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The Exact Solution of Travelling Salesman by Mixed Integer 
Programming in Matlab 
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Abstract. This contribution comes up with a specific solution of the travelling sales-
man problem. The driver of hauler has to deliver, using his truck, goods from the 
depot to n customers. Each customer point of delivery is given by GPS coordinates. 
The objective of the solution is to select the sequence of delivery points so that firstly 
the travel distance and subsequently the total travel time are minimal. The driver visits 
all delivery points and returns to the depot. In this contribution, one general solution 
is presented using the bound-and-branche method and by using mixed integer linear 
programming implemented in M-function. The created algorithm can be used in gen-
eral for any number n of customers. 
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1 The Travelling Salesman Problem  
The travelling salesman problem (TSP) and its classical solutions are described e.g. in [1, 2, 4, 5]. Our solution 
came from the use of integer programming which was published in [7]. In [3] is presented one implementation of 
the TSP solution with Matlab programming.  

1.1 Mathematical Formulation 

The TSP can be defined as follows. Let 0 ( , )G V E  be a connected directed graph consisting of a set of 1n  

nodes, seller depot ( 0i  ) and customer locations ( 1, ... ,i n ), and a set E  of non-negatively weighted arcs 

between each pairs of corresponding nodes of the graph 0G . For easier reference, let  1, ... ,I n  be the set of n  

customers, and  0 0I I  . The constant 0t  means the time-moment when the dealer vehicle leaves the depot. 

Each customer can be visited only once at any time greater than 0t . The order of the customers visited is not 

limited, other than by the requirement that the duration of the seller's journey through all customers (terminated 

by return to the depot) be as short as possible. For each customer i I  let im  be the assumed service time associ-

ated with the unloading of goods and dealing with the customer.  

Let i jd  be the length of the path from i - node to j - node for all 0,i j I . Therefore  
0,i j i j I

dD


  is the non-

negative distance matrix. The matrix D  can be, in general, an asymmetric one with zeros on the places of the main 
diagonal, i.e. 0i id   for each 0i I . It is necessary that the triangular inequalities be satisfied for distances among 

nodes of graph 0G . Instead of the distance matrix D  we will use, for our solution TSP, the time matrix 

 
0,i j i j I

c


C . Each element i jc  represents the pure travelling time of the seller from i  node to j  one. It is 

assumed that if the average speed v  of the vehicle among each two nodes is used, then the driving time i jc  can 

be expressed i j
i j

d
c

v
 . In this case the travel time i jc is proportional to the distance i jd . We assume that it is 

given the moment 0t  when the seller’s vehicle leaves the depot. 
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1.2 Mathematical Solution 

The core of the practical TSP solution is to find the one cycle in the graph 0G  which includes all nodes of the 

graph and which gives the shortest total driving time. For this purpose, integer variables i jx  for 0,i j I  are 

introduced, which can only take the values 0 or 1. The variables i jx  are called binary variables. Value 1i jx   

means that the arc from node i  to j  is included in the cycle and value 0i jx   means that the corresponding arc 

is not included. For systemic reason variables, i ix  are used but all are fixed by the value zero, i.e. 0iix  , for each 

0i I . Variables i jx  are elements of a matrix  
0,i j i j I

x


X . The number of flow variables i jx  is  21n . 

In our work we use other specific non-integer variables it , for each i I . Each it  indicates the moment when the 

seller leaves the i ’s customer location. By using variables it , it is guaranteed that the solution will be correct with 

all nodes during only one cycle in the graph 0G . The variables it  are included as n  elements of the vector 

 1 2, , ... , nt t tt . The number of all flow variables is  21n n  . 

The solution of TSP is realized like the optimal solution of a mixed-integer linear programming problem: 

 
 ,

, 0 1

1
min

n n

i j i j i
i j i

c x t
n u 

     
  

 
X t

  subject to (1)

 0, ,i jx i j I  are binary, {0,1}i jx    (2)

 0 0 0 0( ) , ,i j j i j i j j jc u t c x t t u t c m i j I          , i j   (3)

 0 0 0 ,j j j jc x t t m j I      (4)

 
0

01,i j
j I

x i I


   
(5)

 
0

01,i j
i I

x j I


    
(6)

 00,i ix i I   (7)

 00 1, ,i jx i j I    (8)

 0 0 ,j j jt c m t u j I      (9)

In the expressed model (1) is minimized the linear optimization function  

 
, 0 1

1n n

i j i j i
i j i

c x t
n u 

  
   (10)

The main part 
, 0

n

i j i j
i j

c x


  of the optimized function guarantees finding the cycle which takes the minimum 

amount of time. Due to the assumed constant average speed v , the total travel length is also minimal. In the second  

part 
1

1n

i
i

t
n u


  of the optimized function (10) is used the value of the constant u , which is defined as follows: 

 
0

0
1 0

max
n n

i i j
i I

i j

u t m c
 

     (11)

The value of u  guarantees, with respect to the expected values of it , that the coefficients of flow variables it  in 

the optimized function (10) are so small that they do not change the optimal solution for flow variables i jx , while 

the time variables it  are minimized. The use of terms with flow variables it  in the optimization function (10) is 

necessary. If these are not included, a solution could be generated with some values of  it  greather than necessary. 

Our model prefers, from two shortest cycles (with opposite directions), the one that gives a smaller sum of it . 
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Constraint (3) defines  1n n  conditions between flow variables i jx  and departure times it , jt , for ,i j I . In 

the case 1i jx  , the inequality (3) expresses the relationship 0 0j j j it t c m t u     . Due to the large enough 

value of  u , the right side of inequality (3) can be only non-positive and the relationship is satisfied.  

In the case 1i jx  , the inequality (3) is reduced , ,i i j j jt c m t i j I    . This expresses that the departure 

time from the node j  has to be greater than or equal to the sum of the departure time it  (from node i ), the travelling 

time i jc  (from node i  to node j ) and the service time jm  in the node j . The created optimization process 

ensures that, in the case of 1i jx  , the condition (3) is satisfied only by the equation i i j j jt c m t   . 

The constraint (4) defines relations between flow variables 0 jx  and jt , j I . In the case 0 0jx   the inequality 

expresses the relationship 0 ,j jt m t j I   . Departure time from the node j  is greater than or equal to the sum 

of departure time 0t  and service time jm . In the case 0 1jx   the inequality (4) expresses the relationship 

0 0 j j jt c m t   . Departure time from the node j  is greater than or equal to sum of departure time 0t  from the 

depot, travelling time 0 jc  from depot to node j  and service time jm . 

Statements (5) and (6) declare 2( 1)n  equation constrains, which express that only one arc leads from each node 

and only one arc leads to each node. Statement (7) declares that each 0iix  .  

The inequalities in (10) declare that the lower and upper bounds of variables i jx  are 0 and 1. The inequalities in 

(11) express the bounds of flow variables (departure times) jt , j I .  

1.3 Transformation to Matlab 

 
In the Matlab system the index 0 can not to be used, therefore all vector and matrix variables use the smallest index 
number 1. The distance matrix is transferred to the Matlab environment as matrix D, with the row and column 

indices i,j = 1,2, … ,n+1, where each component D(i,j) corresponds to the distance 1 1i jd    of the nodes 

1i and 1j . Similarly each component C(i,j) of the time matrix corresponds to the driving time 1 1i jc    

from the node 1i  to the 1j  one.  

Our created procedure for TSP solving in the Matlab code is included in the M-function SOLVER_TSP.m and it is 
fully listed as an Appendix at the end of the article. The input variables are n - number of customers, D – distance 
matrix, v – velocity of the vehicle, t0 – the moment when the seller leaves the depot, and m – row vector with 
customer service duration times. The main output variable is the column vector X of flow variables, which is 
obtained as an output of the optimization via the command intlinprog.  

The mixed-integer linear programming problem is generally expressed by  

 

( )

min

.

T

X eq eq

b b

X intcon are integers

A X b
f X subject to

A X b

l X u


     
  

 (12)

The solver for this problem is the command X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) in Matlab 
code (you can see it on the Appendix row No. 55). A more detailed explanation is in the User’s Guide [6]. 

For the solution of TSP via the intlinprog command, all flow variables are arranged in a column vector X with 

 21n n   components. First  21n  flow variables are integer variables i jx , and each variable i jx , 0,i j I  

is represented by Matlab flow variable X(i*(n+1)+j+1,1). The last n  flow variables of X are the seller's depar-
ture times 1 2, , ... , nt t t , and each variable it , i I  is represented by X((n+1)^2+i,1). 

The objective function of the mixed-integer linear programming problem (12) is, in the Matlab code, expressed 

like f’*X, where f is a column vector of coefficients with  2
1n n   components. The first  2

1n  
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components are elements of the time matrix C so that f((i-1)*(n+1)+j,1)=C(i,j), i,j  1,2,..., 1n  . 

For the last n  components of f we use the value 
1

n u
 according to relation (10) (the Appendix, row No. 2). 

The vector intcon in the command intlinprog specifies of flow variables, which are taken integers, 

intcon = 1:(n+1)^2. They are first 2( 1)n  flow variables, i.e. variables i jx . 

The constraints (3) and (4) give the system of 2n  linear inequalities with  21n n   variables. The matrix A of 

system inequalities and the column vector b of right sides are created for any n  in Matlab code statements on lines 

No. 3 to 7 in the Appendix. The constraints (5), (6) and (7) give the system of 2n  linear equalities with 

 2
1n n   variables. The matrix Aeq of system equalities and the column vector beq of right sides are created 

for any n  in the Matlab code statements on lines No. 8 to 13 in the Appendix.  

The last two input variables of the intlinprog command (2) are the column vectors lb and ub of lower and 
upper bounds of the flow variables. With respect to the relations (7), (8), (9) the components of vectors lb and ub 
are filled by commands on lines No. 14 to 17 in the Appendix 

By installation of input variables f, intcon, A, b, Aeq, beq, lb, ub in the command intlinprog, and 
running it (the line No. 18), we get the optimal TSP solution, this is the vector of flow variables X. The values of 

the first  21n   variables (component of  X), which have a value of 1, indicate the arcs that are part of the travel 

cycle. The last n  values of flow variables indicate times when the seller leaves individual customers. 

The variables X(k,1), k   2
1,2,..., 1n  , which take the value 1, determine the arcs of the shortest cycle. The 

commands from lines No. 20 to 24 allow the creation of a sequence of cycle nodes, i.e. the CYCLE vector. The first 
item of the CYCLE vector is the number 0 – depot, and the other n items are the sequence of customer numbers, 
and the last item is supplemented by the number 0 with regard to the fact that the seller returns to the depot. 

The values of components of X(k,1), k       2 2 2
1 1, 1 2,..., 1n n n n       are the seller’s departure times 

from the customer k at the optimal cycle. The vector of the departure times t, the time tRet of the seller’s arrival 
back to the depot, and the total duration of the seller's business trip AllWorkTime are calculated on lines No. 25, 
26. On lines No. 27 to 31 is created the vector tArr of arrival times to the nodes and the total distance TotDist 
traveled by the seller. The last item of the vector tArr means the time tRet when the seller returns to the depot. 
The input variables for the M-function SOLVER_TSP and its execution have to be done using a startup M-script 
that contains commands for drawing the output circle (Figure 1). The startup script is not listed in this article. 

2 Illustrative Example  
To illustrate the program we have created, we assume a seller and twelve customers. The GPS coordinates of the 

seller’s depot are 0 14.068E  (the eastern longitude) and 0 49.427N  (the northern latitude). The GPS coordi-

nates iE , iN and the service times im of customers you can find in Table 1. 

 Customer  
i 1 2 3 4 5 6 7 8 9 10 11 12 

iE   (⁰) 14.436  14.174  14.026  14.955  14.431  14.962  14.762  14.007  14.680  14.706 14.645  14.552 

iN   (⁰) 49.221  49.452  49.017  49.266  49.358  49.090  49.168  49.094 49.161  49.202  49.274  49.024 

im (min) 16 13 13 13 12 20 20 19 18 12 14 12 

Table 1  The GPS coordinates and the service times of the customers 

The distance between two customer locations (nodes) is taken as their orthonormal distance on the Earth sphere 
multiplied by a factor of 1.25. The orthonormal distance is calculated with a sphere radius R = 6371 km (mean 

radius of the Earth). All distances are included in the symmetric distance matrix D in Table 2.  

By running the function SOLVER_TSP.m with the above chosen parameters, the optimal solution was found. The 
shortest cycle is given with a node sequence 0-2-5-1-11-4-6-7-10-9-12-3-8-0 and is drawn in Figure 1. Due to the 
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symmetry of the matrix D , there is another solution that gives the same minimal travel distance and min. driving 
time. This is the opposite directed cycle 0-8-3-12-9-10-7-6-4-11-1-5-2-0, but its sum of departure times is greather. 

 

Table 2  The distance matrix D   

 

Figure 1  The minimal length cycle of the seller around all customers 

The calculated seller’s departure times 
idept  from customers, and arrival times 

iarrt  to customers are in Table 3. 

The total travelled distance by the seller vehicle is 368.60 km and the total time of a seller’s trip is 9 h 10 min. 

Times Depot Customers ranking in minimal cycle Depot 

i 0 2 5 1 11 4 6 7 10 9 12 3 8 0 

iarrt  - 4:15 5:06 5:36 6:22 7:19 7:56 8:45 9:14 9:33 10:17 11:42 12:05 13:10 

idept  4:00 4:28 5:18 5:52 6:36 7:32 8:16 9:05 9:26 9:51 10:29 11:55 12:24 - 

Table 3  The arrive and depart times of the seller  

3 Conclusion  
This paper proposes a practical solution of the travelling salesman problem for any number n-customers in Matlab 
code. The TSP is formulated as a mixed-integer linear programming problem with a new approach, which respects 
the given matrix of distances and service duration times of customers, and the constant speed of the seller’s move-
ment. The solution lies in minimizing of the seller's trip duration that leads across all customers. The constant 
speed of seller’s movement is assumed, therefore the total distance travelled is also the minimum. The created 
objective function guarantees that the total travelled distance and the total travelled time of the seller are minimal. 

The main result of this article is the creation of the M-function (Appendix) which allows to solve the TSP generally 
for any number of n customers. The created M-script is practically usable on a common personal computer for up 
to 30 customers. For 30 customers, the calculation takes less than 60 minutes, and for up to 20 customers, the 
calculation takes less then 40 seconds. M-script was successfully tested for a maximum of 40 customers. 
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The optimal solution of travelling salesman problem ensures the shortest travel distance and shortest duration of 
the business trip, and thus the best solution in terms of economic costs for the implementation of the business trip. 
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Appendix 

 1: function [X, CYCLE, TotDist, AllWorkTime, tArr] = SOLVER_TSP(n, D, v, t0, m) 
 2: C=D/60; CT=C'; u=t0+sum(max(CT))+sum(m(1:n)); f=[CT(:);ones(n,1)/u/n]; 
 3: p=(n+1)*(n+1); A=zeros(n^2,p+n); k=0; 
 4: for i=1:n;  for j=1:n; if i~=j; k=k+1; 
 5: A(k,(n+1)*i+1+j)=C(i+1,j+1)+u-t0-C(1,j+1);  A(k,p+i)=1; A(k,p+j)=-1; 
 6: b(k,1)=u-t0-C(1,j+1)-m(j); end; end; end 
 7: for i=1:n; k=k+1; A(k,1+i)=C(1,1+i); A(k,p+i)=-1; b(k,1)=t0-m(i);end  
 8: Aeq=zeros(3*n+3,(n+1)^2+n); 
 9: for i=1:n+1;  for j=1:n+1; Aeq(i,(i-1)*(n+1)+j)=1; end 
10: Aeq(i,(i-1)*(n+1)+i)=0; beq(i,1)=1; end 
11: for i=1:n+;  for j=1:n+1; Aeq(n+1+i,(j-1)*(n+1)+i)=1; end  
12: Aeq(n+1+i,(i-1)*(n+1)+i)=0; beq(n+1+i,1)=1; end 
13: for i=1:n+1;  Aeq(2*n+2+i,(i-1)*(n+1)+i)=1; beq(2*n+2+i,1)=0; end 
14: lb = zeros(p,1); for i=1:n; lb(p+i,1)=t0+C(1,1+i)+m(i); end 
15: k=0; for i=1:n+1; for j=1:n+1; k=k+1;  
16: if i==j; ub(k,1)=0; else ub(k,1)=1; end; end; end  
17: for i=1:n; ub(p+i,1)=u; end; intcon = 1:p; 
18: X = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub); 
19: X(1:p)=round(X(1:p)); 
20: for i=2:n+1  
21: if X(i)==1; CYCLE=0;  Nok=2; CYCLE(Nok)=i-1; TEST=i; break;  end; end 
22: while TEST~=1;  for j=1:n+1  
23: if X((CYCLE(Nok))*(n+1)+j)==1;  Nok=Nok+1; CYCLE(Nok)=j-1; TEST=j; break;  end 
24: end;end 
25: for i=1:n;  t(i)=X(p+i);  end 
26: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1);  AllWorkTime=tRet-t0; 
27: tArr=[t0, t(CYCLE(2:end-1))-(m(CYCLE(2:end-1))), tRet], 
28: tArr=hours(tArr), tArr.Format='hh:mm'; TotDist=0; 
29: for i=1:(n+1);  for j=1:(n+1) 
30: if X((n+1)*(i-1)+j)==1;  TotDist=TotDist+D(i,j); break;  end 
31: end; end 


