line 
denote H-H interaction, and it means free energy. For 
calculating the total energy (E) of a conformation based on 
the HP model, we sum H-H interaction of non-consecutive 
hydrophobic amino acids.  

𝐸 = ∑ 𝑐𝑖𝑗 × 𝑒𝑖𝑗

𝑖<𝑗−1

 

 

where, if amino acids i and j are non-consecutive 
neighbors on the lattice 𝑐𝑖𝑗 = 1, otherwise 𝑐𝑖𝑗 = 0;  and 

𝑒𝑖𝑗 = 1 if the 𝑖𝑡ℎand  𝑗𝑡ℎ amino acids are hydrophobic, 

otherwise 𝑒𝑖𝑗 = 0. In this problem, we look to minimize 

equation 1 or maximize the number of H-H interaction of 
non-consecutive hydrophobic amino acids. 

B. Genetic algorithm for PSP 

The Genetic algorithms (GAs) have recently been used 
to solve optimization problems very commonly since they 
can get nearly optimal solutions in reasonable time. The 
possible solution of an optimization problem is encoded in a 
chromosome, which consists of an array of genes. The 
individual chromosome is evaluated by a fitness function. 
The fitness function is a function that receives the candidate 
solution as input and displays the fitness of the proposed 
solution of the problem as output. A genetic population 
consists of a finite number of chromosomes. The 
chromosomes of the new population are generated by the 
application of genetic operations such as crossover, 
mutation, and reproduction on the present population. Flow 
diagram of genetic algorithm show on figure 2. 

A representation that describes the possible solutions 

for a problem must first be defined when applying genetic 
algorithms to solve a problem. The feasibility of using 

genetic algorithm is problem dependent. Its success strongly 

depends on whether the right encoding scheme can be 

adopted or not. A successful encoding scheme must have the 

following features: 

1. It can present all variables’ information of any 

solutions 

2. It can keep  legality of encoding in genetic 

operations such as crossover and mutation; 

3. The encoding and decoding can be carried out 

easily; 

4. The mapping between encoding space and solution 
space is a one-to-one mapping, i.e., one coding 

specification identifies only one solution, and vice 

versa. 

 

 

Fig. 2. Flow diagram of genetic algorithm 

(1) 



1) Encoding chromosomes 
As mentioned, the first step of GA is encoding 

chromosomes. In this step is to define a way to represent 
solution of a problem in chromosomes, so encoding of 
chromosomes in GA depends on problem. There are several 
methods to encoding chromosomes in PSP [19-20]. Based on 
ref [19-20], If the input of problem is amino acid sequence 
and its length equal to N, then each chromosome in the 
population has  𝑁 − 1 genes, and each gene can be 
assignment over the symbols = {𝑈, 𝑅,𝐷, 𝐿} , and that denotes 
a feasible conformation in the 2D square lattice. The symbols 
U, L, R and D are used to denote the fold directions up, left, 
right and down in the encoding scheme, respectively. Figure 
3 shows an example of GA encoding chromosome in 2D 
square lattice for PSP. 

 

Fig. 3. A method to GA encoding chromosme in 2D square lattice for PSP 

2) Termination condition 

 

Termination condition divided into three 

categories: 

1. Termination after the expiration of the specified 

number of repetitions. 

2. Termination after the expiration of the given time. 
3. Termination by reaching an acceptable level of the 

solution. 

 

If termination condition occurs, the best solution is obtained, 

stored in b and displayed as an output otherwise it enters the 

loop of the operation to make the termination condition 

occur. 

 

3) Reproduction population 
First, we must select some chromosome as parents to 

generate new population. There are some methods to select 
chromosomes as parents. We can mention fitness selection 
and roulette-wheel as most popular parent selection method 
in GA. 

• Fitness selection: in this method, the chromosome 

that has the best fit function are copied into the new 

population, and the rest of the chromosomes are 

made using conventional methods. This method 

increases the performance of the GA because it 

prevents the removal of the best answers found. 

• Roulette-wheel selection: this method is one of the 

most famous and widely used methods of selecting 

parents in the genetic algorithm. The probability of 

selection of a sector in a roulette wheel is 

proportional to the magnitude of the central angle 

of the sector. Similarly, in Genetic Algorithm, the 

whole population are partitioned on the wheel and 

each sector represents an individual. The 

proportion of chromosome’s fitness to the total 

fitness values of whole population decides the 

probability of selection of that individual in the 

next generation. 

The crossover is one of the genetic operations to 

generate the next population, usually exchanges some genes 

between two chromosomes with constant probability. 

Single-point crossover and double-point crossover are the 

most useful and popular method for crossover, and we can 

use these for PSP problem. 

• Single-point crossover: in this method, a location 

of parent chromosomes is randomly selected and 

genes are swapped between parents based on it to 

make children chromosomes.  

• Double-point crossover: in this method, two 

locations of parent chromosomes are randomly 

selected and genes are swapped between parents 

based on those to make children chromosomes. 

 

Mutation is a genetic operator that is used to maintain 
the genetic diversity of a population of chromosomes 

between generations. For PSP problem, we can use four 

kinds of mutation as mention in figure 4. 

 

 

Fig. 4. Mutation methods for PSP problem 

C. Quantum genetic algortihm 

As mentioned above, quantum genetic algorithm (QGA), 

is combination  of quantum computation and genetic 

algorithm. QGA can be used for kinds of problems that GA 

can be used, but QGA speeds up computation of genetic 

evolutionary process, has less population size and more 

powerful in global search. In quantum computation, qubit is 

the basic unit of information and is not deterministic; i.e., it 

does not have fixed value. The basic state may be in the |0⟩ 
basis state or the |1⟩ basis state, or in any superposition of 

the two, so the number of quantum state built of qubits  are 
more than the classical one. The state of a qubit can be 

represented as 

 
|𝜓⟩ =  𝛼|0⟩ + 𝛽|1⟩ (2) 



 

with a normalization constraint 
|𝛼|2 + |𝛽|2 =  1 

where 𝛼 and 𝛽 are complex numbers and specify the 

probability amplitudes of the corresponding states. The 

probability that shows qubit in |0⟩ is |𝛼|2 and the probability 

that shows qubit in |1⟩ is |𝛽|2 . 

In QGA, each chromosome includes array of qubit, 

so, each gene is a qubit. Equation 4, shows the encoding of 

chromosome which has n genes. 

 

[𝑞𝑢𝑏𝑖𝑡1|𝑞𝑢𝑏𝑖𝑡2|… | 𝑞𝑢𝑏𝑖𝑡𝑛] = [
𝛼1

𝛽1
|
𝛼2

𝛽2
|… |

𝛼𝑛

𝛽𝑛
 ] 

 

where 𝑞𝑢𝑏𝑖𝑡𝑖 = 𝛼𝑖|0⟩ + 𝛽𝑖|1⟩ , |𝛼𝑖|
2 + |𝛽𝑖|

2 = 1,   
𝑖 = 1,2,… , 𝑛 . 

The steps of QGA are combination of quantum 

computation and genetic algorithm, so, there are classic 

computation and quantum computation in QGA. In QGA we 

have several generations, and we index each generation by t, 

also we have two kinds of population, classic population and 

quantum population. i.e., P(t) means classic population at 

generation t, Q(t) means quantum population at generation t. 

Steps of QGA are showed in figure 5. In classic population, 

genes of chromosomes are classic but in quantum 

population, genes of chromosomes are qubit. Steps of figure 
5 which have star (*), it means those steps have quantum 

computation, other steps without star, have classical 

computation like GA. 

 

Fig. 5. Flow diagram of quantum genetic algorithm. 

In initial quantum population step of QGA, every 

gene of each chromosome  have equal probability to be in the 

state of |0⟩ and|1⟩. This means that at the end of the 

initialization, each qubit is in the state 

 

|𝑞𝑢𝑏𝑖𝑡⟩ =  
1

√2
|0⟩ +

1

√2
|1⟩ 

because this representation has an advantage that it is able to 

represent any superposition of states, so we have all search 

space of the problem in each chromosome. For example, a 

four-qubit system with four pairs of amplitudes such as 

 

[
 
 
 
1

√2
1

√2

  | 
 1.0
0.0

  |  
 0.0
1.0

 |  

1

2

√3

2 ]
 
 
 

 

 

 
the state of the system can be represented as 

 

1

2√2
|0010⟩ +

√3

2√2
|0011⟩ +

1

2√2
|1010⟩ +

√3

2√2
|1011⟩ 

 

The above result means that the probabilities to represent the 

state |0010⟩ , |0011⟩ , |1010⟩ and |1011⟩ are 
1

8
 , 

3

8
 , 

1

8
 and 

3

8
 

respectively. 

III. PRPOPOSED APPROACH 

As mention above, we proposed new approach to 

find optimized solution of PSP problem using QGA, so in 

this section we describe steps of QGA for finding optimized 

solution of PSP problem. It is important to mention, we 

describe quantum steps of QGA which includes encoding 

chromosomes, initial quantum population, observing 

quantum population to make classic population and generate 

next quantum population. The rest of steps which are 

classical computation can be used like existing GA 
approaches like fitness function and termination conditions.  

A. Encoding chromosomes in QGA 

The first step of QGA is encoding chromosome. As 

mentioned, in one of encoding method for PSP, each 

chromosome has  𝑁 − 1 genes, and each gene can be 

assignment over the symbols = {𝑈, 𝑅,𝐷, 𝐿} , but in QGA the 

basic information unit is qubit that may be in the |0⟩ basis 

state or the |1⟩ basis state, or in any superposition of the two, 

so we have to present new approach to encode four 

movement symbols using qubit. We use 2 qubits to encode 

four symbols in QGA according to table 1, so we have  

2(𝑁 − 1) gene in each chromosome in QGA because we use 

two qubits for each movement, and we have 𝑁 − 1 
movements. Figure 6 shows an example of encoding 

methods in QGA. 

 

Movement Decimal Binary 

Up (U) 0 00 

Down (D) 1 01 

Right (R) 2 10 

Left (L) 3 11 

 
Table. 1.  Encoding of gene 

 

(3) 

(4) 

(5) 

(6) 

(7) 



 

Fig. 6. Classic chromosome that obtain from observing Quantum 

chromosme and each two bits represent a movement   

B. Initail quantum population 

All genes in QGA are qubits, so we can store all search 

space of the problem in each quantum chromosome. As 

mention above, a qubit can be in any superposition of the |0⟩ 
basis state and the |1⟩ basis state, so if we initial each gene 

of QGA by setting all probability state amplitudes of each 

gene to be equal to one another, we can store all search space 
of problem in each quantum chromosome. Figure 7 shows an 

example. 

 

Fig. 7. An initialed quantum chromosome   

C. Observing quantum population 

In this step of QGA, we create a classical population by 

observing each gene of the chromosome in the quantum 

population. In this new algorithm, our mentioned 

pseudocode is defined over n qubits (Algorithm 1), i.e., in 

this paper 𝑁 = 2(𝑛 − 1) and n is amino acid sequence 
length as described above. 

 
Algorithm. 1. Qubit state observation 

 

D. Reproduction next quantum generation 

The last step of QGA is reproduction of next 

quantum generation. This step is equal to selection of parent, 

crossover and mutation which used in GA to generate next 

population. A lookup table will usually be used in QGAs to 

generate the next quantum population. In this approach, 

rotation gate will be used to update qubits of chromosome by 

comparing each of observed current generation quantum 

chromosome to best founded classic chromosome based on 

the lookup table. Rotation and sign of rotation gate will be 

defined by a the lookup table. But there is another method to 
update qubits in QGA. To describe this method, we assume 

that we have a qubit like figure 8 that is ith gene of one of 

quantum chromosome. The vertical lines show the 

probability amplitudes 𝛼 and 𝛽, and ith gene of the best 

chromosome which is a classic chromosome, is b which can 

be valued by 1 or 0. We assume that b is valued by one, so 

we will multiply amplitude of 𝛼 by the factor 𝜇, which is a 

range between 0 and 1, and increase amplitude of 

𝛽 according to Equation 3. The described method eliminates 

the necessity to use a lookup table, which exists in the 

traditional QGA. The pseudocode for this method shows in 

algorithm 2. 

 

Fig. 8. A simple qubit 

 
Algorithm. 2. Generate next quantum computation 

 

E. Add Quantum Disaster Operation. 

The algorithm may fall into local optimal solution, while 

the algorithm has performed several generations and the best 

quantum chromosome is in a stable state. We need to take 

the quantum disaster operation to get out of the local optimal 

solution. The method is to apply a large disturbance to some 

quantum chromosomes in the population and regenerate 

some other new random quantum chromosomes.   

Chromosomes disaster process pseudocode program is 
described as in Algorithm 3. 

 
Algorithm. 3. Quantum disaster operation 

 

IV. SIMULATION 

QGA based on quantum system implement using python 

programming language. The simulations have been 

performed on Intel Core i5, 6.0 GB RAM and Windows 10. 
In this section of paper, we simulate proposed approach, 

show result of simulation and compare QGA approach to 

find solution of PSP with genetic algorithms [14][19]. In 

table 2, there are 6 selected HP instances which are standard 

benchmarks used to test the ability of the algorithms to find 

optimized solution of the problem. The optimal or best-

known free energy of these instances shows in table 2. 



 

 
Sequence Length Protein sequence Energy 

1 20 (𝐻𝑃)2𝑃𝐻(𝐻𝑃)2(𝑃𝐻)2𝐻𝑃(𝑃𝐻)2 -9 

2 24 𝐻2𝑃2(𝐻𝑃2)6𝐻2 -9 

3 25 𝑃2𝐻𝑃2(𝐻2𝑃4)3𝐻2 -8 

4 36 𝑃(𝑃2𝐻2)2𝑃5𝐻5(𝐻2𝑃2)2𝑃2𝐻(𝐻𝑃2)2 -14 

5 48 𝑃2𝐻(𝑃2𝐻2)2𝑃5𝐻10𝑃6(𝐻2𝑃2)2𝐻𝑃2𝐻5 -23 

 
Table. 2.  The 2D HP benchmarks. 

  
 Before to start describing results of our proposed 

approach, we should mention, the power of QGA to find 

optimized solution of problem depends on population size 

and parameter 𝜇 . Parameter 𝜇 plays a key role in algorithm. 

The balance between global and local search to find solution 

of problem depends on Parameter 𝜇. Population size is also 

another key of QGA. Finding not optimized solution for the 

problem is one of the main results of having less population 

and otherwise the time consumed for the running of 

algorithm directly related to the size of population. 
Therefore, we simulated affection of population size and 

parameter 𝜇 to find optimal solution of sequence number one 

of table 2. We simulated parameter 𝜇 between 0.5 to 0.98 and 

increased it by step 0.002 with population size 20,40 and 60. 

The iteration of simulation equaled to 100, and we 

considered average output of 10 times of parameter 𝜇.  

Figure 9 shows the result. 

 

 

Fig. 9. Affection of parameter 𝜇 and population size 

As result of Figure 9 on sequence number 1 of table 2, we 

can say less population size cannot find global optimized 

solution of problem, and it may fall into local optimal 

solution. Large population size can find global optimized 
solution, but it consumes much more time to complete 

computation. So, we recommend to set population size 

between 40 and 50. As you can see in figure 9, parameter 𝜇 

between 0.94 and 0.96 can find better optimal solution. 

We simulated sequences of table 2 with population size 

equals to 50 and parameter 𝜇 equals to 0.96. Table 3 shows 

our results. 

 
 

Table. 3.  Details of QGA results for 6 selected HP instances 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Sequence GA QGA 

1 

Time(sec) - 19.069473505020142 

Figure 

10 (a) 

comformation scaned 30,492 1,117 

Optimal -9 -9 

Solution - DLLURULUURDRDRURDDL 

2 

Time(sec) - 39.961580753326416 

Figure 

10 (b) 

comformation scaned 30,491 2,192 

Optimal -9 -9 

Solution - LLURURDRRDRDLLDLDLULURR 

3 

Time(sec) - 174.38035345077515 

Figure 

10 (c) 

comformation scaned 20.400 9,206 

Optimal -8 -8 

Solution - UURULUUULDDLULDDRDLDRRUU 

4 

Time(sec) - 668.992345180511486 

Figure 

10 (d) 

comformation scaned 301,339 32,313 

Optimal -14 -14 

Solution 
- ULDLULDLLLDRDRURDRURRDLDR

DLLULDLULD 

5 

Time(sec) - 2,568.93060549316410624 

Figure 

10 (e) 

comformation scaned 126.547 114,081 

Optimal -23 -23 

Solution - 
DLDLULDLULLLURURDRURRULLL

LULURRDRURDRURDRDLDDLL 



 
(d) 

 

 
(e) 

Fig. 10. QGA results for 6 selected HP instances 

V. CONCLUSION 

This paper proposed new approach to find optimized 

solution of 2D HP protein folding using quantum genetic 

algorithm. QGA combination quantum computation and 
genetic evolutionary process, so, the introduced QGA can 

find solution of PSP faster and more memory less than GA 

method. There are classical and quantum steps in QGA. In 

this paper we just introduced quantum steps of QGA which 

includes encoding chromosomes, initial chromosomes, 

observing quantum chromosomes and update quantum 

population. We use GA methods for classical steps in GA, 

like termination conditions and fitness function. In future 

work, we intend to find solution of the prediction of 3D 

structures for protein folding using QGA and compare result 

by GA approach. 
 

REFERENCES 

[1] H. J. Morowitz, Energy flow in biology. Academic Press, 

1968.  

[2] Stouthamer, “A theoretical study on the amount of ATP 

required for synthesis of microbial cell material,” Antonie van 

Leeuwenhoek, vol. 39, no. 1, pp. 545–565, 1973 

[3] Adam Smith, “Protein misfolding,” Nature Reviews Drug 

Discovery, vol. 426, no. 6968, pp. 78–102, December 2003.  

[4] Dill, K. A. (1985). Theory for the folding and stability of 

globular proteins. Biochemistry, 24(6), 1501–1509 

[5] M. Dobson, “Protein folding and misfolding,” Nature, vol. 

426, no. 6968, pp. 884–890, 2003. 

[6] F. Chiti and C. M. Dobson, “Protein Misfolding, Functional 

Amyloid, and Human Disease,” Annu Rev Biochem, vol. 

75(1), pp. 333–366, 2006.  

[7] Jucker Mathias and Walker Lary C., “Self-propagation of 

pathogenic protein aggregates in neurodegenerative diseases,” 

Nature, vol. 501, no. 7465, pp. 45–51, 2013. 

[8] C.B. Anfinsen, Principles that govern the folding of proteins, 

Science 181 (1973) 187. 

[9] A. Yonath, “X-ray crystallography at the heart of life science,” 

Current Opinion in Structural Biology, vol. 21, no. 5, pp. 622–

626, 2011 

[10] Davis, L. Handbook of Genetic Algorithms; Van Nostrand 

Reinhold: New York, NY, USA, 1991. 

[11] Holland, J.H. Adaptation in Natural and Artificial Systems: An 

Introductory Analysis with Applications to Biology, Control, 

and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 

1992. 

[12] Filipiˇc, B.; Juriˇci´c, D. An interactive genetic algorithm for 

controller parameter optimization. In Artificial Neural Nets 

and Genetic Algorithms; Springer: Berlin/Heidelberg, 

Germany, 1993; pp. 458–462 

[13] Grefenstette, J.J. Optimization of control parameters for 

genetic algorithms. IEEE Trans. Syst. Man Cybern. 1986, 16, 

122–128 

[14] R. Unger, J. Moult, Genetic algorithms for protein folding 

simulations, J. Mol. Biol. 231 (1) (1993) 75–81, 

doi:10.1006/jmbi.1993.1258. 

[15] A.L. Patton, W.F. Punch III, E.D. Goodman, A standard GA 

approach to native protein conformation prediction. In: L.J. 

Eshelman (Ed.), Proceedings of the 6th International 

Conference on GeneticAlgorithms,MorganKaufmann 

Publishers, San Francisco, 1995, pp. 574–581. 

[16] M.M. Khimasia, P.V. Coveney, Protein structure prediction as 

a hard optimization problem: the genetic algorithm approach, 

Mol. Simul. 19 (1997) 205–226. 

[17] Bui, T. N., & Sundarraj, G. (2005). An efficient genetic 

algorithm for predicting protein tertiary structures in the 2D 

HP model. In Proceedings of the 2005 conference on Genetic 

and evolutionary computation (GECCO’05) (pp. 385– 392). 

[18] Cordon, O., Herrera, F., Hoffmann, F., & Magdalena, L. 

(2001). Genetic fuzzy systems evolutionary tuning and 

learning of fuzzy knowledge bases. Advances in fuzzy 

systems-applications and theory (Vol. 19). NJ: World 

Scientific Publishing. 

[19] Cheng-Jian Lin, Ming-Hua Hsieh,An efficient hybrid Taguchi-

genetic algorithm for protein folding simulation,Expert 

Systems with Applications,Volume 36, Issue 10,2009,Pages 

12446-12453,ISSN 0957-

4174,https://doi.org/10.1016/j.eswa.2009.04.074. 

[20] Wang S., Wu L., Huo Y., Wu X., Wang H., Zhang Y. (2016) 

Predict Two-Dimensional Protein Folding Based on 

Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic 

Algorithm. In: Yin H. et al. (eds) Intelligent Data Engineering 

and Automated Learning – IDEAL 2016. IDEAL 2016. 

Lecture Notes in Computer Science, vol 9937. Springer, 

Cham. https://doi.org/10.1007/978-3-319-46257-8_2 

[21] Shor, P.W. Algorithms for quantum computation: Discrete 

logarithms and factoring. In Proceedings of the 35th IEEE 

Annual Symposium on Foundations of Computer Science, 

Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. 

[22] Grover, L.K. A fast quantum mechanical algorithm for 

database search. In Proceedings of the Twenty-Eighth Annual 

ACM Symposium on Theory of Computing, Philadelphia, PA, 

USA, 22–24 May 1996; pp. 212–219. 

[23] Miao, H.; Wang, H.; Deng, Z. Quantum genetic algorithm and 

its application in power system reactive power optimization. In 

Proceedings of the 2009 IEEE International Conference on 

Computational Intelligence and Security, Beijing, China, 11–

14 December 2009; pp. 107–111. 

[24] Laboudi, Z.; Chikhi, S. Comparison of genetic algorithm and 

quantum genetic algorithm. Int. Arab J. Inf. Technol. 2012, 9, 

243–249. 

[25] Malossini, A.; Blanzieri, E.; Calarco, T. Quantum genetic 

optimization. IEEE Trans. Evol. Comput.

 


