ﬁ QO0000ool bobooeo

Ne 1680

00 000000000 00ionioo 0o toitbotioo Doooo
00o0o 00 Omog 0ood

Tianze Wu, Weiyi Liu and Yongwei Jin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 16, 2019









Fig. 4. Model Structure.

our model to DNNDK. The structure of the model is shown
in Fig. 4.

The main part of the model is CNN layers, they can extract
features from the images taken by the car’s front camera. Some
fully connected layers follow the CNN layers, they can finally
extract the command information needed for auto-driving. The
activation function we use is Relu because it works well and
can be accelerated by DPU. The last layer is a Softmax layer,
it can provide classification and normalization functions for
the model.

Although the current model is not the perfect one and
it cannot be accelerated by DPU totally, it’s easy to make
changes and optimizations to the model. With the development
of DNNDK, more portion of the model can be accelerated and
the whole system can be more efficient and powerful.

D. Simulator

Now we have built a simulator based on sdsandbox [13] to
collect data for training, and we can also test our model using
the simulator. With this tool, we can further separate software
part from hardware part, even you don’t have a real car, you
can build and test your model in the virtual environment. The
interface of our simulator is shown in Fig. 5.

The main part of the model is CNN layers, they can extract
features from the images taken by the car’s front camera. Some

i<
FPS:444 |

Fig. 5. Simulator Interface.

fully connected layers follow the CNN layers, they can finally
extract the command information needed for auto-driving. The
activation function we use is Relu because it works well and
can be accelerated by DPU. The last layer is a Softmax layer,
it can provide classification and normalization functions for
the model.

Although the current model is not the perfect one and
it cannot be accelerated by DPU totally, it’s easy to make
changes and optimizations to the model. With the development
of DNNDK, more portion of the model can be accelerated and
the whole system can be more efficient and powerful.

E. Algorithms

Crossroad control.

Since the Al model cannot handle the situation when the
car meets a crossroad. We will help the car decide which
direction to take according to the competition’s request.
The car will use neural network or cv algorithms to
recognize all the scenes that need it to make a choice, for
example the crossroad. After the car meets these scenes,
first the main controller will tell the car which direction to
take, then the car will use predefined control commands
to drive through the crossroad. When this progress is
finished, the Al model will retake the control of the car.
Image process.

Although our solution is end-to-end, the training data
needs to be processed. Now we just do the normalization
to the input images, later we will try some more according
to the evaluation of the model’s performance.

Obstacle avoidance.

For obstacle avoidance, traditional methods will first
recognize the objects from the image and then use the
state machine functions to make decisions. Our solution is
quite different from it, we will add the obstacle avoidance
scenes to the step of collecting training data. As a result,
when the training step is finished, the Al model can avoid
the obstacle automatically.

Road lane detection.

To detect road lane, we first use 5*5 Gaussian filter
to remove the noise of the image. Then Canny edge
detection [14] is applied to detect the edges of the image.
Hough transform [15] is employed to detect the lines of






