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Abstract—In view of the fact that the traditional methods
of determining potential miRNA-disease associations tend to
be destructive, labor-intensive, time-consuming, and associated
with practice effects, a number of computational methods are
being developed to address the burden on biological researchers.
In this study, we introduced the computational strategy of
non-linear gaussian profile kernel similarity and proposed a
novel deep-learning method called NGPKS1 to engage the in-
depth understanding of miRNA-disease associations. More specif-
ically, NGPKS comprehensively integrates the miRNA functional
similarity and disease semantic similarity information. Then,
the gaussian interaction profile kernel similarity algorithm was
utilized to capture the structural information between miRNAs
and diseases. Finally, a deep learning framework was constructed
for modeling the integration of two types of similarity features.
We used three model validation strategies, including five-fold
cross-validation, comparison with the state-of-the-art methods,
and ablation experiments were used to check the predictive ability
of our model. Besides, we conducted case studies for two common
diseases. As a result, there are 50 (Colon Cancer), and 47(Lym-
phoma) among the top 50 predicted miRNAs validated through
experiments. Therefore, we could conclude that NGPKS is an
effective method to predict potential miRNA-disease associations.

Index Terms—miRNA-disease matrix,machine-learning,non-
linear gaussian profile kernel similarity

I. INTRODUCTION

MicroRNAs (miRNAs) are endogenous non-coding small
RNAs of approximately 18-25 nucleotides in length, which
are transcribed under the action of RNA polymerase II and
play a role in regulating gene expression [1]. Studies have
shown that miRNAs can not only regulate gene expression
but also participate in the emergence and development of
various human diseases. Li L et al. [2] demonstrated that

1Availability and implementations:https://github.com/zht-code/NGPKS.git

miRNA-146a plays an important role in innate immunity,
inflammatory response, viral infection, and human diseases,
and they also discussed the potential use of miRNA-146a as
a biomarker for disease diagnosis, prevention, and treatment.
In addition, emerging biological experiments have also shown
that miRNAs are involved in the process of cell differenti-
ation, biological development [3], and disease progression.
Therefore, identifying the correlation between miRNAs and
diseases will not only help medical personnel to classify
pathologies but also understand the pathological mechanisms
of various complex diseases. However, traditional biological
experiments are time-consuming and expensive to research the
association between miRNAs and disease. With the continuous
improvement of computer performance, some computational
methods can be used to predict the potential association of
miRNA-disease (MDA) efficiently and economically. There-
fore, a computer-based approach to reveal potential associa-
tions between miRNAs and diseases has become a research
hotspot.

There are many computational methods to predict miRNA-
disease correlations, and these methods are mainly divided into
the following three categories:

(1)Similarity measure-based prediction. The method
based on similarity measure believes that the higher the func-
tional similarity between miRNAs, the higher the similarity of
diseases based on the high similarity of phenotype. For exam-
ple, You et al. [4] proposed a pathway-based miRNA-disease
association prediction model (PBMDA) to predict miRNA-
disease associations using a depth-first algorithm. Chen et al.
[5] proposed a similarity measure based on super disease and
super miRNA to predict MDA. Chen et al. [6] proposed a
predictive model of graphlet interaction for the miRNA-disease
association, which calculates miRNA-disease correlations by



measuring the graph interaction between two miRNAs or two
diseases. Han et al. [7] proposed a method to learn embedding-
enhanced MDA of miRNA-disease features through graph
convolution and attention mechanism. Zhao et al. [8] proposed
a similarity measure-based method to predict miRNA-disease
associations with spy and super cluster strategy (SSCMDA).
Chen et al. [9] proposed an improved restart random walk
strategy to predict miRNA-disease associations. Li et al. [10]
proposed a new ensemble network approach to calculate
similarity by benchmarking lncRNA pairs that share a target
miRNA.

(2)Machine learning based prediction. With the continu-
ous advancement in the field of artificial intelligence and the
emergence of more and more databases verified by biological
experiments, it has become possible to predict miRNA-disease
associations by means of machine learning. For example, Peng
et al. [11] proposed a learning-based method to automati-
cally identify the features of a three-layer similarity network
through an autoencoder, and input the learned features into a
convolutional neural network to predict MDA. Fu et al. [12]
proposed a deep-learning model to predict MDA by extract-
ing high-level features through stacked autoencoders. Chen
et al. [13] proposed an extreme gradient boosting machine
(EGBMMDA) prediction model is proposed, which forms an
informative feature vector by aggregating each miRNA-disease
statistics, graph theory, and matrix factorization results, and
utilizes a boosted gradient regression tree to predict MDA.
Chen et al. [14] proposed an ensemble computational model
(ELLPMDA) that combines three classical similarity-based
algorithms using ensemble learning to predict MDA. Qu et
al. [15] proposed a KATZ-based prediction model, which
predicts MDA by integrating similarity networks to construct
heterogeneous networks. Chen et al. [16] proposed a ranking
KNN-based algorithm to predict potentially relevant MDA.
Chen et al. [17] proposed a two-region network projection
method (BNPMDA), which feeds three similar networks into
a clustering machine and predicts the MDA by a two-network
recommendation algorithm.

(3)Matrix-based prediction. Matrix-based methods are
roughly divided into two categories, one is matrix processing
performed while processing data, and the other is matrix
completion performed after machine learning. Li et al. [18]
proposed a matrix completion algorithm by updating the
known adjacency matrix to predict MDA. Chen et al. [19]
proposed a computational model for MDA matrix factor-
ization and heterogeneous graph reasoning, which integrates
the similarity matrix into a heterogeneous network of sparse
learning to predict MDA. Lan et al. [20] proposed a kerned
bayesian matrix factorization method to infer latent MDAs
by integrating similarity networks. Chen et al. [21] proposed
an inductive matrix model to complete the missing miRNA-
disease association by known miRNA functional similarity
matrix, disease semantic similarity matrix, and association
matrix. Shen et al. [22] proposed a collaborative matrix fac-
torization method(CMFMDA) to predict MDA by a similarity
network. Chen et al. [23] proposed a neighborhood constraint

matrix completion method that uses neighborhood similarity
to recover the missing correlations to predict MDA. Gao et al.
[24] proposed a model based on graph laplacian regularized
negative matrix factorization to predict MDA by computing
the weighted K as the nearest known neighbors.

Although the above methods are effective for MDA predic-
tion, the current findings still have some limitations. First, the
similarity measure relies on known association information,
but it has little impact on the prediction of new diseases.
Furthermore, the prediction effect of machine learning on
new diseases was significantly improved. However, in order
to further improves the prediction accuracy, it is necessary to
reconsider how to select feature representations and machine
learning models. Finally, although the matrix-based method
also achieves certain results, the matrix method also has cer-
tain limitations. For example, the similarity network structure
affects the effect of matrix processing, and different network
structures correspond to different matrix processing methods.
However, not all matrix processing methods are helpful for
feature extraction in machine learning.

To overcome the above limitations and deficiencies, we
developed a novel non-linear gaussian profile kernel simi-
larity(NGPKS) method for predicting miRNAs by combin-
ing existing miRNA functional similarity, disease semantic
similarity, miRNA-disease association matrix, and machine
learning association with disease. First, we calculated the non-
linear gaussian profile kernel similarity matrix of miRNA and
disease by the known miRNA functional similarity matrix
and disease semantic similarity matrix, respectively. Second,
the part of the miRNA functional similarity matrix and the
disease semantic similarity matrix with a similarity of 0 was
replaced by a non-linear gaussian profile kernel similarity
score. Third, we randomly select 5430 positive and negative
samples and choose 878 features for each sample, divide these
samples into training and testing sets in a certain proportion,
and then input the pre-processed training set into a three-
layer fully connected layer network for training. Finally, the
entire model is trained end-to-end using MSE loss function
and backpropagation algorithm. In addition, we also evaluated
the predictive performance of the NGPKS model based on
5-fold cross-validation. As a result, the mean area under the
curve (AUC) of NGPKS was 0.95, the precision was 0.88,
the recall was 0.88, and the F1-score was 0.88. To further
validate the performance of our model in predicting unknown
miRNA-disease, we performed case studies on colon cancer
and lymphoma. The results show that our model can be
used as an effective tool to predict potential miRNA-disease
correlations.

II. EXPERIMENTAL MATERIALS

A. Human miRNA-disease associations

The HMDD v3.22 database collected 35,547 miRNA-
disease association items from 19,280 papers, including 1,206
miRNA genes and 893 diseases. It has been verified by

2http://www.cuilab.cn/hmdd



biological experiments. Human miRNA-disease association
data were downloaded from the HMDD v3.2 database, and
we selected 495 miRNAs and 383 human diseases from the
HMDD database and constructed a binary matrix MD. If
miRNA i∈M is associated with disease j∈D, then MD(i,j)=1.
MD(i,j)=0 if miRNA i is not associated with disease j or not
observed.

B. MiRNA functional similarity

Wang et al. [25] built a method to calculate the functional
similarity between miRNAs. The hypothesis of this method is
that the higher the functional similarity between miRNAs, the
higher the similarity based on diseases with high phenotypic
similarity. We downloaded miRNA functional similarity scores
from https://www.cuilab.cn/files/images/cuilab/misim.zip. We
constructed a symmetric matrix MM with 495 rows and 495
columns to carry the miRNA functional similarity scores,
where MM(mi,mj) represents the functional similarity scores
of miRNA i∈M and miRNA j∈M, and the scores are between
0 and 1.

C. Disease semantic similarity model

The disease semantic similarity information used in this pa-
per was obtained from the MeSH database of the US National
Library of Medicine 3. In MeSH, the relationship between
diseases is described as a directed acyclic graph (DAG), where
nodes represent diseases and edges represent relationships
between diseases. In DAG, disease d(i) is represented as
DAG(d(i)) = (d(i), N(d(i)), E(d(i))), where N(d(i)) is the set
of ancestral nodes of disease d(i) including disease d(i), and
E(d(i)) is the set of edges connecting these diseases. Therefore,
the semantic contribution of a disease t in DAG(d(i)) to disease
d(i) can be calculated as follows: D1(d(i), t) = 1 if t = d(i)

D1(d(i), t) = max {γ ∗D1 (d(i), t
′) | t′ ∈ children

of t} if t ̸= d(i)
(1)

Here, γ is the semantic contribution factor.The contribution
of disease t to the semantic value of disease d(i) decreases as
the distance between them increases. Therefore, we can get
the semantic value SD1 of the disease d(i).

SD1(d(i)) =
∑

t∈Nd(i)

D1(d(i), t) (2)

Here, we assume that according to the more shared parts
of DAGs among different diseases, the higher the semantic
similarity is, and the semantic similarity model SSDV 1 is
constructed. The calculation formula is as follows:

SSDV 1(d(i), d(j)) =

∑
t∈Nd(i)∩Nd(j)

(D1(d(i), t) +D1(d(j), t))

SD1(d(i)) + SD1(d(j))
(3)

In the SSDV 1 model, we consider the hierarchical relation-
ship of different diseases in the DAG. However, the number

3http://www.ncbi.nlm.nih.gov/

of occurrences of different diseases in DAG is different.
Therefore, we calculate another disease contribution value
based on the number of diseases:

D′
1(d(i), t) = − log

(
num( DAGs (t))

num ( diseases )

)
(4)

Here, num(DAGs(t)) represents the number of DAGs con-
taining disease t, and num(diseases) represents the number of
diseases. From this, we construct a second disease semantic
similarity models SSDV 2:

SSDV 2(d(i), d(j)) =

∑
t∈Nd(i)∩Nd(j)

(D′
1(d(i), t) +D′

1(d(j), t))

SD1(d(i)) + SD1(d(j))
(5)

III. METHODS

Based on miRNA-miRNA similarity network, disease-
disease similarity network and experimentally validated
miRNA-disease data, this study proposes a new NGPKS
method that effectively addresses the problems associated with
miRNA-disease association-related predictions.

A. Gaussian interaction profile kernel similarity for diseases
and miRNAs

Gaussian Interaction profile kernel similarity (GIP) can cal-
culate miRNA-disease information without semantic similarity
in HMDD. First, In order to determine whether disease d(i)
is associated with each miRNA, we used a binary vector
V(d(i)) to represent the interaction profile of disease d(i). GIP
similarity GD can be calculated as follows:

GD(d(i), d(j)) = exp
(
−θd∥V (d(i))− V (d(j))∥2

)
(6)

where θd is the width parameter of the function, which is
computed by normalizing the parameter:

θd = θ′d/

(
1

nd

nd∑
i=1

∥V (d(i))∥2
)

(7)

Finally, GD is the gaussian interaction profile kernel simi-
larity matrix of the disease, where the entity GD(d(i),d(j)) is
the gaussian interaction profile kernel similarity between the
diseases d(i) and d(j).

Likewise, the GIP similarity GR of miRNAs to each other
can be calculated as follows:

GR(r(i), r(j)) = exp
(
−θr∥V (r(i))− V (r(j))∥2

)
(8)

θr = θ′r/

(
1

nr

nr∑
i=1

∥V (r(i))∥2
)

(9)

Here, the miRNA interaction profiles GR(r(i), r(j)) is defined
to represent the gaussian interaction profile kernel similarity
between r(i) and r(j). θr is obtained by normalizing a new



bandwidth parameter θ′r to the average number of associated
diseases for all miRNAs.

The gaussian interaction profile kernel similarity is obtained
by normalizing a new bandwidth parameter with all miRNAs
and diseases to replace the miRNA-disease information with-
out semantic similarity in HMDD. However, this calculation
only linearly combines the normalization of the underlying
features, which may not be enough to capture the subtle
interaction between miRNA features and diseases. To over-
come this limitation, we propose a non-linear gaussian profile
kernel similarity method in this study to capture the underlying
miRNA-disease associations.

B. Non-linear gaussian profile kernels similarity for miRNA

In the non-linear gaussian profile Kernels similarity method,
the feature matrix NGM of miRNA and the feature matrix
NGD of disease are encoded by two different non-linear
gaussian profile kernels similarities, respectively. In the next
section, the encoding process of the feature matrix NGM and
the feature matrix NGD will be described.

First, the gaussian profile kernel bandwidth parameter θr
is obtained by dividing the derivative of the gaussian profile
kernel bandwidth parameter θ′r by dividing the normalized
miRNA vector. Second, we multiply the bandwidth parameters
obtained in the first step with the normalized parameters of
the corresponding miRNA features after inversion. In order
to measure the weights of observed and unobserved miRNA
entries, we added another parameter α ∈(0,1). This enables
better discovery of potential feature relationships. Finally, the
calculated non-linear gaussian profile kernel of miRNA is
saved into the NGM matrix as a feature. The specific miRNA
non-linear gaussian profile kernel similarity formula is as
follows:

NGM(r(i), r(j)) = exp((1− α)/2(−θr ∗ ∥V (r(i))−
V (r(j))∥2 + α/2(−θr ∗ ∥V (r(i))− V (r(j))∥2

)
)

(10)

θr = θ′r/

(
1

nr

nr∑
i=1

∥V (r(i))∥2
)

(11)

C. Non-linear gaussian profile kernels similarity for disease

The feature matrix NGD encoding process of the disease is
described below.

First, the gaussian profile kernel bandwidth parameter θd
is obtained by dividing the derivative of the gaussian profile
kernel bandwidth parameter θ′d by dividing the normalized
disease vector. Second, we multiply the bandwidth parameters
obtained in the first step with the normalized parameters of
the corresponding disease features after inversion. In order
to measure the weights of observed and unobserved disease
entries, we added another parameter α ∈(0,1). This enables
better discovery of potential feature relationships. Finally, the
non-linear gaussian profile kernel of the calculated disease is
saved into the NGD matrix as a feature. The formula for the
specific disease non-linear gaussian profile kernel similarity is
as follows:

NGD(d(i), d(j)) = exp((1− α)/2(−θd ∗ ∥V (d(i))−
V (d(j))∥2 + α/2(−θd ∗ ∥V (d(i))− V (d(j))∥2

)
)

(12)

θd = θ′d/

(
1

nd

nd∑
i=1

∥V (d(i))∥2
)

(13)

D. Integration of non-linear gaussian profile kernels for
miRNAs-disease similarity

In this paper, we finally use the descriptors including dis-
ease similarity, miRNA similarity, miRNA non-linear gaussian
profile kernel matrix, disease non-linear gaussian profile kernel
matrix, and miRNA-disease correlation matrix.

For diseases, we construct a semantic similarity model
SSDV 1, SSDV 2, disease non-linear gaussian profile kernel
matrix NGD. From this, we get the disease feature matrix KD:

KD(d(i), d(j))

=


SSDV 1(d(i),d(j))+SSDV 2(d(i),d(j))

2
,

if there is semantic similarity between d(i) and d(j)
NGD(d(i), d(j)), else

(14)
For miRNAs, we combine the functional similarity matrix

MM with the miRNA non-linear gaussian profile kernel matrix
NGM to form the miRNA feature matrix KM, which is
expressed as follows:

KM(r(i), r(j))

=

 MM(r(i), r(j)),
if there is semantic similarity between d(i) and d(j)

NGM(r(i), r(j)), else
(15)

E. NGPKS with fully connected nuralnetwork for miRNA-
disease association prediction

we will introduce how the NGPKS model uses the feature
matrix for sample screening, and how to input it into the fully
connected neural network for end-to-end model training and
miRNA-disease association prediction. An overview of the
framework of NGPKS is shown in Figure 1.

First, we filtered 5430 positive and negative samples indexed
from the miRNA-disease correlation matrix, and then took out
the features corresponding to their indexes to form a total of
10,860 positive and negative samples, which each sample had
878 features. Second, the selected samples are divided into
a training set and test set according to a certain proportion,
and the training set is input into a three-layer fully connected
neural network for end-to-end model training. The definition
of t-layer fully connected for model training on the training
set is as follows:

Score(t)(X) = relu
(
W (t) relu

(
· · · Sigmoid

(
W (1)X + b1

)
· · ·

)
+ bt

)
(16)

Among them, W(t)(t ∈ {1, 2, 3, . . .}) represents the weight
matrix of the t-th layer in the non-linear fully connected layer,
and Xt ∈ Rft×ft+1

represents the input feature matrix of the



Fig. 1. The framework of NGPKS. Firstly, NGPKS utilized miRNA functional similarity based on miRNA-disease association data and disease similarity
scores, and then calculated disease similarity based on MeSH disease terms. Secondly, a gaussian interaction profile kernel similarity algorithm is used to
capture the structural information between miRNAs and diseases. Finally, the integration of the two types of similarity features is modeled using a deep
learning framework.

t-th layer, where f t and f t+1 represents the input and output
dimensions of the t-th layer. bt is the bias term of the t-th layer,
and relu(·) and Sigmoid are the non-linear activation functions
of the corrected linear unit.

Finally, the model parameters are optimized and the loss
value between the predicted probability and the true label is
calculated by MSE loss function, which is defined as follows:

Loss =
1

dr

dr∑
i=1,j=1

∥score(d(i), r(j))−MD(d(i), r(j))∥2

(17)

IV. RESULTS AND DISCUSSION

A. Performance evaluation

In the experiments, we use 5-fold cross-validation (5FCV)
and 10-fold cross-validation (10FCV) to evaluate the pre-
dictive performance of NGPKS. In 5FCV and 10FCV, we
take all known miRNA-disease association samples as positive
samples, and randomly divide the positive samples into 5

subsamples or 10 subsamples, and each subsample is used
as a test sample in turn, and the rest are used as training
samples. When we predicted the score was higher than 0.5, we
considered the model to successfully predict miRNA-disease.
At training time, we set all miRNA-disease association labels
in the association matrix MM to 0.

In order to fairly evaluate the proposed model, we follow
common evaluation criteria including area under the receiver
operating characteristic curve (ROC), the area under precision
and recall (AUPR), precision, recall, and F1-score. The ROC
curve is based on the false positive rate (FPR) under different
thresholds as the abscissa and the true rate (TPR) under
different thresholds as the ordinate. AUPR is the area under the
PR curve, and the PR curve is a graph of recall and accuracy.
Accuracy is the proportion of the true minority class among
all samples that we predicted to be the minority class. The
recall rate is the proportion of all samples whose true value is
1 that we predict correctly. The F1-score is that the harmonic
mean between precision and recall tends to be closer to the
smaller of the two numbers.
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Fig. 2. (a) Comparison of the prediction performance of different fully connected layers after 5FCV;(b)Comparison of the prediction performance of different
fully connected layers after 10FCV;(c)Comparing the ROC performance of two variants of NGPKS (NGPKS and MDA)

B. Ablation experiments
In this section, we will introduce the components that

significantly affect the performance of NGPKS. One is the
effect of t-layers of linear encoders, and the other is the effect
of non-linear gaussian profile kernels.

1) Effect of t-layers of linear encoders: In this section,
we need to determine the number of linear connection layers
in the fully connected layer. Based on the miRNA-disease
association data set, we take the linear layers as 1, 2, 3,
and 4, and perform 5-fold cross-validation and 10-fold cross-
validation on different layers of linear in turn. The results are
shown in Fig.2 (a) and Fig.2 (b). In Figure 2 (a) and (b),
when the number of linear layers is 3, the model performance
is optimal. However, when the number of linear layers is
increased again, the performance of the model decreases. This
suggests that deepening the number of fully connected layers
may cause over-smoothing, resulting in a decrease in the
overall predictive performance of the model. Therefore, the
number of linear layers in the fully connected layer of the
model in this paper is 3 layers.

2) Effect of non-linear gaussian profile kernels: In this
paper, the model NGPKS introduces non-linear gaussian pro-
file kernel similarity, fusing the basic features and non-linear
features of miRNA and disease to predict miRNA-disease
associations. In order to verify the validity of the non-linear
gaussian profile kernel similarity, we employ two variants of
NGPKS (NGPKS and MDA) as comparison methods. Specif-
ically, five-fold cross-validation experiments were performed
for NGPKS and MDA under the same baseline model with
the same parameters. NGPKS is a prediction model using non-
linear gaussian profile kernel similarity. MDA is an experiment
that removes non-linear gaussian profile kernel similarity and
uses common miRNA and disease features for prediction.

As can be seen from Figure 2(c), the metrics for calculating
similarity using features of common miRNAs and diseases
are lower than those using non-linear gaussian profile kernel
similarity. This is because miRNAs with high similarity are
often associated with similar diseases, and the non-linear
gaussian profile kernel similarity fuses potential associations
between different similarity information, which can better
capture the characteristics between miRNA-diseases, thereby
improving the miRNA-disease association prediction accuracy.
Figure 2(c) shows the performance of NGPKS and its variant

model. It can be observed that the ROC of NGPKS is better
than that of the variant model.

C. Comparison with other methods

In recent years, researchers have proposed many methods
to predict miRNA-disease associations. But the datasets used
and the forecasting methods vary. In order to compare the
performance of our model NGPKS with existing methods, we
conduct experimental validations from the following aspects.
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Fig. 3. Comparison of 5FCV with other ten methods on the same database

First, we compare the prediction results of NGPKS with
seven methods in different aspects of the same dataset. The
seven competing approaches include a matrix factorization
model based on deep belief networks (DBN-MF) [26], a model
combining gradient boosted decision trees and logistic regres-
sion (GBDT-LR) [27], a multi-view multi-channel attention
graph convolutional network model (MMGCN) [28], a model
based on graph regularized generalized matrix factorization
(GRGMF) [29], a model based on local constrained linear
coding (LLCMDA) [30], a laplacian regularized least squares
method (MDA-SKF) [31]and a sparse neighborhood-based
method (SNMDA) [32]. The comparison results are shown
in table 1, it is obvious that our method performs well in
AUC, AUPR, precision, recall, and F1-score. Therefore, the
prediction performance of NGPKS outperforms other compet-
ing methods.

Second, we compare the AUC values of NGPKS with 10
other methods by 5FCV on the same dataset. The methods
compared include BNPMDA [17], DNRLCNN [33], LR-GNN
[34], MCMDA [18], MDHGI [19], MDSCMF [35], NIMGSA



TABLE I
TABLE 1 THE COMPARISON BETWEEN NGPKS AND OTHER SEVEN

METHODS ON AUC, AUPR, PRECISION, RECALL, F1-SCORE VALUE ON
THE SAME DATABASE BY 5-CV.

Methods AUC AUPR precision recall F1-score
DBN-MF 0.9169 0.9043 0.8377 0.8526 0.8451
GBDT-LR 0.9274 0.9014 0.8315 0.8273 0.8302
MMGCN 0.9266 0.2589 0.3338 0.2989 0.3146
GRGMF 0.8217 0.0769 0.1213 0.2757 0.1567
LLCMDA 0.8378 0.1022 0.1653 0.2261 0.1886
MDASKF 0.8344 0.1079 0.1794 0.2185 0.1932
SNMDA 0.8204 0.1115 0.1770 0.2857 0.2126
NGPKS 0.9584 0.9116 0.8873 0.8863 0.8874

[36] , NMFMC [37], SAEMDA [38] and SGNNMD [39].
Figure 3 shows the AUC values of all methods. It can be seen
from the figure that the AUC of our method is significantly
better than other methods.

Finally, the proposed strategy does improve the performance
of the model to some extent, but it is still evident from Table 1
that the model has a lot of room for improvement. Observing
Figure 2, our ROC curve shows the optimal, but the advantage
is not so obvious. Therefore, we still have to further improve
the prediction accuracy on future work.

D. Case Studies

To further evaluate the performance of NGPKS in predicting
novel miRNA-disease association information, we performed
a specific case study. We still use the data selected above in the
HMDD database for the dataset, which has 5430 known as-
sociation entries and 184155 unknown association entries. We
made predictions for colon cancer and lymphoma separately
and validated all predicted top 50 potentially relevant miRNAs.
We used the miRCancer database [40] and the dbDEMC
database [41] to validate miRNAs potentially associated with
these two diseases. If our predicted potentially associated
miRNAs are included in at least one database, it means that
our model (NGPKS) successfully predicts the association of
miRNAs with this disease, further demonstrating the validity
of our model for predicting miRNA-disease. Two case studies
are presented below.

Colon cancer is a common malignant tumor in the gastroin-
testinal tract, and its incidence is second only to gastric cancer
and esophageal cancer. Because colon cancer has no obvious
early symptoms, it is often missed or misdiagnosed clinically.
Therefore, there is an urgent need for more sensitive and
specific molecular biomarkers to facilitate the early diagnosis
of colon cancer. Here, colon cancer is the first case study in this
model. Similarly, the colon cancer-related miRNAs predicted
by this model were validated by dbDEMC and miRCancer
databases. The experimental results are shown in Table 2, in
which the top 50 candidate miRNAs have all been verified by
the dataset. Some typical miRNA-related works are introduced
below. Long et al. [42] showed that a-mir-214 can inhibit
the growth of colon cancer cells by inhibiting ARL2 (ADP-
ribosylating factor-like protein 2), and also pointed out that
this miRNA may be the future treatment of colon cancer

an important goal. Valeri et al. [43] showed that miR-135b
upregulation is associated with tumor stage and poor clinical
outcome and has been identified as a critical downstream
effector of oncogenic pathways and a potential target for colon
cancer therapy.

Lymphoma is a type of cancer that arises from lymphoid
tissue. Hodgkin lymphoma and non-Hodgkin lymphoma are
the two main subtypes of lymphoma. Hodgkin lymphoma
and non-Hodgkin lymphoma occur in children, adolescents,
and adults. Lymphoma cancer becomes more common as
people age. Unlike most cancers, lymphoma rates are highest
among adolescents and young adults (ages 15 to 39) and older
adults (aged 75 or older). Whites are more likely to develop
lymphoma than blacks, and men are more likely to develop
lymphoma than women. We used the NGPKS model to predict
miRNAs with potential associations with lymphoma and then
selected the top 50 miRNAs from the predicted results for
validation with miR2Disease and dbDEMC. The validation
results are shown in Table 3. The validation results showed
that 47 of the top 50 miRNAs associated with lymphoma were
confirmed. For example, Akao et al. [44] found that 8 of 9
patients with B-cell lymphoma had extremely low levels of
miR-145 expression. The miR-145 is consistently expressed
at low levels in human Burkitt’s lymphoma cell lines and
inversely correlates with the cell proliferation observed in EBV
(Epstein-Barvirus) transformed B-cell lines. The oncogene
Myc plays an important role in the development of B-cell
lymphoma, especially in Burkitt’s lymphoma. Cheson et al.
[45] confirmed that the oncogene Myc regulated by miR-125b
is related to B-cell lymphoma and found to be downregulated
in Burkitt’s lymphoma in kitt lymphoma. Craig et al. [46]
found that among the Myc-repressed miRNAs downregulated
in malignant lymphomas, miR-34a exhibited the strongest
antiproliferative properties when overexpressed in diffuse large
B-cell lymphoma cells.

V. CONCLUSION

MiRNAs are associated with a variety of human dis-
eases, and identifying miRNA-disease associations can help
in clinical trials and the treatment of diseases. In recent
years, there have been more and more miRNA-disease-related
databases, which also help researchers to further predict un-
known miRNA-diseases through computational methods. In
this study, we propose a novel non-linear gaussian profile
kernel similarity method (NGPKS) to predict miRNA-disease
associations. First, we calculated the non-linear gaussian
profile kernel similarity matrix of miRNA and disease by
the known miRNA functional similarity matrix and disease
semantic similarity matrix, respectively. Second, the part of the
miRNA functional similarity matrix and the disease semantic
similarity matrix with a similarity of 0 was replaced by
a non-linear gaussian profile kernel similarity score. Third,
we randomly select 5430 positive and negative samples and
choose 878 features for each sample, divide these samples
into training and testing sets in a certain proportion, and
then input the pre-processed training set into a three-layer



TABLE II
THE TOP 50 VERIFIED ASSOCIATIONS ASSOCIATED WITH COLON CANCER.

Rank miRNAs Evidence Rank miRNAs Evidence
1 hsa-mir-125a dbDEMC;miRCancer 26 hsa-mir-650 dbDEMC
2 hsa-mir-198 dbDEMC 27 hsa-mir-744 dbDEMC
3 hsa-mir-29b dbDEMC 28 hsa-mir-100 dbDEMC;miRCancer
4 hsa-mir-15a dbDEMC;miRCancer 29 hsa-mir-214 dbDEMC;miRCancer
5 hsa-mir-208b dbDEMC 30 hsa-mir-484 dbDEMC;miRCancer
6 hsa-mir-151a dbDEMC 31 hsa-mir-503 dbDEMC;miRCancer
7 hsa-mir-191 dbDEMC 32 hsa-let-7d dbDEMC
8 hsa-mir-192 dbDEMC;miRCancer 33 hsa-mir-106b dbDEMC
9 hsa-mir-193b dbDEMC;miRCancer 34 hsa-mir-132 dbDEMC
10 hsa-mir-204 dbDEMC;miRCancer 35 hsa-mir-15b dbDEMC;miRCancer
11 hsa-mir-205 dbDEMC;miRCancer 36 hsa-mir-222 dbDEMC
12 hsa-mir-223 dbDEMC;miRCancer 37 hsa-mir-301b dbDEMC
13 hsa-mir-449a dbDEMC 38 hsa-mir-376a dbDEMC
14 hsa-mir-449b dbDEMC 39 hsa-mir-376b dbDEMC
15 hsa-mir-99b dbDEMC 40 hsa-mir-376c dbDEMC
16 hsa-mir-101 dbDEMC;miRCancer 41 hsa-mir-424 dbDEMC;miRCancer
17 hsa-mir-196b dbDEMC 42 hsa-mir-675 dbDEMC;miRCancer
18 hsa-mir-30b dbDEMC 43 hsa-mir-410 dbDEMC;miRCancer
19 hsa-mir-30c dbDEMC 44 hsa-mir-128 dbDEMC
20 hsa-mir-320c dbDEMC 45 hsa-mir-153 dbDEMC;miRCancer
21 hsa-mir-374b dbDEMC;miRCancer 46 hsa-mir-181c dbDEMC
22 hsa-mir-421 dbDEMC 47 hsa-mir-590 dbDEMC;miRCancer
23 hsa-mir-433 dbDEMC;miRCancer 48 hsa-mir-485 dbDEMC
24 hsa-mir-452 dbDEMC 49 hsa-mir-509 dbDEMC
25 hsa-mir-519a dbDEMC 50 hsa-mir-765 dbDEMC

TABLE III
THE TOP 50 VERIFIED ASSOCIATIONS ASSOCIATED WITH LYMPHOMA.

Rank miRNAs Evidence Rank miRNAs Evidence
1 hsa-mir-125a dbDEMC 26 hsa-mir-205 dbDEMC
2 hsa-mir-499a dbDEMC 27 hsa-mir-215 dbDEMC
3 hsa-mir-29a dbDEMC;miRCancer 28 hsa-mir-221 dbDEMC
4 hsa-mir-29b dbDEMC;miRCancer 29 hsa-mir-223 dbDEMC;miRCancer
5 hsa-let-7a dbDEMC 30 hsa-mir-25 dbDEMC
6 hsa-mir-141 dbDEMC 31 hsa-mir-26b dbDEMC;miRCancer
7 hsa-mir-143 dbDEMC 32 hsa-mir-31 dbDEMC
8 hsa-mir-145 dbDEMC;miRCancer 33 hsa-mir-34b dbDEMC
9 hsa-mir-1 dbDEMC 34 hsa-mir-429 unconfirmed
10 hsa-mir-133a dbDEMC 35 hsa-mir-449a dbDEMC
11 hsa-mir-208b dbDEMC 36 hsa-mir-449b unconfirmed
12 hsa-mir-103a unconfirmed 37 hsa-mir-93 dbDEMC
13 hsa-mir-106a dbDEMC;miRCancer 38 hsa-mir-95 dbDEMC
14 hsa-mir-10b dbDEMC 39 hsa-mir-99b dbDEMC
15 hsa-mir-151a dbDEMC 40 hsa-let-7e dbDEMC
16 hsa-mir-152 dbDEMC 41 hsa-mir-1246 dbDEMC
17 hsa-mir-181b dbDEMC 42 hsa-mir-125b dbDEMC
18 hsa-mir-182 dbDEMC 43 hsa-mir-146b dbDEMC;miRCancer
19 hsa-mir-183 dbDEMC 44 hsa-mir-148a dbDEMC
20 hsa-mir-191 dbDEMC 45 hsa-mir-148b dbDEMC
21 hsa-mir-192 dbDEMC 46 hsa-mir-196b dbDEMC
22 hsa-mir-193b dbDEMC;miRCancer 47 hsa-mir-219 dbDEMC
23 hsa-mir-194 dbDEMC 48 hsa-mir-27a dbDEMC
24 hsa-mir-195 dbDEMC 49 hsa-mir-27b dbDEMC
25 hsa-mir-204 dbDEMC 50 hsa-mir-34a dbDEMC



fully connected layer network for training. Finally, the entire
model is trained end-to-end using MSE loss function and
backpropagation algorithm. As a result, the AUC of NGPKS
has the highest value of 0.95, confirming that our method
significantly outperforms the existing methods. To comprehen-
sively evaluate the performance of our method, we compare it
with 8 state-of-the-art computational models under 5FCV. The
results show that our method can effectively predict miRNA-
disease correlations. In addition, we have conducted case
studies. After validation, our method can effectively predict
unknown miRNA-disease associations.

The excellent predictive performance of NGPKS is at-
tributed to several important factors. First, NGPKS applies
to diseases with unknown associated miRNAs, which greatly
improves the utility of this method. Second, the non-linear
gaussian profile kernel similarity method can enhance the
features between miRNA-diseases, and the combination be-
tween new features can be better captured when calculating
similarity. Finally, NGPKS can obtain more miRNA-disease
feature representations from heterogeneous networks than sim-
ply linearly combining features from different levels.

Although NGPKS has good performance in predicting novel
miRNA-disease associations, it has some limitations. For ex-
ample, the calculation of similarity needs further improvement.
Furthermore, we simply take the final result as the average
of the prediction scores from different similarity networks,
which may lead to suboptimal results. Therefore, we remain
eager to develop new computational models to overcome these
limitations.
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