
EasyChair Preprint
№ 2577

Evaluating Apache OpenWhisk - FaaS

Sebastián Quevedo, Freddy Merchán, Rafael Rivadeneira and
Federico Dominguez

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 5, 2020



Evaluating Apache OpenWhisk - FaaS
Sebastián Quevedo

Escuela Politécnica del Litoral, ESPOL
Campus Gustavo Galindo, PO-Box 09-01-5863

Guayaquil, Ecuador
Email: asqueved@espol.edu.ec

Freddy Merchán
Escuela Politécnica del Litoral, ESPOL

Campus Gustavo Galindo, PO-Box 09-01-5863
Guayaquil, Ecuador

Email: fjmercha@espol.edu.ec

Rafael Rivadeneira
Escuela Politécnica del Litoral, ESPOL

Campus Gustavo Galindo, PO-Box 09-01-5863
Guayaquil, Ecuador

Email: rrivaden@espol.edu.ec

Federico X.Dominguez
Escuela Politécnica del Litoral, ESPOL

Campus Gustavo Galindo, PO-Box 09-01-5863
Guayaquil, Ecuador

Email: fexadomi@espol.edu.ec

Abstract—Function-as-a-Service (FaaS) platforms enable users
to execute user-defined functions without worrying about opera-
tional issues such as the management of infrastructure resources.
In order to improve performance, different FaaS platforms are
implementing optimizations and improvements, but it’s not clear
how good these implementations are.

In this work, Apache OpenWhisk platform is evaluated from
an approach that allows to determinate and characterize the
performance under different configuration options; it was found
that under certain premises an improvement of the performance
in cold-booting latencies up to 38% is obtain.

I. INTRODUCTION

Serverless computing has high expectations of use due to the
advantages of its implementation. In nowadays, the tendency
to run quite small applications on heavier and robust (mono-
lithic) systems is remarkable. The industry around serverless
architectures has increased [1, 2, 3, 4] and clearly shows
a signal that the trend will continue beyond conventional
applications [5, 6].

Serverless computing is a relatively new emerging cloud
architecture model, which allows developers to focus on
programming their applications with not worrying about in-
frastructure, allowing a high level of scalability [6].

Function-as-a-Service (FaaS) is a subclass of serverless
platforms, where a section of stateless code is executed
in response to an event. Provide a low-cost application is
something attractiveness of this paradigm, a flexibility where
an application consists of individual functions that can be
managed and executed separately. In general, the use of
this platform is very economical since there is not cost for
downtime and just a fraction cost of the used time [7, 8, 9,
10].

FaaS among its benefits, on the one hand allows software
developers to dedicate themselves to the logic of their ap-
plication, forgetting about management’s resources knowing
the problematic of their administration, and on the other hand
cloud providers improve the efficiency of their infrastructure

resources. In this way, applications can be deployed and scaled
fast without the need of starting new servers [7, 11, 12].

Due as mention above, FaaS model has a promising future
and a place in the cloud, however this model brings with it
challenges related to performance that may put its implemen-
tation in risk. About performance, the low latency that a user
expects when generating an event is a problem in the FaaS
model. [7] Shows the following observations:

1) Most implementations run each function in separate
containers, this leads to start containers in ”cold” and
finish the container once its execution is done. This
causes a long start latency for each request.

2) By keeping a container ’hot’ for a while to handle
future requests, it reduces the latency of a function call,
which involves a unnecessarily cost of occupying system
resources during the period of inactivity (ie, inefficiency
of the resources).

In order to improve performance, current platforms such
as OpenWhisk [13] are implementing optimizations and im-
provements, but it’s not clear how good these implementations
are. To deal with this, the evaluation of the Apache Open-
Whisk platform is proposed, from an approach that allows
to determine and characterize the performance under different
configuration options. From this approach, our contribution
consists of:

• Determine the default performance of the Apache Open-
Whisk platform for function calls.

• Optimize Apache OpenWhisk for better performance in
response latencies to a function call.

• How good are the optimizations that are made on the
Apache OpenWhisk platform

The rest of the article is organized as follows: section II
an Overview of Apache OpenWhisk platform; section III
Experiments and platform evaluation and section IV general
conclusions of this work.



II. APACHE OPENWHISK OVERVIEW

In this section, the server-free computing platform of
Apache OpenWhisk is described, its background, deployment,
the programming model, and finally the internal processing
flow explained from a usage scenario.

A. Background

Apache OpenWhisk is an open source serverless platform
that executes functions in response to events at any scale
and automatically manages all the infrastructure, services and
scaling of applications. OpenWhisk competes against big plat-
forms like Nginx [14], Kafka [15], Docker [16] and CouchDB
[17], all these platforms come together to form a serverless
cloud service. Finally, this platform offers a Command Line
Interface (CLI) called ”wsk” to create, execute and manage
easily OpenWhisk entities and that can be installed in any
operating system, in this way developers can implement and
interact with the platform [18].

B. Deployment

Apache OpenWhisk can be deployed and configured on
many platforms, because it builds its components using con-
tainers, and this allows it to support many deployment options,
locally and within a cloud infrastructure. The deployment can
be done on platforms such as Kubernetes [19], Mesos [20]
and OpenShift [21].

C. Programming Model

Apache OpenWhisck programming model is based on three
main points: Action, Trigger and Rules. Where Actions is the
stateless function that executes arbitrary code; Trigger is a
class of events that come from a variety of sources and Rules
allows to assign a trigger to an action. In addition to main
points, OpenWhisk allows to set up actions together to form a
sequence. The programming model, as an outstanding feature,
has the permissiveness of programming functions in various
types of programming language such as Java [22], Python [23]
and JavaScript [24], among others. OpenWhisk is based on an
event-driven architecture where most actions are executed as
events occur [25].

D. Processing Internal Flow

To explain the internal mechanisms of the processing flow
that Apache OpenWhisk performs, the following scenario is
proposed: A software developer wants to create a cloud appli-
cation that allows the reception of an image, reduce the size of
it and save all the data. For this, the developer chooses to use
Apache OpenWhisk with JavaScript programming language.
The flow process is as follows:

1) The developer make a function and uses the CLI of the
platform to send it and create it.

2) The developer invokes the function through an HTTP
call.

3) The system entry is through NGINEX which is mainly
used as a reverse proxy for the API that forwards the
appropriate HTTP calls to the next component. All the

requests that arrive to the OpenWhisk infrastructure
enter through NGINEX.

4) Then, NGINEX forwards the request to the controller
that works as the custody of the system, this one realizes
the authentication and the authorization of the request
before handing the control to the next component. The
included credentials in the request are verified with the
call to the CouchDB database.

5) As next step, the controller works as load balancer,
verifying the invokers state. The load balancer, knowing
which invoker are available, chooses one of them to
invoke the requested action.

6) Kafka, ”high-performance publishing and subscription
messaging distribution system”, allows communication
between the controller and invokers where the HTTP
request answer to the user with an ActivationId, the user
will use this later to have access to the results of the
resize image function.

7) As last step, OpenWhisk stores the function call results
in the CouchDB database. In addition to the resized
image, the system stores the metadata and the execution
time, the type of the ”cold or hot” system startup, start
and end date, among others.

III. EXPERIMENTAL EVALUATION

Apache OpenWhisk was evaluated by building functions
with the Java [22] and JavaScript [24] runtimes. These two
programming languages were chosen because they are the
most popular in GitHub [26], and according to the TIOBE
index [27] they are in the top positions of the ranking.
Experiments were done in the Amazon Elastic Compute Cloud
(Amazon EC2), in an instance Debian stretch amd64 of
type t2.medium. OpenWhisk runs on Kubernetes version 1.11
over Docker using the kubeadm-dind-cluster project [28]. The
eastern region of the USA (Ohio) were used.
For the execution of the experiments the following questions
were posed: What is the default performance of OpenWhisk
for applications with dependencies section III-B? How Open-
Whisk is optimized for better performance section III-C? Do
the OpenWhisk configuration optimizations allow to reduce
hot and cold-booting latencies for applications with depen-
dencies section III-D?

The code generated for the experiment can be found in https:
//github.com/asquevedos

A. Case Study: Image Resizing

Small functions of the cloud can be started quickly, since
they run on previously assigned virtual machines. However,
functions that require large packages or libraries are over-
loaded and start slowly [12]. To evaluate a real serverless
application, an application was implemented that allows the
resize of an image has a request suggested in [9], this
was implemented in Java runtimes and JavaScript of Apache
OpenWhisk.



(a)

(b)

Fig. 1: Code execution duration time every 1000ms

B. OpenWhisk Performance

To test the performance of OpenWhisk with the default pa-
rameters, a web client is implemented that simultaneously calls
the image resize functions created with Java and JavaScript
every 1000ms. Figures 1a y 1b shows for ”Y” axis the code
execution time; for ”X” axis shows the experiment time. In
average, the execution time in Java was of 18.09ms and for
JavaScript of 34.68ms. In section section III-C extends the
results of the execution with the cold-booting.

C. OpenWhisk Optimization

Apache OpenWhisk allows to make changes to the config-
uration parameters of the system limits,including how much
memory an action can use and how many action invocations
are allowed per minute. In the experiment multiple changes
of the default parameters are made looking for improvements
in the performance of Apache OpenWisk, such as ”timeout,
memory, minuteRate, concurrent” [29]. These changes ac-
cording to available hardware resources can transform into
improvements such as performance drops of the platform.
For this experiment, with the hardware resources described in
this section, the best performance is presented. The modified
parameters are ”memory1” from 256 to 512MB and ”action-
sInvokesPerminute2” from 60 to 200. the other parameters do
not provide performance improvements in the context of the
experiment.

On each call of a system function, the Apache OpenWisk
architecture stores a document in Json format, which contains
technical information of the execution. To measure the results
of hot-booting and cold-booting this is filtered by fields of
interest. The image 2a shows the Json of a hot-booting, in 2b

1A container is not allowed to allocate more than N MB of memory
2Limits the number of action invocations in one minute windows.

(a) Json hot-booting. (b) Json hot-booting.

Fig. 2: Json document as a result of a function call.

it is observed that the executed function cold-booting thanks to
the key label: ”initTime”, which shows how long the function
in cold-booting is delayed. In the context of the experiment, an
intentional cold start was not forced, so cold-booting is used
for the measurements, which are managed and prioritized by
the system.

figure 3a shows a box diagram with the obtained result
of the code execution time in hot-booting with the default
parameters ”Default” Vs. the best configuration parameters
”Best”. On the other hand, figure 3b, with the same approach
shows the results of the cold-booting.

There is a significant change in response latencies, es-
pecially in cold-booting, the following section section III-D
describes these results in more detail.

Fig. 3: Diagram box with lantencies between ”Default” vs
”Best” configuration.

D. Optimization Performance

In this section, the results obtained for the configuration
of ‘’DEFAULT” parameters Vs. the ‘’BEST” configuration of
parameters are formally analyzed. To compare the data, they
are processed in cumulative distribution function (CDF), and



the cold-booting time of the function was 90% of the time
depending on the used language.

1) Java: Figure 4 shows the obtained result of the resize
image function using Java, where with the default parameters,
90% of times the cold-booting latency is less or equal to
750ms, while with the changed parameters, 90% of times the
cold-booting is less or equal to 350ms, getting an improvement
of 400ms.

Fig. 4: Cumulative distribution function (CDF) of latencies in
cold-booting between ”DEFAULT” and ”BEST” configuration
using Java.

2) JavaScript: Figure 5 shows the obtained result of the
resize image function using Java, where with the default
parameters, 90% of times the cold-booting latency is less or
equal to 900ms, while with the changed parameters, 90% of
times the cold-booting is less or equal to 330ms, getting an
improvement of 570ms.

Fig. 5: Cumulative distribution function (CDF) of latencies in
cold-booting between ”DEFAULT” and ”BEST” configuration
using JavaScipt.

To support the results, a nonparametric Mann-Whitney U
test is performed [30], since the data obtained don’t have a nor-
mal distribution. In Mann-Whitney U test the null hypothesis
assumes that the two samples come from the same distribution
and as an alternative hypothesis that the two samples come
from different distributions. In this case for java p-value =
0.0002351 and for JavaScript p-value = 1.876e-10, so the null
hypothesis is discarded and confirming that the changes made
in the parameters allowed an improvement in the performance
of Apache OpenWhisk.

IV. CONCLUSIONS

The changes of the default configuration parameters of
Apache OpenWhisk, considering the hardware resources avail-
able, allow to improve the performance in response latencies

of access to the functions that have external libraries, to
execute the logic written by the programmer. In the experiment
proposed in this paper, an average of 38% improvement in per-
formance is obtained for cold-booting with functions written
in the Java and JavaScript languages of Apache OpenWhisk
Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum,
nulla a faucibus semper, leo velit ultricies tellus, ac venenatis
arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque,
augue quis sagittis posuere, turpis lacus congue quam, in
hendrerit risus eros eget felis. Maecenas eget erat in sapien
mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis
eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim
interdum, justo lectus sagittis dui, et vehicula libero dui cursus
dui. Mauris tempor ligula sed lacus. Duis cursus enim ut
augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur
a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel
est. Curabitur consectetuer.

ACKNOWLEDGMENT

This work is done thanks to the guidance and advice of Dr.
Cristina L. Abad.

REFERENCES

[1] Google Cloud. URL: https : / / cloud . google . com /
functions/ (visited on 02/07/2019).

[2] AWS — Lambda. URL: https : / / aws . amazon . com/es /
lambda/ (visited on 02/07/2019).

[3] OpenWhisk – IBM Developer. URL: https://developer.
ibm . com / open / projects / openwhisk/ (visited on
02/07/2019).

[4] Azure Functions. URL: http : / / azure . microsoft . com
(visited on 02/07/2019).

[5] David Strauss. “The Future Cloud is Container, Not
Virtual Machines”. In: Linux J. 2013.228 (Apr. 2013).
ISSN: 1075-3583.

[6] Ricardo Koller and Dan Williams. “Will Serverless End
the Dominance of Linux in the Cloud?” In: Proceedings
of the 16th Workshop on Hot Topics in Operating
Systems. HotOS ’17. New York, NY, USA: ACM, 2017,
pp. 169–173. ISBN: 978-1-4503-5068-6. DOI: 10.1145/
3102980.3103008.

[7] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. “SAND: Towards High-
Performance Serverless Computing”. In: USENIX An-
nual Technical Conference. 2018.

[8] “SOCK: Rapid Task Provisioning with Serverless-
Optimized Containers”. In: 2018 USENIX Annual Tech-
nical Conference (2018), pp. 57–70. ISSN: 01685597.



[9] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Jo-
hannes Grohmann, and Simon Eismann. “A SPEC RG
Cloud Group’s Vision on the Performance Challenges of
FaaS Cloud Architectures”. In: Companion of the 2018
ACM/SPEC International Conference on Performance
Engineering. ICPE ’18. New York, NY, USA: ACM,
2018, pp. 21–24. ISBN: 978-1-4503-5629-9. DOI: 10 .
1145/3185768.3186308.

[10] Blesson Varghese and Rajkumar Buyya. “Next gener-
ation cloud computing: New trends and research di-
rections”. In: Future Generation Computer Systems 79
(2018), pp. 849 –861. ISSN: 0167-739X.

[11] Scott Hendrickson, Stephen Sturdevant, Tyler Harter,
Venkateshwaran Venkataramani, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. “Serverless
Computation with OpenLambda”. In: 8th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-
Cloud 16). Denver, CO: USENIX Association, 2016.

[12] Cristina L. Abad, Edwin F. Boza, and Erwin van Eyk.
“Package-Aware Scheduling of FaaS Functions”. In:
Companion of the 2018 ACM/SPEC International Con-
ference on Performance Engineering. ICPE ’18. New
York, NY, USA: ACM, 2018, pp. 101–106. ISBN: 978-
1-4503-5629-9. DOI: 10.1145/3185768.3186294.

[13] Apache OpenWhisk. URL: https : / / openwhisk . apache .
org/ (visited on 02/07/2019).

[14] NGINEX. URL: https : / / www. nginx . com/ (visited on
02/07/2019).

[15] kafka. URL: https : / / kafka . apache . org/ (visited on
02/07/2019).

[16] Docker. URL: https : / / www. docker . com/ (visited on
02/07/2019).

[17] Couchdb. URL: http://couchdb.apache.org/ (visited on
02/07/2019).

[18] Apache OpenWhisk Documentation. URL: https : / /
openwhisk.apache.org/documentation.html (visited on
02/07/2019).

[19] Kubernetes. URL: https : / / kubernetes . io/ (visited on
02/07/2019).

[20] Apache Mesos. URL: http://mesos.apache.org/ (visited
on 02/07/2019).

[21] OpenShift. URL: https://www.openshift.com/ (visited on
02/07/2019).

[22] Java. URL: https : / / www . java . com / en/ (visited on
02/07/2019).

[23] Python. URL: https : / / www . python . org/ (visited on
02/07/2019).

[24] JavaScript. URL: https://www.javascript.com/ (visited
on 02/07/2019).

[25] Ioana Baldini, Paul Castro, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Ro-
dric Rabbah, and Philippe Suter. “Cloud-native, Event-
based Programming for Mobile Applications”. In: Pro-
ceedings of the International Conference on Mobile
Software Engineering and Systems. MOBILESoft ’16.
New York, NY, USA: ACM, 2016, pp. 287–288. ISBN:
978-1-4503-4178-3. DOI: 10.1145/2897073.2897713.

[26] Matt Weinberger. The 15 Most Popular Programming
Lan-guages, According to the ’Facebook for Program-
mers’. URL: https: / /www.businessinsider.com/the- 9-
most- popular- programming- languages- according- to-
the - facebook - for - programmers - 2017 - 10 (visited on
02/07/2019).

[27] TIOBE Index. URL: https://www.tiobe.com/tiobe-index/
(visited on 02/07/2019).

[28] kubeadm-dind-cluste Proyect. URL: https://github.com/
apache/incubator-openwhisk-deploy-kube/blob/master/
docs/k8s-dind-cluster.md (visited on 02/07/2019).

[29] OpenWhisk, System limits. URL: https : / / github. com /
apache / incubator - openwhisk / blob / master / docs /
reference.md (visited on 02/07/2019).

[30] J. Russell and R. Cohn. Mann Whitney U. Book on
Demand, 2012. ISBN: 9785511122977.


