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Abstract—By providing more information about traffic 

network, such as more feasible paths via intelligent navigation 

systems (INS), users in the network may change their choices of 

the path from a source to a destination. This paper investigates 

a traffic congestion model with incomplete information, in 

which different users have different information about the 

network. We introduce the notions of user equilibrium of 

incomplete information (UEII) and system optimum of incomplete 

information (SOII). Then, we prove a theorem about the effect 

of the change of traffic amount on each couple paths in SOII for 

the model. Finally, based on this theorem and a property of UEII, 

we reveal a relationship between UEII and SOII on the cost 

function.  

Keywords—incomplete information, user equilibrium, system 

optimum, traffic network 

I. INTRODUCTION 

Recently the rapid development of mobile internet 
produces profound influence on the way we live.  Intelligent 
Navigation Systems (INS) based on GPS, such as Google Map 
or Baidu Map, are representative examples. To reduce the 
traffic congestion and improve the driving experience, INS 
provides users more information about transportation network, 
for instance, more feasible paths to destination. However, how 
does the more information influence stable state of traffic 
network? This is the central question of this paper and we 
focus on the traffic congestion model with the factor of 
additional information. 

In traditional research of traffic congestion effects, it is a 
common behavior that the users in the transportation network 
are regarded as independent participants in a noncooperative 
game [1] with the assumption that users act in selfish to 
minimize individual travel time by choosing their routes 
consisting of any arc in the network [2]. The sum of all 
participants’ travel time in the equilibrium of aforementioned 
game, which is known as user equilibrium (UE) [3], is not an 
status with the minimization of social time cost, which is 
called system optimum (SO) [4]. Inspired by the inefficient of 
UE caused by each user ignoring the welfare of whole 
population [5], many researchers focused on the impact of 
selfishness. Reference [2] proved that the time consumption 
of UE is no more than the cost of an optimal routing of twice 
as much traffic. For more general, the ratio between UE and 
SO (also called “the price of anarchy” [6]) was studied in a 
series of papers with more realistic model features, including 
traffic capacity of arc [7], [8], nonatomic congestion games [9] 
and more practical latency function of arc [10], [11] and 
structure of network [12]–[14]. References [15]–[20] focused 
on the behavior changes of selfish users affected by pricing 
strategy and references [21]–[23] concentrate on designing 
algorithm mechanism. 

An intuitive measure to improve the performance of 
network is to decrease the time cost of arcs, but, in UE, there 
has a counterintuitive and well-known phenomenon called 
Braess’s Paradox (BP) proposed by [24] and [25]. Fig. 1 can 
be a concise interpretation of the paradox. In Fig. 1, label of 
each arc is the load-dependent cost function specifying the 
time to travel along the arc. Suppose that there are 2000 users 
travel from origin node 𝑂 to destination node 𝐷 in the directed 
network of Fig. 1(a). Base on the assumption of UE, each user 
minimize their own time cost, the equilibrium result is that 
half of the 2000 users choose the path 𝑂 → 𝑊 → 𝐷, the other 
half take the path 𝑂 → 𝑉 → 𝐷  and all users have the same 
time cost, 70. Then, suppose that the cost of arc 𝑊 → 𝑉 
reduces to 0, and the equilibrium result is that all users choose 
the path 𝑂 → 𝑊 → 𝑉 → 𝐷  and every user suffers the 
increasing time cost, 80. The decreasing of arc cost increase 
the cost of all users. Encouraged by the finding of the 
interesting fact, BP, researchers have attempted to explore its 
significant impact on the designing of the transportation 
network in congested regions. These previous works mainly 
contain detecting BP in networks [26]–[30], researching the 
variants of BP not in the traffic context [31]–[34] and 

 
Fig. 1. Example of Braess’s paradox 

 



designing the network to reduce the negative impacts from BP 
[35]–[39]. 

The foregoing works are based on the assumption that 
users in transportation network are familiar with all arcs. But, 
in most cases, due to the complexity of the transportation 
network, each user cannot be aware of all nodes and arcs. On 
the other hand, users have various ways to obtain information 
about the network, especially from the INS. Therefore, 
different users will have different knowledge of network so 
that they choose a selfish path based on their own subset of 
arcs. Reference [40] studied congestion games with player-
specific latency functions with a player-specific constant 
which can be considered as another way to model the 
incomplete information about the nodes and arcs. Under the 
consideration of multiple types participants differed by their 
accessible arcs, Reference [41] extended the conception of UE, 
proved the existence and uniqueness of it and extended the 
concept BP to informational Braess’s paradox (IBP) in which 
more information could degrade the network performance. 
Reference [42] proved that there exists more appropriate 
configuration of information which can improve the 
performance of network with uncertain congestion. Reference 
[43] showed that a suitable private information disclosure 
mechanisms can improve the overall efficiency in the 
transportation network. Reference [44] considered a class of 
Bayesian congestion game in which there are two Traveler 
Information Systems providing information with two different 
accuracy and showed that the heterogeneity of information is 
benefit to the overall efficiency. 

In this paper, we further research the model proposed by 
[41] and our main results are as follows:  

 Proving the characteristic that, in the status of SOII, the 
marginal benefit of decreasing amount of flow one 
path is no more than the marginal cost of increasing 
amount of flow on any another path. 

 Showing that the marginal factor of  cost function 
neglected by users is the reason of the difference 
between user equilibrium of incomplete information 
(UEII) and system optimum of incomplete information 
(SOII) in the traffic congestion model.  

The paper is organized as follows. In Section 2, we 
introduce the formal definition of the network model. In 
Section 3, we first state the definition of UEII and provide a 
numerical example to illustrate the notion of UEII. Then we 
prove a useful property of SOII and give the relationship 
between UEII and SOII. Finally, Section 4 contains 
concluding remarks. 

II. MODEL 

In this section, we describe the network model and 
introduce the necessary notation for the analysis. 

We consider a directed network 𝐺 = (𝑁, 𝐴) with node set 
𝑁, arc set A and an origin-destination pair {𝑂, 𝐷}. Each arc 

𝑎 ∈ 𝐴 connects two nodes {𝑛𝑖 , 𝑛𝑗}, which called the start node 

and end node of arc 𝑎 respectively. A path 𝑃 ∈ 𝐺 is a series of 
arcs 𝑎1, … 𝑎𝑛 to connect 𝑂 and 𝐷, where the end node of 𝑎𝑖 is 
the start node of 𝑎𝑗. We denote the set of all paths by 𝒫. To 

model the incomplete information of arcs, we assume that 
there are 𝐾  types of users traveling on 𝐺  and each type of 

users set, denoted by 𝑇𝑖 , only know an arc subset 𝐴𝑖 ⊆
𝐴 (𝑖 = 1, … , 𝑘).  

The obligatory notations for further research as follow.  

𝑑𝑖  total demand flow of all users in  𝑇𝑖  
𝑑(1:𝐾)  vector of 𝑑𝑖, 𝑖 ∈  {1, … , 𝐾} 

𝐴(1:𝐾)  vector of 𝐴𝑖, 𝑖 ∈  {1, … , 𝐾} 

𝒫𝑖   set of paths composed of arcs in 𝐴𝑖 

𝑓𝑖
𝑃  amount of flow of users in 𝑇𝑖  on path 𝑃 

𝑓𝑃  total amount of flow on path 𝑃, 

 𝑓𝑃 = ∑ 𝑓𝑖
𝑃𝐾

𝑖=1  
𝑓𝑎  total amount of flow on arc 𝑎, 

 𝑓𝑎 = ∑ 𝑓𝑃
𝑃∈𝒫: 𝑎∈𝑃  

𝑓𝑖  flow of type 𝑖 , which is a vector of 𝑓𝑖
𝑃 , 

 𝑃 ∈  𝒫𝑖  
𝑓(1:𝐾)  flow, which is a vector of 𝑓𝑖, 𝑖 ∈  {1, … , 𝐾} 

𝑐𝑎(∙)  load-dependent cost function of each arc 
𝑎 ∈ 𝐴, which is nonnegative, nondecreasing 
and differentiable 

(𝑐𝑎(∙))′  derivative of 𝑐𝑎(∙) 

𝑐𝑃(𝑓(1:𝐾)) cost of path 𝑃  incurred by flow 𝑓(1:𝐾) , 

𝑐𝑃(𝑓(1:𝐾)) = ∑ 𝑐𝑎(𝑓𝑎)𝑎∈𝑃  

𝑙𝑎(∙)  total cost function of arc 𝑎 ∈ 𝐴 , 
 𝑙𝑎(𝑥) = 𝑐𝑎(𝑥) ⋅ 𝑥 

(𝑙𝑎(∙))
′
  derivative of 𝑙𝑎(∙),  

 (𝑙𝑎(𝑥))
′

= 𝑐𝑎(𝑥)′ ⋅ 𝑥 + 𝑐𝑎(𝑥) 

(𝑙𝑃(𝑓(1:𝐾)))
′

 sum of (𝑙𝑎(∙))′, 𝑎 ∈ 𝑃 , incurred by flow 

𝑓(1:𝐾), (𝑙𝑃(𝑓(1:𝐾)))
′

= ∑ (𝑙𝑎(𝑓𝑎))
′

𝑎∈𝑃  

𝒞  set of all 𝑐𝑎(∙), 𝑎 ∈ 𝐴 
 

Base on the above notations, we define 

(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞) as an instance of the model. In additional, 

we call a feasible flow of type 𝑖 is a vector 𝑓𝑖 = (𝑓𝑖
𝑃: 𝑃 ∈  𝒫𝑖) 

when  ∑ 𝑓𝑖
𝑃

𝑃∈𝒫𝑖
= 𝑑𝑖 and a feasible flow for an instance is a 

vector 𝑓(1:𝐾) = (𝑓𝑖: 𝑖 ∈  {1, … , 𝐾})  when each 𝑓𝑖 , 𝑖 ∈
 {1, … , 𝐾} is a feasible flow of type  𝑖. 

III. RELATIONSHIP BETWEEN UEII AND SOII 

A. User Equilibrium of Incomplete Information 

UEII is an equilibrium of the noncooperative game in 
which each user act in selfish manner to travel along the 
available minimum-latency path consisted of arcs in 𝐴𝑖 . 
Therefore, each user has no path to choose to further reduce 
the cost. We next formalize this user equilibrium notion in our 
model. 

Definition 3.1. A feasible 𝑓(1:𝐾)  for instance 

(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞)  is at user equilibrium of incomplete 

information(UEII) if for each 𝑖 ∈ {1, … , 𝐾} , every couple 

𝑃1, 𝑃2 ∈ 𝒫𝑖 , 𝛿 ∈ (0, 𝑓𝑖
𝑃1] , and a new feasible 𝑓(1:𝐾) 

constructed by 𝑓(1:𝐾) in which is replaced the 𝑖th element by 

the  following 𝑓𝑖, 

𝑓𝑖 = {

𝑓𝑖
𝑃 − 𝛿 if 𝑃 = 𝑃1

𝑓𝑖
𝑃 + 𝛿 if 𝑃 = 𝑃2

𝑓𝑖
𝑃 if 𝑃 ∉ {𝑃1, 𝑃2}

, 

we have 𝑐𝑃1(𝑓(1:𝐾)) ≤ 𝑐𝑃2( 𝑓(1:𝐾)) 



 

Because of the nondecreasing and differentiable cost 
function of each arc, making 𝛿 approximate 0 generates the 
following useful lemma of UEII. 

Lemma 3.2. A feasible flow 𝑓(1:𝐾)  for instance 

(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞)  is at user equilibrium of incomplete 

information (UEII) if and only if for each 𝑖 ∈ {1, … , 𝐾}, every 

couple 𝑃, 𝑃 ∈ 𝒫𝑖  with 𝑓𝑖
𝑃 > 0 , we have 𝑐𝑃(𝑓(1:𝐾)) ≤

𝑐𝑃(𝑓(1:𝐾)). 

 

From Lemma 3.2, if a feasible flow 𝑓(1:𝐾) is at UEII, users 

of each type have the equal cost on their paths consisted of 
their own arc set. Lemma 3.2 can be deemed to the Wardrop’s 
principle [45] of incomplete information [41]. 

The following is a numerical example of the UEII in a 
specific network. 

Example 1. Consider the directed network 𝐺 = (𝑁, 𝐴) given 
in Fig. 1, where each arc 𝑎𝑖 labeled by a pair (𝑎𝑖 , 𝑐𝑎𝑖(𝑥)). We 
denote all different paths from origin 𝑂 to destination 𝐷  as 
following: 𝑃1 = 𝑎1, 𝑃2 = 𝑎2 → 𝑎3, 𝑃3 = 𝑎2 → 𝑎5 → 𝑎6, and 
𝑃4 = 𝑎4 → 𝑎6. Suppose that there are two types of users with 
respect to arc subset 𝐴1 = {𝑎1} , 𝐴2 = 𝐴  and total demand 
flow 𝑑1 = 𝑑, 𝑑2 = 1 − 𝑑 (0 ≤ 𝑑 ≤ 1). Then we have 𝒫1 =
{𝑃1} and 𝒫2 = {𝑃1, 𝑃2, 𝑃3, 𝑃4}.  

 Suppose the flow of type 1 on 𝒫1 is 𝑓1
𝑃1 and the flows of 

type 2 on 𝒫2  are  𝑓2
𝑃1 , 𝑓2

𝑃2 , 𝑓2
𝑃3, 𝑓2

𝑃4 . Then we have the 

following equations: 

𝑐𝑃1(𝑓(1:2)) = 𝑓1
𝑃1 + 𝑓2

𝑃1 + 3/2 (1.1) 

𝑐𝑃2(𝑓(1:2)) = (𝑓2
𝑃2 + 𝑓2

𝑃3) + (𝑓2
𝑃2 + 3) (1.2) 

𝑐𝑃3(𝑓(1:2)) = (𝑓2
𝑃2 + 𝑓2

𝑃3) + 𝑓2
𝑃3 + (𝑓2

𝑃3 + 𝑓2
𝑃4) (1.3) 

𝑐𝑃4(𝑓(1:2)) = 𝑓2
𝑃4 + 3 (1.4) 

 From (1.1),  (1.2),  (1.3),  (1.4), we have 𝑐𝑃3(𝑓(1:2)) ≤

𝑐𝑃2(𝑓(1:2))  and 𝑐𝑃3(𝑓(1:2)) ≤ 𝑐𝑃4(𝑓(1:2)) . Therefore, 

according to Lemma 3.2, users of type 2 will not choose the 

paths, 𝑃2 and 𝑃4 . That is we have 𝑓2
𝑃2 = 𝑓2

𝑃4 = 0 and 𝑓2
𝑃1 +

𝑓2
𝑃3 = 1 − 𝑑. The critical condition of type 2 to use path 𝑃1 or 

not, that is 𝑓2
𝑃1  equals 0  or not, can be described as the 

following equation 

𝑓1
𝑃1 + 3/2 =  3𝑓2

𝑃3 , 

where 𝑓1
𝑃1 = 𝑑 and 𝑓2

𝑃3 = 1 − 𝑑. 

 Hence, the critical point of 𝑑  is 3/8  and we have the 
following result of UEII: 

If 𝑑 ≤ 3/8 , the flow at UEII is 𝑓(1:2) = ((𝑓1
𝑃1),

(𝑓2
𝑃1 , 𝑓2

𝑃2 , 𝑓2
𝑃3 , 𝑓2

𝑃4)) , in which 𝑓1
𝑃1 = 𝑑 , 𝑓2

𝑃1 = 3/8 − 𝑑 , 

𝑓2
𝑃3 = 5/8 and 𝑓2

𝑃2 = 𝑓2
𝑃4 = 0. The cost of path 𝑃1 of type 1 

is 𝑐𝑃1(𝑓(1:𝐾)) = 15/8 , and the cost of paths of type 2  is  

𝑐𝑃1(𝑓(1:𝐾)) = 𝑐𝑃3(𝑓(1:𝐾)) = 15/8. From this result, we can 

see that type 1  and type 2  have the same equilibrium cost  
when they share a common path 𝑃1. 

If 𝑑 > 3/8 , the flow at UEII is 𝑓(1:2) = ((𝑓1
𝑃1),

(𝑓2
𝑃1 , 𝑓2

𝑃2 , 𝑓2
𝑃3 , 𝑓2

𝑃4)) , in which 𝑓1
𝑃1 = 𝑑 , 𝑓2

𝑃3 = 1 − 𝑑  and 

𝑓2
𝑃1 = 𝑓2

𝑃2 = 𝑓2
𝑃4 = 0 . The cost of path 𝑃1  of type  1  is 

𝑐𝑃1(𝑓(1:𝐾)) = 𝑑 + 3/2, and the cost of path 𝑃3  of type 2 is  

𝑐𝑃3(𝑓(1:𝐾)) = 3(1 − 𝑑). The result shows that type 1 and type 

2  can have the different equilibrium cost. 

B. System Optimum of Incomplete Information 

SOII is a feasible flow that minimizes total cost of all users 
in the noncooperative game with incomplete information. 
According to our definition of total cost and feasible flow, 
SOII is a solution of the following optimization problem: 

min ∑

𝑎∈𝐴

 𝑙𝑎(𝑓𝑎)  
 

s.t.: ∑ 𝑓𝑖
𝑃

𝑃∈𝒫𝑖

= 𝑑𝑖 ∀𝑖 ∈ {1, … , 𝑘} 
 

 𝑓𝑎 = ∑ ∑ 𝑓𝑖
𝑃

𝑃∈𝒫𝑖:𝑎∈𝑃

𝐾

𝑖=1

 ∀𝑎 ∈ 𝐴 

 

 𝑓𝑖
𝑃 ≥ 0 

∀𝑖 ∈ {1, … , 𝑘}, 

∀𝑃 ∈ 𝒫 (∗) 

Because of the differentiable cost function of each arc, the 
optimal solution for problem (∗) is exist. In the sense of SOII, 
making an arbitrarily small flow from one path to another will 
lead to an increase in the total cost. That is, the marginal 
benefit of cutting amount of flow on path 𝑃𝑖  is no more than 
the marginal cost of adding amount of flow on another path 𝑃𝑗. 

We next formalize the characteristic of SOII and give a proof 
via the Karush-Kuhn-Tucker (KKT) theorem [46]. 

Lemma 3.3. A flow 𝑓(1:𝐾) for instance (𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞) is 

at system optimum of incomplete information (SOII) if and 

only if for each 𝑖 ∈ {1, … , 𝐾}, every couple 𝑃, 𝑃 ∈ 𝒫𝑖  with 

𝑓𝑖
𝑃 > 0, we have (𝑙𝑃(𝑓(1:𝐾)))

′

≤ (𝑙𝑃(𝑓(1:𝐾)))
′

. 

Proof: Suppose (𝑙𝑃(𝑓(1:𝐾)))′  of type 𝑖  at SOII equals 𝜁𝑖 . 

From the conditions of Lemma 3.3, we have the following 
expression: 

(𝑙𝑃(𝑓(1:𝐾)))
′

= {
= 𝜁𝑖    if 𝑓𝑖

𝑃 > 0

≥ 𝜁𝑖    if 𝑓𝑖
𝑃 = 0

. 

Let 𝜂𝑖
𝑃 be: 

𝜂𝑖
𝑃 = {

0                               if 𝑓𝑖
𝑃 > 0

(𝑙𝑃(𝑓(1:𝐾)))
′

− 𝜁𝑖   if 𝑓𝑖
𝑃 = 0

. 

 

Fig. 1. Example of a network 



Then we have the following equation: 

𝜕

𝜕𝑓𝑖
𝑃  (∑ 𝑙𝑎(𝑓𝑎)

𝑎∈𝐴

− ∑  𝜁𝑖 ( ∑ 𝑓𝑖
𝑃

𝑃∈𝒫𝑖

− 𝑑𝑖)

𝐾

𝑖=1

− ∑ ∑ 𝜂𝑖
𝑃𝑓𝑖

𝑃

𝑃∈𝒫𝑖

𝐾

𝑖=1

) = 0. 

Therefore, the KKT conditions are satisfied by the flow 𝑓(1:𝐾) 

with parameters 𝜁𝑖  and  𝜂𝑖
𝑃 . In problem (OP), due to the 

convexity of objective function and the affine property of 
constrain functions, the KKT conditions is the sufficient 
condition for optimal solution and the flow 𝑓(1:𝐾) for instance 

(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞) is at SOII. 

Conversely, because of the convexity of objective function 
and the affine property of constrain functions, KKT conditions 
are satisfied and for all 𝑖 ∈ {1, … , 𝐾}, 𝑃 ∈ 𝒫𝑖 , we have the 
following expression: 

𝜕

𝜕𝑓𝑖
𝑃  (∑ 𝑙𝑎(𝑓𝑎)

𝑎∈𝐴

− ∑  𝜁𝑖 ( ∑ 𝑓𝑖
𝑃

𝑃∈𝒫𝑖

− 𝑑𝑖)

𝐾

𝑖=1

− ∑ ∑ 𝜂𝑖
𝑃𝑓𝑖

𝑃

𝑃∈𝒫𝑖

𝐾

𝑖=1

) = 0, 

(1) 

where 𝜂𝑖
𝑃 = {

= 0  if 𝑓𝑖
𝑃 > 0

≥ 0  if 𝑓𝑖
𝑃 = 0

. Then, we can simplify the (1) to 

the following:  

∑
𝜕𝑓𝑎

𝜕𝑓𝑖
𝑃  (𝑙𝑎(𝑓𝑎))

′

𝑎∈𝐴

= (𝑙𝑃(𝑓(1:𝐾)))
′

= {
= 𝜁𝑖    if 𝑓𝑖

𝑃 > 0

≥ 𝜁𝑖    if 𝑓𝑖
𝑃 = 0

. 

Therefore, we get the conclusion, (𝑙𝑃(𝑓(1:𝐾)))
′

≤

(𝑙𝑃(𝑓(1:𝐾)))
′

. □ 

C. Relationship Between UEII and SOII 

We notice Lemma 3.2 and Lemma 3.3 have some formal 
resemblance. Base on them, we will further reveal the 
relationship between UEII and SOII of the traffic congestion 
model. In the following theorem, we define ℒ as the set of all 

(𝑙𝑎(∙))
′
, 𝑎 ∈ 𝐴. 

Theorem 3.5. A feasible flow 𝑓(1:𝐾)  for 

instance (𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), ℒ)   is at user equilibrium of 

incomplete information (UEII) if and only if 𝑓(1:𝐾) is at system 

optimum of incomplete information (SOII) for instance 

(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞). 

Proof: From the Lemma 3.4,  a flow 𝑓(1:𝐾)  is at SOII for 

instance (𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), 𝒞) , if and only if for each 𝑖 ∈

{1, … , 𝐾} , every couple 𝑃, 𝑃 ∈ 𝒫𝑖  with 𝑓𝑖
𝑃 > 0 , we have 

(𝑙𝑃(𝑓(1:𝐾)))
′

≤ (𝑙𝑃(𝑓(1:𝐾)))
′

. On the other hand, from the 

definition of notations, we have: 

(𝑙𝑃(𝑓(1:𝐾)))
′

≤ (𝑙𝑃(𝑓(1:𝐾)))
′

⟺ 

∑ 𝑐𝑎(𝑓𝑎)′ ⋅ 𝑓𝑎 + 𝑐𝑎(𝑓𝑎)

𝑎∈𝑃

≤ ∑ 𝑐𝑎(𝑓𝑎)′ ⋅ 𝑓𝑎 + 𝑐𝑎(𝑓𝑎)

𝑎∈𝑃

 

(2) 

Equation (2) is the definition of UEII of the 

instance(𝐺, 𝐴(1:𝐾), 𝑑(1:𝐾), ℒ) according to Lemma 3.2. □ 

From Theorem 3.5, we can see that a flow 𝑓(1:𝐾) of SOII 

will be a flow of UEII when the arc cost function has a new 

form: (𝑙𝑎(𝑥))
′

= 𝑐𝑎(𝑥)′ ⋅ 𝑥 + 𝑐𝑎(𝑥). The new form consists 

of the origin form, 𝑐𝑎(𝑥), and a new component, 𝑐𝑎(𝑥)′ ⋅ 𝑥, 
which can be illustrated as the traffic congestion incurred by 
the marginal increase traffic suffering from the already 
existing. Therefore, comparing to SOII, the poor performance 
of the UEII is the ignorance of users with the additional 
negative effect, 𝑐𝑎(𝑥)′ ⋅ 𝑥. 

IV. CONCLUSION 

The widely-used INS gives users more information about 
transportation network and exerts important influences on 
traffic decision. In this paper, we investigate the traffic 
congestion model with incomplete information. We first 
propose the definition of UEII of incomplete information 
model in which different type users have different arc sets to 
choose their path. Then, we propose a new theorem of SOII 
whose form is similar to a necessary and sufficient condition 
of UEII. Finally, the theorem is applied to reveal the 
relationship of cost function of UEII and SOII which can 
account for the subtle difference between them. The proposed 
methodology will be applied to bioenergy production, 
biomass supply chain, mining industry, robotics, railway, 
aviation and healthy industries[47]–[71] [72]–[74]. 
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