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THE MAGIC OF PRIME NUMBERS

FRANK VEGA

To my mother

Abstract. Let Ψ(n) = n ·
∏

q|n

(
1 + 1

q

)
denote the Dedekind Ψ func-

tion where q | n means the prime q divides n. Define, for n ≥ 3;

the ratio R(n) = Ψ(n)
n·log logn

where log is the natural logarithm. Let

Nn = 2 · . . . · qn be the primorial of order n. We prove if the inequality
R(Nn+1) < R(Nn) holds for all primes qn (greater than some thresh-
old), then the Riemann hypothesis is true and the Cramér’s conjecture
is false. In this note, we show that the previous inequality always holds
for all large enough prime numbers.

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function
has its zeros only at the negative even integers and complex numbers with
real part 1

2 . It is considered by many to be the most important unsolved
problem in pure mathematics. The hypothesis was proposed by Bernhard
Riemann (1859). The Riemann hypothesis belongs to the Hilbert’s eighth
problem on David Hilbert’s list of twenty-three unsolved problems. This is
one of the Clay Mathematics Institute’s Millennium Prize Problems. In re-
cent years, there have been several developments that have brought us closer
to a proof of the Riemann hypothesis. There are many approaches to the
Riemann hypothesis based on analytic number theory, algebraic geometry,
non-commutative geometry, etc.

The Riemann zeta function ζ(s) is a function under the domain of complex
numbers. It has zeros at the negative even integers: These are called the
trivial zeros. The zeta function is also zero for other values of s, which
are called nontrivial zeros. The Riemann hypothesis is concerned with the
locations of these nontrivial zeros. Bernhard Riemann conjectured that the
real part of every nontrivial zero of the Riemann zeta function is 1

2 .
The Riemann hypothesis’s importance remains from its deep connection

to the distribution of prime numbers, which are essential in many compu-
tational and theoretical aspects of mathematics. Understanding the distri-
bution of prime numbers is crucial for developing efficient algorithms and
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improving our understanding of the fundamental structure of numbers. Be-
sides, the Riemann hypothesis stands as a testament to the power and allure
of mathematical inquiry. It challenges our understanding of the fundamen-
tal structure of numbers, inspiring mathematicians to push the boundaries
of their field and seek ever deeper insights into the universe of mathematics.

A prime gap is the difference between two successive prime numbers.
The nth prime gap is the difference between the (n + 1)st and the nth
prime numbers, i.e. qn+1 − qn. The Cramér’s conjecture states that qn+1 −
qn = O((log qn)

2), where O is big O notation and log is the natural log-
arithm. This conjecture was formulated by the Swedish mathematician
Harald Cramér in 1936. Nowadays, many mathematicians believe that the
Cramér’s conjecture is false.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal
to x.

Proposition 1.1. We have [1, pp. 1]:

θ(x) ∼ x as (x → ∞).

We know the following inequalities:

Proposition 1.2. For r ≥ 0 and −1 ≤ x < 1
r [2, pp. 1]:

(1 + x)r ≤ 1

1− r · x
.

Proposition 1.3. For x > −1 [2, pp. 1]:
x

1 + x
≤ log(1 + x) ≤ x.

Leonhard Euler studied the following value of the Riemann zeta function
(1734) [3].

Proposition 1.4. We define [3, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number. By definition, we have

ζ(2) =

∞∑
n=1

1

n2
,

where n denotes a natural number. Leonhard Euler proved in his solution to
the Basel problem that

∞∑
n=1

1

n2
=

∞∏
k=1

q2k
q2k − 1

=
π2

6
,
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where π ≈ 3.14159 is a well-known constant linked to several areas in math-
ematics such as number theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is de-
fined as

γ = lim
n→∞

(
− log n+

n∑
k=1

1

k

)

=

∫ ∞

1

(
−1

x
+

1

⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n ·∏
q|n

(
1 + 1

q

)
is called the Dedekind Ψ function, where q | n means the

prime q divides n.

Definition 1.5. We say that Dedekind(qn) holds provided that∏
q≤qn

(
1 +

1

q

)
≥ eγ

ζ(2)
· log θ(qn).

A natural number Nn is called a primorial number of order n precisely
when,

Nn =

n∏
k=1

qk.

We define R(n) = Ψ(n)
n·log logn for n ≥ 3. Dedekind(qn) holds if and only if

R(Nn) ≥ eγ

ζ(2) is satisfied.

Proposition 1.6. Unconditionally on Riemann hypothesis, we know that [4,
Proposition 3 pp. 3]:

lim
n→∞

R(Nn) =
eγ

ζ(2)
.

Proposition 1.7. The inequality R(Nn) > R(Nn+1) is violated for infinitely
many n’s under the assumption that the Cramér’s conjecture is true [5,
Proposition 4 pp. 5], [5, Proposition 7 pp. 7].

The well-known asymptotic notation Ω was introduced by Godfrey Harold
Hardy and John Edensor Littlewood [7]. In 1916, they also introduced the
two symbols ΩR and ΩL defined as [8]:

f(x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f(x)

g(x)
> 0;

f(x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f(x)

g(x)
< 0.

After that, many mathematicians started using these notations in their
works. From the last century, these notations ΩR and ΩL changed as Ω+

and Ω−, respectively. There is another notation: f(x) = Ω±(g(x)) (meaning
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that f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) are both satisfied). Nowadays,
the notation f(x) = Ω+(g(x)) has survived and it is still used in analytic
number theory as:

f(x) = Ω+(g(x)) if ∃k > 0 ∀x0 ∃x > x0 : f(x) ≥ k · g(x)
which has the same meaning to the Hardy and Littlewood older notation.
For x ≥ 2, the function f was introduced by Nicolas in his seminal paper
as [9, Theorem 3 pp. 376], [10, (5.5) pp. 111]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

Finally, we have the Nicolas Theorem:

Proposition 1.8. If the Riemann hypothesis is false then there exists a real
b with 0 < b < 1

2 such that, as x → ∞ [9, Theorem 3 (c) pp. 376], [10,
Theorem 5.29 pp. 131]:

log f(x) = Ω±(x
−b).

Putting all together yields two breakthrough results on prime numbers.

2. Central Lemma

Several analogues of the Riemann hypothesis have already been proved.
Many authors expect (or at least hope) that it is true. Nevertheless, there
exist some implications in case of the Riemann hypothesis could be false.
The following is a key Lemma.

Lemma 2.1. If the Riemann hypothesis is false, then there exist infinitely
many prime numbers qn such that Dedekind(qn) fails (i.e. Dedekind(qn) does
not hold).

Proof. The function g is defined as [4, Theorem 4.2 pp. 5]:

g(x) =
eγ

ζ(2)
· log θ(x) ·

∏
q≤x

(
1 +

1

q

)−1

.

We claim that Dedekind(qn) fails whenever there exists some real number
x0 ≥ 5 for which g(x0) > 1 or equivalent log g(x0) > 0 and qn is the greatest
prime number such that qn ≤ x0. It was proven the following bound [4,
Theorem 4.2 pp. 5]:

log g(x) ≥ log f(x)− 2

x
.

By Proposition 1.8, if the Riemann hypothesis is false, then there is a real
number 0 < b < 1

2 such that there exist infinitely many numbers x for which

log f(x) = Ω+(x
−b). Actually Nicolas proved that log f(x) = Ω±(x

−b), but
we only need to use the notation Ω+ under the domain of the real numbers.
According to the Hardy and Littlewood definition, this would mean that

∃k > 0, ∀y0 ∈ R, ∃y ∈ R (y > y0) : log f(y) ≥ k · y−b.
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The previous inequality is also log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we notice

that

lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible values of k > 0 and 0 < b < 1
2 . Now, this implies that

∀y0 ∈ R,∃y ∈ R (y > y0) : log f(y) ≥ 1
√
y
.

Note that, the value of k is not necessary in the statement above. In this
way, if the Riemann hypothesis is false, then there exist infinitely many
wide apart numbers x such that log f(x) ≥ 1√

x
. Since 1√

x0
> 2

x0
for x0 ≥ 5,

then it would be infinitely many wide apart real numbers x0 such that
log g(x0) > 0. In addition, if log g(x0) > 0 for some real number x0 ≥ 5,
then log g(x0) = log g(qn) where qn is the greatest prime number such that
qn ≤ x0. The reason is because of the equality of the following terms:∏

q≤x0

(
1 +

1

q

)−1

=
∏
q≤qn

(
1 +

1

q

)−1

and

θ(x0) = θ(qn)

according to the definition of the Chebyshev function. □

3. New Criterion

This is a new Criterion for the Riemann hypothesis.

Lemma 3.1. The Riemann hypothesis is true whenever for each large enough
prime number qn, there exists another prime qn′ > qn such that

R(Nn′) ≤ R(Nn).

Proof. By Lemma 2.1, if the Riemann hypothesis is false and the inequality

R(Nn′) ≤ R(Nn)

is satisfied for each large enough prime number qn, then there exists an
infinite subsequence of natural numbers ni such that

R(Nni+1) ≤ R(Nni),

qni+1 > qni and Dedekind(qni) fails. By Proposition 1.6, this is a contradic-
tion with the fact that

lim inf
n→∞

R(Nn) = lim
n→∞

R(Nn) =
eγ

ζ(2)
.

By definition of the limit inferior for any positive real number ε, only a
finite number of elements of R(Nn) are less than eγ

ζ(2) − ε. This contradicts

the existence of such previous infinite subsequence and thus, the Riemann
hypothesis must be true. □
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4. Main Insight

This is the main insight.

Theorem 4.1. The inequality R(Nn) > R(Nn+1) holds for all primes qn
(greater than some threshold).

Proof. By Lemma 3.1, the Riemann hypothesis is true if for all primes qn
(greater than some threshold), the inequality

R(Nn′) < R(Nn)

is satisfied for some prime qn′ > qn. In particular, we will consider the case
of n′ = n+ 1. That is the same as∏

q≤qn′

(
1 + 1

q

)
log θ(qn′)

<

∏
q≤qn

(
1 + 1

q

)
log θ(qn)

and

log log θ(qn′) > log log θ(qn) +
∑

qn<q≤qn′

log

(
1 +

1

q

)
after of applying the logarithm to the both sides and distributing the terms.
That is equivalent to

1 >
log log θ(qn)

log log θ(qn′)
+

∑
qn<q≤qn′ log

(
1 + 1

q

)
log log θ(qn′)

after dividing both sides by log log θ(qn′). This is possible because of the
prime number qn′ is large enough and thus, the real number log log θ(qn′)
would be greater than 0. We can apply the exponentiation to the both sides
in order to obtain that

e > exp

(
log log θ(qn)

log log θ(qn′)

)
·

 ∏
qn<q≤qn′

(
1 +

1

q

) 1
log log θ(qn′ )

.

For large enough prime qn′ , we have

e = (log θ(qn′))
1

log log θ(qn′ )

since e = x
1

log x for x > 0. Hence, it is enough to show that

log θ(qn′) >
∏

qn<q≤qn′

(
1 +

1

q

)
.

That is equal to

log θ(qn+1) > 1 +
1

qn+1

under the assumption that n′ = n+ 1. In addition, the previous inequality
is satisfied when

log θ(qn+1) ≥ 2.
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We would have

1 + ϵ1 = exp

(
log log θ(qn)

log log θ(qn′)

)
and

e · (1− ϵ2) =

 ∏
qn<q≤qn′

(
1 +

1

q

) 1
log log θ(qn′ )

.

We only need to prove that

e > (1 + ϵ1) · e · (1− ϵ2)

which is

ϵ2 >
ϵ1

ϵ1 + 1
.

In addition, we can see that

1− e−1 ·

 ∏
qn<q≤qn′

(
1 +

1

q

) 1
log log θ(qn′ )

= ϵ2.

We have ∏
qn<q≤qn′

(
1 +

1

q

) 1
log log θ(qn′ )

=

1 +
∏

qn<q≤qn′

(
1 +

1

q

)
− 1

 1
log log θ(qn′ )

≤ 1

1−
(∏

qn<q≤qn′

(
1+ 1

q

)
−1

)
log log θ(qn′ )

=
log log θ(qn′)

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 + 1

q

)
by Proposition 1.2, since

−1 ≤

 ∏
qn<q≤qn′

(
1 +

1

q

)
− 1

 < log log θ(qn′)

due to qn and qn′ are large enough. It is a fact that if we take n′ = n + 1,
then we obtain ∏

qn<q≤qn+1

(
1 +

1

q

)
− 1

 =
1

qn+1
< log log θ(qn+1)

and thus, whenever we have

1 ≤ log log θ(qn+1),
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then that would be quite enough. As a consequence, we obtain that

1− e−1 · log log θ(qn′)

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 + 1

q

) ≤ ϵ2.

Putting all together, we show that

1− e−1 · log log θ(qn′)

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 + 1

q

) >
ϵ1

ϵ1 + 1
.

That is equal to say that

ϵ1 + 1

ϵ1
−

e−1 · ϵ1+1
ϵ1

· log log θ(qn′)

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 + 1

q

) > 1

and

1 >
e−1 · (ϵ1 + 1) · log log θ(qn′)

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 + 1

q

) .
where

log log θ(qn′) + 1−
∏

qn<q≤qn′

(
1 +

1

q

)
> e−1 · (ϵ1 + 1) · log log θ(qn′)

after making a simple distribution of the terms. If we take n′ = n+ 1, then
we obtain

− 1

qn+1
>
(
e−1 · (ϵ1 + 1)− 1

)
· log log θ(qn+1).

That would be

1 < qn+1 ·
(
1− e−1 · (ϵ1 + 1)

)
· log log θ(qn+1)

which is

0 < log qn+1 + log
(
1− e−1 · (ϵ1 + 1)

)
+ log log log θ(qn+1).

That could be rewritten as

0 < − e−1 · (ϵ1 + 1)

1− e−1 · (ϵ1 + 1)
+ log qn+1 + log log log θ(qn+1)

and

0 < − ϵ1 + 1

e− ϵ1 − 1
+ log qn+1 + log log log θ(qn+1)

by Proposition 1.3 since −e−1 · (ϵ1 + 1) > −1. However, the inequality

0 < − ϵ1 + 1

e− ϵ1 − 1
+ log qn+1 + log log log θ(qn+1).

trivially holds because of

ϵ1 = exp

(
log log θ(qn)

log log θ(qn+1)

)
− 1,

when we suppose that qn and qn+1 are large enough. □
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5. Main Theorem

This is the main theorem.

Theorem 5.1. The Riemann hypothesis is true and the Cramér’s conjecture
is false.

Proof. By Lemma 3.1, the Riemann hypothesis is true if for all primes qn
(greater than some threshold), the inequality

R(Nn′) ≤ R(Nn)

is satisfied for some prime qn′ > qn. Therefore, the Riemann hypothesis is
true by Theorem 4.1. We also know the Cramér’s conjecture is false as a
consequence of Proposition 1.7 and Theorem 4.1. □

6. Conclusion

On the one hand, the Riemann hypothesis has far-reaching implications
for mathematics, with potential applications in cryptography, number the-
ory, and even particle physics. Certainly, a proof of the hypothesis would
not only provide a profound insight into the nature of prime numbers but
also open up new avenues of research in various mathematical fields. On
the other hand, our evidence of the false Cramér’s conjecture could spur
considerable advances in number theory as well.
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