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ABSTRACT:  The behaviour of an elastic bar; restrained at one end and subjected to a rigid 
impactor at the other end is evaluated in this analytical work. In the original work on this 
problem, duration of impact is only considered up to four-times of the time taken by 
compressive stress wave to travel from end struck to the bottom support and back. The current 
work revisits the closed-form solution provided in the literature in terms of the set of first four 
compressive stresses, then formulates these terms in programming language. The code is then 
utilised to derive arbitrary number of higher-order stress intervals depending on mass ratio of 
the system to complete the whole impact process. Compressive stress at the end struck and its 
corresponding load are then formulated for each stress interval by the current and previous 
compressive stress formula; a process which provides force history at the end struck for the 
whole impact duration. Parametric study is then performed on the number of selected input 
parameters in the stress equations e.g. mass ratio, drop height (or initial velocity), elastic 
modulus and length of the elastic bar; revealing proportional relations to apparent output 
variables obtained from force history, namely number of intervals, initial compressive stress, 
pulse width, peak load and interval frequency. These proportionalities and their corresponding 
mathematical relations are useful in explaining and correlating respective output variable-
parameter relationships obtained via experimental or numerical works. The closed-form 
solution provided in this work serves as a benchmark to numerical or experimental impact 
problems assuming homogeneous and isotropic bar behaving linear elastically. 

KEY WORDS:  Elastic bar, Stress intervals, Force at end struck, Impact and Mathematical 
relations. 

1. INTRODUCTION 
This paper considers the behaviour of an elastic bar, restrained at one end and subjected to an 

impact force exerted by an incoming rigid impactor at the other end. The treatment in this 
work is analytical and was first considered by [1]. However, their work was limited to  the 
analytical treatment of mass ratio, α (ratio of the impacted bar to the rigid moving impactor -
always less than unity) values between 1 and 1/6. When an elastic bar is struck, it undergoes a 
compression phase of collision followed by an elastic restitution of contact [2]. For the mass ratios 
considered by [1], the duration in which this happens is less than 4T, where T is time taken for the 
compressive stress wave to travel from the end struck to the restrained support and back. 
Determination of the complete contact duration, termed as pulse duration or pulse width (tpulse), 
depends on the mass ratio; more compressive wave terms are required as the mass ratio decreases. 
This work extends derivation procedure of a set of compressive stresses, 𝑠𝑠𝑛𝑛, 𝑛𝑛 =
0, 1, 2, 3 .  .  .  expressed by [1] to arbitrary number of stress interval, 𝑛𝑛 + 1. The derived 
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expressions of compressive stress at end struck enables analytical evaluation of compressive impact 
load experienced by the bar’s end struck to be evaluated. 

The main objectives of this research are first to derive higher-order compressive stress terms. 
Expressions for up to the fourth term, s3, are first derived to gain an insight into the analytical 
formulation briefly provided by [1]. Further higher-order terms, which depend on the mass ratio, are 
then derived using a symbolic maths code developed in MATLAB (R2016a, 1994-2018 The 
MathWorks, Inc.). The ultimate output expected from this work is to obtain the analytical 
compressive load response history at the impacted end of the bar for smaller mass ratios, which 
are useful as a benchmark closed- form solution in explaining physical phenomenon of axial bar 
impact as well as validating numerical finite element (FE) models. Then the study attempts to 
express relations between output variables from the obtained pulse and input parameters 
governing the axial impact problem. 

2. PROBLEM DEFINITION 
Consider a stationary elastic cylinder with diameter, 2r, and length, l, subjected to impact 

due to an incoming rigid impactor at one end (called the end struck), while the other end is 
fully-restrained as shown in Fig. 1as explained by [1]. The impactor has an initial velocity, 𝑣𝑣0, 
just prior to the first contact at time 𝑡𝑡 = 0. Mechanical impedance of a medium is defined as a 
product of the medium’s elastic wave velocity and its mass density. Therefore, based on 
impedance components of bar’s material, i.e. mass density (ρ) and elastic modulus (E ); the 
initial compressive stress at impact time 𝑡𝑡 = 0 is given by 

𝜎𝜎0 = 𝑣𝑣0�𝜌𝜌𝜌𝜌, (1) 

where �𝜌𝜌𝜌𝜌 is an alternative expression for the bar’s impedance. Eq. (1) shows that initial stress 
𝜎𝜎0 is dependent on the impactor’s initial velocity, 𝑣𝑣0. This initial stress expression is used 
repeatedly throughout the stress wave derivation process while applying the boundary 
condition between intervals. The first compressive stress wave, s0, originates from the equation 
of motion of the body and is only applicable for the first stress wave interval duration, 

𝑇𝑇 = 2𝑙𝑙
𝑐𝑐

 , (2) 

where 𝑐𝑐 is the elastic wave speed, governed by material’s elastic properties i.e. 

𝑐𝑐 = �𝐸𝐸
𝜌𝜌
 , (3) 

for a one-dimensional problem. 

 
Fig. 1. (a) The system; (b) stress wave at t < T/2; and (c) stresses at t = T 



IIUM Engineering Journal, Vol. xx, No. x, 20xx Hamdani et al. 
https://doi.org/10.31436/iiumej.vxxixx.xxxx 

 
 

Individual compressive wave terms required to evaluate the total stress at the end struck, σ(t) are 
first derived for up to t = 4T. Time of contact or pulse duration can be estimated by 

𝑡𝑡pulse ≈
𝜋𝜋𝑙𝑙
𝑐𝑐
�1
𝛼𝛼
 ,  (4) 

which works well for systems with very small mass ratio [1]. Considering normalised time 2 𝑡𝑡
𝑇𝑇

=
2, 4, 6, 8 .  .  . corresponding to the first, second, third, fourth,  .  .  . intervals respectively, the 
required number of intervals, N is estimated by using the normalised time of pulse width, i.e. 

2𝑁𝑁 = 2 𝑡𝑡pulse
𝑇𝑇

.   (5) 

Derivation of these sequential compressive stress waves, sn, leads to total compressive stress 
history, 𝜎𝜎(𝑡𝑡), at the impacted surface of the bar. The total compressive stress at end struck is 
calculated as the summation of compressive wave moving towards fixed end at current time, 𝑠𝑠𝑛𝑛(𝑡𝑡) 
and delayed moving wave at the previous time interval, 𝑠𝑠𝑛𝑛−1(𝑡𝑡 − 𝑇𝑇) expressed as 

𝜎𝜎𝑛𝑛(𝑡𝑡) = 𝑠𝑠𝑛𝑛(𝑡𝑡) + 𝑠𝑠𝑛𝑛−1(𝑡𝑡 − 𝑇𝑇).   (6) 
The total compressive stress in the history of the end struck is transformed to force history by 

multiplying the stress values with cross- sectional area (A) of the bar. In the case of drop test from 
a certain height, h, the initial velocity is given by 

𝑣𝑣0 = �2𝑔𝑔ℎ;   (7) 

where g is the acceleration due to gravity. In this work, the effect of mass ratio (𝛼𝛼), drop height 
(h), elastic modulus (E) and length of elastic bar (l) on the resulting output variables obtained from 
force history viz. number of intervals (N), initial compressive stress (𝜎𝜎0), peak load (𝐹𝐹max), pulse 
width (𝑡𝑡pulse) and interval frequency (f) is considered. 

3. FIRST COMPRESSIVE STRESS AND DERIVATION OF 
SUBSEQUENT INTERVALS 

In this section, a set of first four compressive stress responses, sn, n = 0, 1, 2, 3; are derived for stress 
wave history traversing to the base (fixed end) then returning back to the end struck for every 
sequential time interval. These resulting equations are cross-checked with final-form expressions in 
the referenced original work by [1]. 

The first compressive stress wave term, 𝑠𝑠0, is obtained by using 

𝑠𝑠0 = 𝜎𝜎 = 𝜎𝜎0𝑒𝑒
−𝑡𝑡�𝐸𝐸𝐸𝐸𝑀𝑀 ,   (8) 

where M is the ratio of impactor’s mass, 𝑚𝑚impactor to the bar’s impacted area, A [1], given by 

𝑀𝑀 = 𝑚𝑚impactor 
𝐴𝐴

.   (9) 

Replacing 
�𝐸𝐸𝜌𝜌
𝑀𝑀

= 2𝜎𝜎 
𝑇𝑇

,   (10) 

the expression for the first stress response becomes 

𝑠𝑠0 = 𝜎𝜎0𝑒𝑒
−2𝛼𝛼𝑡𝑡𝑇𝑇 ; 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇.   (11) 

Note that the mass ratio, 𝛼𝛼 is expressed as 



IIUM Engineering Journal, Vol. xx, No. x, 20xx Hamdani et al. 
https://doi.org/10.31436/iiumej.vxxixx.xxxx 

 
 

𝛼𝛼 = 𝜌𝜌𝑙𝑙 
𝑀𝑀

,  (12) 

representing a dimensionless quantity. 
In the subsequent compressive stress terms, they are represented by 

𝑠𝑠𝑛𝑛(𝑡𝑡) = 𝑠𝑠𝑛𝑛−1(𝑡𝑡 − 𝑇𝑇) − 4𝛼𝛼
𝑇𝑇
𝑒𝑒−

2𝛼𝛼𝑡𝑡
𝑇𝑇 �∫ 𝑒𝑒

2𝛼𝛼𝑡𝑡
𝑇𝑇 𝑠𝑠𝑛𝑛−1(𝑡𝑡 − 𝑇𝑇)𝑑𝑑𝑡𝑡 + 𝐶𝐶𝑛𝑛�,  (13) 

where 𝐶𝐶𝑛𝑛 is the constant of integration in the (𝑛𝑛 + 1)th expression. The constant is found by 
applying boundary condition at the end of every interval, 𝑡𝑡 = (𝑛𝑛 + 1)𝑇𝑇, at which the compressive 
stress at end struck suddenly increases by 2𝜎𝜎0 as shown in Fig. 1(c); a condition expressed as 

[𝜎𝜎𝑛𝑛−1(𝑡𝑡)]𝑡𝑡=𝑛𝑛𝑇𝑇 + 2𝜎𝜎0 = [𝜎𝜎𝑛𝑛(𝑡𝑡)]𝑡𝑡=𝑛𝑛𝑇𝑇 , 𝑛𝑛 = 1, 2, 3,    .   .   .  ;  (14) 

where 𝜎𝜎𝑛𝑛(𝑡𝑡) and 𝜎𝜎𝑛𝑛−1(𝑡𝑡) are total stresses at instantaneous start of next and the end of previous 
intervals respectively. For instance, the conditions in Eq. (14) for the instantaneous starting time of 
second and third intervals are written as 

𝑠𝑠0(𝑡𝑡) + 2𝜎𝜎0 = [𝑠𝑠1(𝑡𝑡) + 𝑠𝑠0(𝑡𝑡 − 𝑇𝑇)]𝑡𝑡=𝑇𝑇, (15) 
and  

[𝑠𝑠1(𝑡𝑡) + 𝑠𝑠0(𝑡𝑡 − 𝑇𝑇)]𝑡𝑡=2𝑇𝑇 + 2𝜎𝜎0 = [𝑠𝑠2(𝑡𝑡) + 𝑠𝑠1(𝑡𝑡 − 𝑇𝑇)]𝑡𝑡=2𝑇𝑇  (16) 
respectively. After simplification, the compressive stress terms in Eq. (13) are expressed in a general 
form as 

𝑠𝑠𝑛𝑛(𝑡𝑡) = 𝑠𝑠𝑛𝑛−1 + 𝜎𝜎0𝑒𝑒
−2𝛼𝛼�𝑡𝑡𝑇𝑇−𝑛𝑛� �∑ 𝑘𝑘𝑚𝑚4𝛼𝛼𝑚𝑚 �𝑛𝑛 − 𝑡𝑡

𝑇𝑇
�
𝑚𝑚

𝑛𝑛
𝑚𝑚=0 � ;  𝑛𝑛𝑇𝑇 ≤ 𝑡𝑡 ≤ (𝑛𝑛 + 1)𝑇𝑇.  (17) 

Eq. (17) characterises all except 𝑠𝑠0, in which constant 𝑘𝑘𝑚𝑚 ,𝑚𝑚 = 0, 1, 2, 3,   .  .  .  are shown in 
Table 1 for the second (𝑠𝑠1) until the sixth stress intervals (𝑠𝑠5). Constants in the first three stress 
expressions in Table 1 match with the derivation by [1]. 

Table 1: Constant 𝑘𝑘𝑚𝑚in Eq. (17) for 𝑠𝑠1until 𝑠𝑠5 

𝒔𝒔𝒏𝒏 m 𝒌𝒌𝒎𝒎constant 

𝒔𝒔𝟏𝟏 0 
1 

1 
1 

𝒔𝒔𝟐𝟐 
0 
1 
2 

1 
2 
2 

𝒔𝒔𝟑𝟑 

0 
1 
2 
3 

1 
3 
6 

8 3⁄  

𝒔𝒔𝟒𝟒 

0 
1 
2 
3 
4 

1 
4 

12 
32 3⁄  
8 3⁄  

𝒔𝒔𝟓𝟓 

0 
1 
2 
3 
4 
5 

1 
5 

20 
80 3⁄  
40 3⁄  

32 5(3)⁄  
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As compressive stress expression in Eq. (17) becomes substantially long for 𝑛𝑛 >  3, hence the 
problem is generalised in a programming language with the purpose of developing a symbolic code 
for arbitrary number of higher-order stress intervals. The procedure utilises ‘symbolic math 
computation’ in MATLAB which the results are validated against [1] in terms of the interval and 
total compressive stress for mass ratio of 1/8 as shown in Fig. 2. The input parameters are set for 
𝜎𝜎0 = 1 in this example. The graphs demonstrate instantaneous rise of stress at the beginning of each 
interval (2𝑡𝑡 𝑇𝑇⁄ = 2, 4, 6,   .  .  .) and decaying stress values until the next interval as described by Eqs. 
(14-16) and (17) respectively. Fifty data points are assigned in each interval to plot graphs in Fig. 2. 

 
Fig. 2. Interval and total compressive stress for a system with mass ratio 𝛼𝛼 = 1 8⁄ . Stress 

unit is unnecessary. 

Total compressive stress as a pulse response in Fig. 2 shows the compression phase of collision 
up to the peak stress, followed by restitution phase of contact post the peak point until the stress 
drops back to zero [2] during the fifth interval. Its stress values during instantaneous rise depicts 
summation of the current stress wave and the delayed wave of the previous time interval as described 
in Eq. (6). This 𝜎𝜎(𝑡𝑡) pulse response exhibits unsymmetrical bell shaped curve overall, which 
becomes almost symmetrical if it constitutes a substantially high number of intervals corresponding 
to cases having small mass ratio values [3]. Furthermore, force response is obtained by diving the 
compressive stress history with the impacted cross-sectional area of the axial bar. 

4. PARAMETRIC STUDY 
The input parameters governing impulsive response are provided in the first stress wave, 𝑠𝑠0 as 

shown in Eqs. (1, 8), such as mass ratio, initial velocity or drop height and elastic bar’s material 
properties (E and 𝜌𝜌). The expression includes structural dimensions as well, which are cross-
sectional area (A) and length of the bar (l); in the form of mass ratio (Eq. 9, 12) and interval 
time (Eq. 2). This section analyses the effect of these parameters on four main output variables 
from the system, namely number of stress intervals (N), maximum total stress or its 
corresponding peak load (𝐹𝐹max), impact duration or pulse width (𝑡𝑡pulse) and interval frequency 
(f) which is an inverse of T. 

4.1. Mass ratio, 𝜶𝜶 

The mass ratio, 𝛼𝛼 is a function of density and dimension of elastic bar, as well as the mass of 
rigid impactor (Eqs. 9, 12). The effect of mass ratio on stress values and number of intervals is 
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shown in Fig. 3 for interval stress wave and total compressive stress. These graphs of mass ratio 
ranging between one and one-sixth replicate plots by [1], hence proving the reliability of the 
developed code in this work to produce accurate stress response of this impact problem. 

  
(a) Interval stress wave, 𝑠𝑠𝑛𝑛 (b) Total compressive stress, 𝜎𝜎(𝑡𝑡) 

Fig. 3. Effect of mass ratio on stresses and number of intervals. Units are consistent. 

The end time or pulse width is determined by using linear interpolation of datapoints, estimating 
the corresponding time when stress value drops to zero. This interpolation method is accurate when 
the number of datapoints is sufficiently adequate in plotting the final stress interval. The required 
number of intervals, N can be estimated by 

𝑁𝑁 = 𝜋𝜋
2
�1
𝛼𝛼

 ,  (18) 

as proposed by [1], approximated from pulse width duration in Eq. (4). Some discrepancies are 
observed between the estimator in Eq. (18) with the actual required N as shown in Fig. 3, 
understandably due to 𝛼𝛼 being relatively close to unity; this estimation improves as mass ratio 
is sufficiently small. Practically, it is advised to consider one higher interval expression to 
accommodate whole pulse duration in the response. 

4.2. Drop height, 𝒉𝒉 
Parametric study on drop height, h is based on a report by [3], in which trabecular bone samples 

having diameter of 10.6 mm and length of 12 mm were impacted by a 26-g hammer as shown in 
Table 2. The drop height corresponds to initial velocity, 𝑣𝑣0 by applying the principle of energy 
conversion as shown in Eq. (7). Trabecular bone’s elastic modulus of 531 MPa is estimated by [4] 
and falls within ranges reported by many studies including [5-10]. 

Table 2: Summary on the effect of drop height parameter; Units: length [mm], mass [g], 
time [msec], elastic modulus [MPa], load [kN] 

h [mm] 
Input parameters Output variables 

𝒗𝒗𝟎𝟎 𝒎𝒎𝒊𝒊𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 E 𝝆𝝆 𝑭𝑭𝒎𝒎𝒊𝒊𝒎𝒎 N 𝒊𝒊𝒊𝒊𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑 f 

𝟏𝟏𝟎𝟎𝟎𝟎 1.40  
 

26.62 

 
 

531 

 
 

1.31 × 10−3 

0.545 

7 

 
 

0.253 

 
 

26.53 
𝟓𝟓𝟎𝟎 0.99 0.385 

𝟐𝟐𝟓𝟓 0.7 0.272 

10 0.44 0.172 
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The effect of drop height on the resulting force pulse is shown in Fig. 4, highlighting its effect on 
the force values in particular the peak force,  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 . Proportionality relation was found between 
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and √ℎ which supports the peak load-hip impact velocity relation found by [11]; a 
simulation work on sideways fall. 

 
Fig. 4. Drop height effect on the peak load. 

It is observed in Fig. 4 that interval time is unaffected by the change in drop height, so as its 
corresponding frequency, the number of stress intervals and the pulse width. These results are 
consistent with relations shown in Eqs. (2-4) and tabulated in Table 2. 

4.3. Elastic modulus, E of the bar’s material 
Based on experimental work in [3], input parameters in this study of elastic modulus are 

defined as in Table 3, in which a 2.5-kg rigid impactor was dropped from 50 mm height on 
trabecular bone samples having average diameter of 10.6 mm and length of 21 mm. The 
material stiffness i.e. elastic modulus was revealed to affect all output variables except the 
number of stress intervals, N. 

Table 3: Summary on the effect of elastic modulus parameter; Units: length [mm], mass 
[kg], time [msec], load [kN] 

E [MPa] 
Input parameters Output variables 

𝒉𝒉 𝒎𝒎𝒊𝒊𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝝆𝝆 𝑭𝑭𝒎𝒎𝒊𝒊𝒎𝒎 𝒊𝒊𝒊𝒊𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑 f N  

531  
 
 

50 

 
 
 

2.5 

 
 
 

1.31 × 10−6 

2.41 3.30 15.19  
 
 

50 

400 2.09 3.80 13.19 

300 1.81 4.39 11.40 

200 1.48 5.37 9.30 

100 1.05 7.60 6.59 

Fig. 5(a) shows stiffer force response of bars with higher elastic modulus; an effect 
demonstrated by pulses having greater peak load at the expense of shorter pulse width. Fast 
Fourier transform is performed on the pulse, in which the process returns its interval frequency 
as shown in Fig. 5(b); indicating direct proportionality with the elastic modulus. 
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(a) On 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 (b) On 𝑓𝑓 

Fig. 5. Bar’s elastic modulus (E) effect. 

The actual proportionality between some output variables and elastic modulus is shown in Fig. 
6. Peak load is directly proportional to the square-root of elastic modulus, while pulse width is 
inversely proportional to that input as presented in Figs. 6(a) and 6(b) respectively; the results are 
consistent with observation on Eqs. (1, 4, 6, 11, 17). Hence, 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 − √𝜌𝜌 relations can be derived 
via two methods: 1) by analytical method from the graph plots; and 2) by using Eq. (4) which is an 
estimation. Likewise, interval frequency is proportional to the surd of elastic modulus as suggested 
in Eqs. (2-3) and supported by returned frequency in Fig. 5(b). 

  
(a) Linear model of 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 − √𝜌𝜌 (b) Power law (nonlinear inverse) model 

of 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 − √𝜌𝜌 

Fig. 6. Regression models relating output variables and √𝜌𝜌. 

Another output variable which can be estimated from the force response is the loading rate (�̇�𝐹) 
of the initial stage of the compression phase of collision [2], by taking the apparent gradient of the 
rising force response as shown in Fig. 7(a). In the current impact models, taking half of the curve’s 
initial data in this compression phase gives the best linear fittings. Linear relation is revealed 
between �̇�𝐹 and E as shown in Fig. 7(b), which is very useful in analysing experimental results as 
force response is commonly measured in such laboratory work, such as in [3]. By relating the 
theoretical derivations in this parametric study with output variable-input parameter relations 
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obtained experimentally, researchers can benchmark their findings and perhaps create mathematical 
relations via both experimental and analytical works. 

  
(a) Linear regression on half of the 

curve’s initial data 
(b) �̇�𝐹 − 𝜌𝜌 relation 

Fig. 7. Bar’s elastic modulus effect on the loading rate, �̇�𝐹. 

4.4 Length, l of the bar 
This parametric study of length has similar definitions as in elastic modulus in the previous 

section, except that the modulus is kept at 531 MPa while the length is varied between 21 and 50 
mm as tabulated in Table 4. 

Table 4: Summary on the effect of length parameter. 𝑚𝑚 + 1 is the interval in which the peak 
load is located; Basic units: length [mm], mass [kg], time [msec] 

l [mm] 
Input parameters Output variables 

𝒉𝒉 𝒎𝒎𝒊𝒊𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 E 𝝆𝝆 𝑭𝑭𝒎𝒎𝒊𝒊𝒎𝒎 𝒊𝒊𝒊𝒊𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑 f N(𝒎𝒎 + 𝟏𝟏) 

𝟐𝟐𝟏𝟏  
 
 

50 

 
 
 

2.5 

 
 
 

0.531 

 
 

 
1.31 × 10−6 

2.412 3.296 15.19 50(26th) 

𝟑𝟑𝟐𝟐 1.967 4.088 9.91 41(21st) 

𝟑𝟑𝟓𝟓 1.884 4.264 9.10 39(21st) 

𝟒𝟒𝟎𝟎 1.768 4.588 7.98 37(19th) 

𝟓𝟓𝟎𝟎 1.588 5.119 6.39 33(17th) 

The length of elastic bar is a component of its structural stiffness and is inversely proportional to 
it. Hence, the effect of bar to the pulse response is expected to be the opposite of material stiffness 
(Fig. 5a), as shown in Fig. 8(a). Similar trend is shown for the returned interval frequency via fast 
Fourier transform method as depicted in Fig. 8(b). As length is one of parameters having direct 
proportionality with the mass ratio as stated in Eq. (12), therefore the effect of length is expected to 
be similar as in Fig. 3(b), and opposite to the interval frequency as shown in Fig. 8(b). 
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(a) On 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 (b) On 𝑓𝑓 

Fig. 8. Bar’s length (l) effect. 

In establishing relation between peak load and the bar’s length, there is no exact mathematical 
expression can be fitted for the data, as shown in Fig. 9; in which two power law relations are 
attempted together with a two-term exponential model to be the best regression models. However, 
under close scrutiny, the power law models maybe closely represented as 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 1 √𝑙𝑙⁄ . 

 
Fig. 9. Nonlinear regression models of 𝐹𝐹max − 𝑙𝑙 (Power laws and exponential). 

Pulse width is found to have direct proportionality with square-root of length i.e. 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 ∝ √𝑙𝑙 
based on both obtained pulses and predictor equation. On the other hand, frequency establishes 
inverse relation with the length, which has the opposite effect to the pulse width or total impact time. 
These effects are shown in Figs. 10(a) and 10(b) respectively. 
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(a) Linear models of 𝑡𝑡𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝 − √𝑙𝑙 (b) Power law models of 𝑓𝑓 − 1 𝑙𝑙⁄  

Fig. 10. Regression models relating pulse width and interval frequency with length. 

5. SUMMARY 
This work revisits the axial bar impact problem briefly explained by [1] and subsequently 

derive the compressive stress expressions in MATLAB programming language up to arbitrary 
number of intervals. Parametric analysis is conducted on the resulting developed stress 
equations, hence highlighting some important relations between output variables and input 
parameters; most notably 𝐹𝐹max ∝ √𝜌𝜌, 𝑡𝑡pulse ∝ 1 √𝜌𝜌⁄  and �̇�𝐹 ∝ 𝜌𝜌. Such relations serve as 
benchmark to validate experimental or numerical work and may also be used to derive 
mathematical relations explaining how certain parameters are related to their corresponding 
outcomes [3]. 
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