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ABSTRACT 

With the increasing use of inscrutable Artificial Intelligence systems to support human decision 

makers, there has been much interest in what it means for these systems to provide ‘explanation’. In 

this paper, the concern is with applying a simple formalism that can express a minimal set of features 

that can be used to define an explanation. It is argued that few contemporary AI systems support 

this minimal set. Advice is provided on how future developments in explainable AI systems could 

adhere to this minimal set. 
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INTRODUCTION 

Developments in Artificial Intelligence (AI) have demonstrated impressive performance, particularly on well-

defined domains such as image processing or game playing.  However, the techniques that are deployed can be 

opaque for the human user which raises the question of how AI systems can provide explanation (Neerincx et al., 

2018; Rosenfeld and Richardson, 2019) and there is growing requirement for explainable AI (XAI) in Regulatory 

frameworks.  Having said this, in 2017 Google’s research chief, Peter Norvig, pointed out of the irony of expecting 

computers to provide ‘explanations’ when humans can be poor at doing this.  

 

Much of the work on explainable AI (XAI) leans heavily on a computer-centric perspective (Springer, 2019).  For 

example, Holzinger et al. (2020) assume that human and AI system have equal access to a ‘ground truth’.  From 

this, explainability “…highlights decision relevant parts of machine representations…, i.e., parts which 

contributed to model accuracy in training or to a specific prediction.”  In common with much of the XAI literature, 

this does not provide a role for the human, other than as passive recipient. The implication is that the AI system is 

able to introspect on its own processes to generate an explanation.  The resulting explanation is then presented to 

the user, with description of the AI system’s processes or the features (‘decision relevant parts’) that it has used.  

In this way, an explanation is simply a recommendation (from the AI system) plus the features that relate to this.   

As Miller (2017) notes, a problem with such an attitude is that it is based on the designer’s intuition of what makes 

a ‘good’ explanation rather than on a sound understanding of how humans respond to, and make use of, 

explanation. This does not indicate why some features were selected or why the recommendation is appropriate to 

the user’s concerns.  Nor does it situate explanation in the wider organisation; it is likely that an explanation for 

the analyst will be distinct from that for the person managing data collection or the manager who will be briefed 

by the analyst. 

 

For Holzinger et al. (2020) aspects of the situation (defined as a ground truth) are combined into a statement; that 

is, the explanation is simply an expression of this statement.  This implies that there is a linear interpolation from 

features to explanation. This is similar to Hempel and Oppenheim’s (1948) ‘Covering Law Model’ which was 

concerned with the ways in which Historians might explain an Event in terms of antecedent Causes.  However, 

‘ground truth’ (assumed by Holzinger’s process model and by the covering law model) is seldom fully defined 

(leading to ambiguity in the selection of relevant features).  This means that simply stating the situation aspects 

without an indication of why these (rather than other aspects) were selected might not lead to a useful or usable 

explanation.   

 

Hoffman et al. (2018) provide a comprehensive review of literature relating to explanation.  From this review, 

explanation involves sensemaking by the human (to contextualise the output of the AI system) and we agree that 

an appropriate framework for considering this is the Data-Frame model of sensemaking (Klein et al., 2007).  

Further, sensemaking (and its relationship with explanation) relies on the recognition that the process (of providing 

and receiving an explanation) must be reciprocal, iterative, and negotiated.  This process relies on ‘explainer’ and 

‘explainee’ reaching alignment.  In other words, explanation involves ‘common ground’ (Clark, 1991) in which 

there is sufficient alignment in understanding for conversation to proceed.  The nature of the conversation will 

depend on the situation in which the explanation is being provided and the goals of the explainee.  For example, 

the explainee might be a ‘trainee’ who seeks to understand the explanation to learn criteria for a decision or might 

be an ‘analyst’ using the recommendation from the AI system to apply as a policy. 
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A PROCESS MODEL FOR EXPLANATION 

Figure 1 illustrates the relationship between an Explainer and an Explainee in a Situation (Baber et al., 2020).  A 

Situation has features which are analogous to the notion of ‘data’ in the Data-Frame Model. We use the term 

‘features’ (rather than data) because the word ‘data’ has a narrow definition in the AI literature.  Notice that in 

figure 1, relations are indicated by  to indicate that these relations are partial, provisional and approximate and, 

just as the Data-Frame Model emphasises, require continual monitoring, checking and refinement.  While the 

Data-Frame Model uses the term frame, this also has a privileged meaning in the AI literature.  So, we adopt the 

term Relevance (Sperber and Wilson, 1982) to refer to the rationale for why features are selected by explainer or 

explainee.  So, relevance could be defined by one or two features, F, or a cluster of features, C, or a belief, B 

(which allows predictions to be made about Features, Clusters and Situations), or a Policy, P (which associates 

Actions with the Situation).  It is important to note that ‘relevance’ is relative, i.e., the definition of relevance 

would depend not simply on the features in the situation but on the prior experience of the people and their goals; 

the same situation could result in different Situation Models for the people experiencing it.   

 
 

Figure 1. Defining Explanation 
 
The Explainer and Explainee attend to features in a Situation (i.e., their ‘situation model’, S, consists of features 

which are selected as relevant to each person).  From this, an explanation could involve overlap between ‘situation 

models’.  That is, sx1 sx2.  For models like that of Holzinger et al. (2018) the process of ‘alignment’ seems to be 

one-way (from computer to person) and assumes that this will result in the person adopting the same situation 

model as the computer. But, for a human-centered approach, this does not feel plausible. Rather, there needs to be 

scope for the alignment of situation models to be open to negotiation and dispute.  We assume that explanations 

will involve second-order situation models, i.e., accounts which, at a later time, summarise the situation to another 

explainee.  This means that, in order for ‘situation models’ to make sense to both parties, there needs to be 

alignment between definitions of ‘relevance’.  In this way, the primary means by which explanation operates is 

through alignment of ‘situation model’ and ‘relevance’ held by explainer and explainee, often (but not always) to 

encourage an Action on the part of explainee.  However, we agree with Lipton (2016) that one must not treat 

‘explanation’ as a monolithic concept.  That is, different Situations (and different explainers and explainees) will 

require different types of explanation.   

 

TYPES OF EXPLANATORY DISCOURSE 

Implicit in the dichotomy, of situation model plus relevance, is the assumption that either of these can be ‘surfaced’ 

(i.e., brought to conscious awareness and expressed in words).  Surfacing features of a Situation Model that are 

Relevant means not only an ability to introspect on our cognitive processes but also an ability to put the tacit 

knowledge that this implies into words. Further, AI system (particularly ‘deep’ AI) will be unable to introspect on 

its own processes. But explanations between humans seems to recognise this problem and we have techniques for 

managing explanatory discourse that enable us to challenge and explore this (Miller, 2017) – and these techniques 

have not been commonly applied to XAI (Miller et al., 2017). 
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We assume four types of explanatory discourse in which Situation Model or Relevance are Aligned or Challenged:  

 

 Align Challenge 

Situation Model Explainer draws attention to specific 

features in the situation. 

Explainee disputes the indicated features 

and requires clarification of the situation 

model being applied. 

Relevance Explainer presents underlying rationale for 

the situation model. 

Explainee offers alternative definitions of 

relevance or appeals to ‘counter-factual’ (or 

‘what if’) examples, e.g., what if a given 

feature was present or absent. 

 
To illustrate these types of explanatory discourse in human activity, figure 2 shows evidence used in the North x 

South-West Exercise for Intelligence Analysts (Baber et al., 2015, 2016).  Highlighted features (within boxes) 

require knowledge of UK and Bretagne geography.  Thus, to ‘explain’ the link between the pieces of evidence in 

figure 2, explainer and explainee need to agree on geography, e.g., the ‘Angel Warehouse’ is in Leeds, Leeds is 

‘up North’, Exmouth and Leeds are connected by road, Roskoff and Exmouth are separated by an expanse of 

water. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2. Items of Evidence for Investigation 

 
As the first step in creating an explanation, Explainer and Explainee should attend to the same features , i.e., Sx1 

 Sx2.  So, both people attend to the highlighted sections of figure 2 (if they do not, then the Explainer could point 

to each of these).  But this is not sufficient to guarantee an explanation because the definition of relevance might 

differ between Explainer and Explainee, i.e., Rx1  Rx.  From this, the Explainer wants to change the Explainee’s 

notion of relevance so that it overlaps with part or all of the Explainer’s notion of relevance, i.e., Rx2  rx1Rx1 .    
Thus, the contents of the ‘boxes’ that are being transported by yacht and van, e.g., ‘machine parts’, ‘electricals’, 

or ‘shoeboxes…of white powder’, could be inferred by the Explainer to be the same thing; reference to 

‘electricals’ or ‘machine parts’ could be deliberately misleading (based on the belief that the real content of the 

boxes is ‘white powder’).  The Explainer might point out ambiguity in the definition of ‘contents’ – in the 

expectation that the Explainee would recognise this.  Or the Explainer might adjust the Explainee’s relevance in 

order to have the Explainee perform an action, i.e., R2  r1R1  and A2 = s2. Believing that the ‘boxes’ contain 

‘white powder’ (rather than electrical goods), the Explainer might seek to persuade the Explainee to conduct 

further analysis, e.g., collect Forensic reports from the boxes that have been recovered, or seek other instances 

where ‘boxes’ have been mentioned in interviews or reports, or speak to other people etc. 

  

There will be situations in which the explainer and explainee are not able to reach alignment on the definition of 

relevance.   For example, presentation in Court requires the Explainer to reconstruct the Situation in sufficient 

detail for the Explainee (in this case judge, jury or barristers) to appreciate (a) the selection of Features and (b) 

the Relevance of these features to the Situation.  Dispute or disagreement could arise if the Explainee does not 

accept the features or their relevance, e.g., the explanation (of the content of the boxes) rests on the belief that 

they do not contain ‘electricals’ or ‘machine parts’ and that they do contain ‘white powder’. 
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HOW DO AI SYSTEMS SUPPORT EXPLANATION? 

Langley (2019) defines the operation of an agent capable of producing an explanation as: 

 

“Given: Knowledge defining a space of possible solutions; 

Given: Criteria for evaluating candidate solutions; 

Given: An annotated search tree that includes solutions found for some reasoning task…; 

Given: A query about why a solution ranks above others; 

Produce: An explanation why the solution is preferable”. 

 

In terms of our process model, the first two items in this list relate to the Situation Model that is used by the agent, 

and the second two relate to its definition of Relevance.  From Langley’s (2019) perspective, the purpose of 

‘explanation’ will be to present the agent’s situation model and relevance. But this seems to assume that alignment 

really means acceptance by the user.  So, from this definition, explanation cannot be challenged.  In other words, 

this definition rests on the assumption of transmission of the Explanation to the user rather than an explanatory 

discourse.  Further, while the ‘situation models’ that humans create might be causal (e.g., in terms of plausible 

‘causes’ of a given event or feature), it is more likely that the models that machines create are relational (e.g., 

correlation, regression, distance, similarity).   This leads to the subtle problem of mistaking correlation for 

causation, i.e., the human could misinterpret correlations, on which the AI systems depend, for either causal (that 

is generalisable) relations or predictive beliefs. But neither of these (causal relations or predictions) are integral to 

the AI’s algorithms. Next, we consider examples of how AI systems present explanations.    

Features and Clusters 

Many approaches to XAI require the user to infer the relevance of specific features to a recommendation.  A 

popular approach to XAI involves explanation-by-simplification.  For example, Local Interpretable Model-

agnostic Explanations (LIME) (Ribeiro et al., 2016) uses a specific instance which concentrates on local fidelity, 

i.e., the relations of that specific instance. In effect, the approach echoes the logic of the covering law.     

 

Figure 3 shows alerts in financial trading. The implication is that this will allow the trader to ascertain the key 

features which led to an alert being raised.  In this case, the explanation is the AI system’s situation model.  

However, the display solely of features does not allow the trader to interrogate the underlying beliefs that led to 

the AI system raising an alert or to question its situation model.  Moreover, the display is intended to motivate 

the user to conduct further investigation (probably drawing on other information sources) and, as such, cannot 

be, of itself, an explanation. 

 

 
 

Figure 3:  Monitoring stock market activity [https://www.trapets.com/services/instantwatch-market/] 

 

https://www.trapets.com/services/instantwatch-market/
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Collating features into charts and tables provides the analyst with a summary that can be interpreted in terms of 

rules.  Indeed, an experienced analyst might recognise recurring ‘patterns’ across different instances. That is, 

similar activities might produce displays that have similar visual appearance that the analyst can associate with 

particular activities.  In this way the ‘alert’ relates not only to specific features but to the groupings of these 

features.  While this might aid recognition-primed decision making (Klein, 1989) it does not provide access to 

the underling rules the AI system used to generate the clusters (and could result in the user either 

anthropomorphising these rules or making assumption about which rules could have been applied). 

Beliefs 

In figure 4, rules used to reach a loa decision are listed, together with an indication of whether the rules have 

been met or breached (with pass / fail, colour coding, accept / decline).  In this way, the computer’s rules are 

exposed to the human decision maker.  The textual explanation, at the bottom of figure 4, is clear and concise.  

What is not apparent here is whether the user is able to apply counter-factuals to the decision. For example, if we 

consider the column for ‘Application 4’ in figure 4, the heuristic rule base identifies ‘loan criteria, etc.’  as below 

criteria, but what might happen if the applicant was able to amend this?   

 

 
 

Figure 4.  Illustrating Beliefs in loan underwriting [Sachan et al., 2020] 

Policy 

In Deep (or Reinforcement) Learning, the AI system seeks to discover a Policy by which it can optimize reward 

(say, success in play a game) by performing Actions in specific situations. Accounts which reflect specific policy 

(in terms of the actions that AI systems take in response to situations) can be created as saliency maps 

(Greydanus et al., 2018).  The saliency map can be used to infer the strategy that is being applied. While this 

need not reflect the policy (in terms of relationship between action and rewards that the agent is learning) it can 

allow the human analyst to form beliefs as to how the agent might behave in similar circumstances.  However, it 

is not so easy to discern why the features were defined as Relevant, or even whether the AI system actually made 

use of these features.  Combining a host of outputs, from the application of different algorithms, could allow the 

analyst to ‘compare and contrast’ the relevance of different features in terms of policy (figure 5).  But this puts 

the onus on the user to infer an ‘explanation’ of the AI system’s decision-making. 
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Figure 5. Multiple views of deep learning outputs for retinal diseases diagnosis [De Fauw et al., 2018] 

 

Explanatory Discourse 

In robotics, humans can ask questions of the robot that allow it to explain its reasoning.  Fox et al’s. (2017) 

eXplAInable Planning (XAIP) requires the robot to justify why it chose particular actions, etc.   In terms of our 

notion of explanatory discourse (discussed earlier) this supports alignment of situation model (in terms of the 

features which are attended) or alignment of relevance (in terms of justification for an action).  Recognising that 

human explanations can make use of choices of action in a situation, Borgo et al.’s (2018) developed XAI-

PLAN.  While the motivation for this, and similar work, seems to be the assumption that human explanations 

involve evidence and counter examples, it is not apparent that the ability to answer ‘why’ questions necessarily 

involves generation of a counter example.  In other words, the issue of how the situation model or definition of 

relevance can be challenged has received less attention to date. 

EXPLANATION AND DISAGREEMENT 

In an experiment in which human and computer cooperate on an actions in a road traffic management task 

(Morar and Baber, 2017), the human participant needs to choose an action to manage a road network (defined by 

traffic volume and flow) and location on the map (figure 6). A computer provides suggestions as to which action 

to perform.  Sometimes the computer is wrong.  In this experiment, the Situation involves monitoring road 

traffic to reduce congestion (by altering traffic rate, through control using traffic lights, to reduce density).  The 

user is provided with information on the identification of a ramp to join or leave a highway (shown as the 

highlighted box in the ‘ramp metering’ window), the location of the ramp (shown on the map), and the state of 

the road network at that location (shown by the bubble chart of traffic density and rate).  To read the bubble 

chart, the following heuristics are applicable: Low density, Low rate: no response; High density, High rate: 

reduce rate; High density, Low rate: increase rate; Low density, High rate: no response. 

 

In the ‘ramp metering control’ window (bottom right, figure 6), the user indicates which action to take, a reason 

for this action, and their interpretation of the bubble chart.  Below this, the computer provides its solution.  Users 

compare their responses with that of the computer, decide whether they wish to alter their response, and then use 

the ‘submit’ button to confirm this response. 

 



 Baber, et al. – Explainable AI   

7 

 

 
Figure 6: User Interface for Road Traffic Task 

 

Table 1 translates the requirements for this experiment into the terminology of our process model, to illustrate 

how concepts of relevance apply to different aspects of the experiment and how these might be aligned (by the 

human) in their decision making. 

 

Table 1. Mapping the Road Traffic Decision Task to the Process Model 

Element Situation Model Relevance Alignment 

Sx1  Sx2 Traffic on map; Behaviour of 

traffic on graph; ramp being 

monitored 

Feature: ramp id / location 

Cluster: bubbles on graph 

Belief: definition of congestion 

agree Features 

Rx1  Rx2 Radio-buttons selected in Ramp 

Metering Control panel 

Belief: Mismatch between 

Computer and User answers 

agree Belief 

Rx2  rx1Rx1 Selection of radio-buttons in 

situation model should agree 

Belief: Computer is correct agree Belief 

A2 = s2 User Acts to change the 

Situation 

Policy: Press ‘Submit’ button’ User is responsible for 

decision 

 

An observation from Morar and Baber (2017) is that, rather than the computer supporting the users’ decisions, 

there was often an assumption that the ‘computer’ provided information requiring confirmation. This is 

especially problematic if ‘computer’ reliability is “quite high”, i.e., >80%, because it requires scrutiny of the 

recommendation at a level of detail that is not required if reliability is ‘low’ or ‘perfect’.  The Situation model 

uses Features attended by human and computer and a common user error was to miss differences relating to 

ramp id. In terms of Relevance there was a need to align Beliefs about the Situation, and a common user error 

was not to recognise computer misinterpretation of the graph, especially when this compounded ramp id errors. 

CONCLUSION 

By way of conclusions, we offer some basic guidelines for the implementation of XAI: 

1. Explanation should be related to beliefs about the relationship between features that can directly 

affect the situation being explained (situation model), or can explain the majority of the situation 

(explanatory power), and are plausible (construct validity);  

2. The Explanation should relate the goals of the explainer and explainee.  

3. The explanation to suit the explainee’s definition of relevance; 

4. Explanations should be interactive and involve the explainee in the explanation; 

5. Explanations should be (where necessary) actionable. The explainee should be given information 

that can be used to perform and/or improve future actions and behaviours; 

6. There should be clarity in the definition of relevance used in the explanation: Define clusters (i.e., 

statistical model), belief (i.e., causal model) and policy (i.e., implications for action); 

7. Explanatory discourse should allow challenge and the use of counter-examples to test the situation 

models and definitions of relevance that are employed in the explanation. 
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