
EasyChair Preprint
№ 15318

Applying Mahalanobis-Augmented Vector
Reconstruction in Autoencoders and Choosing a
Scaler to Improve Anomaly Detection
Performance

Seung Bum Ha, Joon-Goo Shin, Yong-Min Kim and
Chang Gyoon Lim

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 28, 2024



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

Applying Mahalanobis-Augmented Vector 

Reconstruction in Autoencoders and Choosing a 

Scaler to improve Anomaly Detection Performance 

 

Seung Bum Ha 

Dept. of Computer 

Engineering 

Chonnam National University           

Yeosu, S. Korea  

aqua4lob1@naver.com 

Joon-Goo Shin  

Dept. of Information Security 

Convergence 

Chonnam National University           

GwangJu, S. Korea  

22shinjg@jnu.ac.kr 

Yong-Min Kim  

Dept. of Electronic Commerce  

Chonnam National University 

Yeosu, S. Korea  

ymkim@jnu.ac.kr 

Chang Gyoon Lim * 

Dept. of Computer 

Engineering 

Chonnam National University           

Yeosu, S. Korea  

cglim@jnu.ac.kr 

 

Abstract— This study aims to enhance the efficacy of 

anomaly detection techniques through the application of 

autoencoders. Autoencoders, neural network models that 

compress and reconstruct input data by learning patterns from 

normal instances, typically struggle with reconstructing 

anomalous data. To address this limitation, we propose 

integrating Mahalanobis Distance, a method for measuring the 

distance between a data point and the distribution center, into 

the autoencoder's latent space. Our approach diverges from 

conventional methods by treating reconstruction error as a 

vector rather than a scalar value, allowing for more granular 

outlier information. We evaluate the model's performance 

across multiple metrics, including accuracy, precision, recall, F1 

score, and ROC-AUC, utilizing five different scaling techniques. 

Experimental results indicate that RobustScaler offers superior 

performance due to its resilience to outliers, ensuring consistent 

results across varied data distributions. This research 

contributes to the advancement of anomaly detection 

methodologies, potentially enhancing their applicability in real-

world scenarios. 

Keywords— anomaly detection, autoencoders,  Mahalanobis 

distance,  reconstruction error  

I. INTRODUCTION 

Anomalies are unusual activity or behavior that deviates 
from normal behavior. Anomaly detection is the process of 
removing anomalies, such as unusual activity or deviant 
behavior, from data or a particular service. It has applications 
in various domains, including fraud detection, cybersecurity, 
and system health monitoring. Anomalies can be classified as 
point, contextual, or collective, with point anomalies being the 
most common [1]. 

Recently, various techniques such as clustering algorithms, 
Markov chains for time series data, and principal component 
analysis (PCA) have been used for anomaly detection [1, 2]. 
Methods that use outliers by establishing normal behavior and 
then identifying deviations using probabilistic models and 
adaptive thresholds have also been proposed [3]. The 
effectiveness of anomaly detection depends on the nature of 
the data, where it is important that normal patterns outnumber 
anomalies and that anomalies can be distinguished from 
normal patterns [1]. In the era of the Fourth Industrial 

Revolution, the importance of anomaly detection and various 
challenges surrounding it are expected to be proposed as data 
complexity increases with the emergence of the Internet of 
Things [3]. 

Autoencoders are used in many areas, but anomaly 
detection is one of the most popular models [4]. Borghesi et 
al. proposed a convolutional autoencoder (CAE) for network 
anomaly detection, showing improved accuracy and reduced 
training time compared to existing methods. After training 
using the autoencoder with normal system behavior on a high-
performance computing system, it achieved very high 
accuracy compared to other models in detecting previously 
unseen anomalies [5].  A convolutional autoencoder designed 
for industrial defect detection achieved F1 scores averaging 
around 89% using only defect-free training data [6]. Zhou et 
al. introduced a novel feature encoding strategy for weakly 
supervised anomaly detection by exploiting the hidden 
representation of the autoencoder, reconstruction residual 
vectors, and reconstruction errors. This approach 
outperformed other competing methods and demonstrated that 
autoencoders can be efficiently used to detect anomalies in a 
wide range of applications, from network security to industrial 
inspection and high-performance computing systems [4]. 

In this paper, we attempt to detect outliers using the 
temperature of a steam trap. The aim of this research is to 
improve the performance of an anomaly detection method 
using Autoencoder. Autoencoder is a neural network model 
that compresses and reconstructs input data, training patterns 
from normal data. This model can reconstruct normal data 
well, but it has the characteristic of not reconstructing 
anomalous data well. Therefore, we use Mahalanobis 
Distance to detect outliers in the data by measuring the 
distance between the data points and the center of the 
distribution. We apply this distance measure to the 
Autoencoder's latent space to improve the performance of 
anomaly detection. Instead of treating reconstruction error as 
a single value, we treat it as a vector. Vector reconstruction 
error calculates the reconstruction error for each feature, 
providing more detailed outlier information. For anomaly 
detection, after compressing the data with an encoder, the 
Mahalanobis Distance is calculated for each feature. This 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

distance vector is then compared to a threshold value to 
determine whether each data point is an outlier. 

We present a model with new features for detecting 
outliers in temperature data from steam traps. To improve the 
performance of this model, the results of anomaly detection 
using different scaling methods on the data are compared and 
analyzed. The generated the experimental  results make it easy 
to compare the performance of each scaling method, which 
can be used to select the most effective anomaly detection 
method.  

 

II. RELATED WORKS 

A. Autoencoder 

An autoencoder is a neural network model that predicts its 
own input.  It encodes the input data in a compressed form and 
then reconstructs it to match the original input as closely as 
possible. This process helps it learn an efficient representation 
of the input data. It consists of an encoder, which compresses 
the input data into a latent space representation, and a decoder, 
which reconstructs the original input from this representation 
as represented in Fig. 1.  

Like principal component analysis (PCA), autoencoders 
provide a mapping between the original data and the encoded 
representation, but they provide a non-linear transformation, 
which increases flexibility. Autoencoders have been applied 
in a variety of fields, including dimensionality reduction, 
classification, denoising, and anomaly detection.  

 

Fig. 1 Autoencoder architecture with normal and abnormal 
data detection [7] 

An autoencoder reconstructs the input data and identifies 
anomalies based on the reconstructed errors. Consequently, 
during inference, anormal inputs typically result in higher 
reconstruction errors compared to normal inputs. The loss in 
autoencoder architecture is calculated by Eq. (1):  

𝐿 (𝜃, 𝜙) =
1

𝑛
∑ (𝑥𝑖 − 𝑓𝜃 (𝑔𝜙(𝑥𝑖

𝑛

𝑖=1
)))2             (1) 

where 𝒇𝜽 and 𝒈𝝓  represent the encoder and decoder 

parameters, respectively. The overall equation sums up 
differences between the original input x and the reconstructed 

image 𝒇𝜽 (𝒈𝝓(𝒙𝒊)). The idea is that the autoencoder learns to 

minimize these losses by making the reconstructed output as 
close as possible to the original input. This minimization 
process tunes the parameters 𝜽  and 𝝓  of the encoder and 
decoder, respectively. 

B. Mahalanobis Distance 

Mahalanobis distance (MD) measures the distance 
between a data point and the mean of a distribution, taking into 

account the covariance matrix. It is a widely used metric in 
statistics, machine learning, pattern recognition or 
classification, anomaly detection, and ecological niche 
modelling. Mahalanobis distance is a measure used in 
multivariate chemical measurements to calculate the distance 
between objects in both the original space and the principal 
component space. Unlike the Euclidean distance (ED), this 
method takes into account the correlation between variables 
and therefore can more robustly capture the relationships 
within the data, and is expressed as Eq (2). 

𝐷(𝑥, 𝜇) =  √(𝑥 − 𝜇)∑−1(𝑥 − 𝜇)𝑇            (2) 

where x is data point (vector), 𝜇  is mean vector of a data 

distribution, and ∑ is covariance matrix of data.  

C. Vector Reconstruction 

Vector Reconstruction refers to the process of 
reconstructing the input vector in the context of the 
Autoencoder. This can be done by evaluating the 
reconstruction error for each feature to determine which 
feature is out of whack. If some features are difficult to 
reconstruct, it is possible to reflect their importance, i.e., 
whether they may be more important for anomaly detection. 
This not only allows you to detect different types of anomalies 
more accurately, but also makes it easier to interpret the results 
by clearly seeing which attributes have the largest error and 
by how much. The vector reconstruction process can be 
defined mathematically as follows: 

• x = [x1, x2, x3, ….., xn]: An n-dimensional vector 
representing each characteristic of the source data. 

• f(x) = h: The encoding process compresses the input 
vector x into a low-dimensional latent space. In the 
process, it extracts important characteristics of the data.  

• g(h) = x̂ : The decoding process restores the 
compressed representation h to the original input space. 
It attempts to reconstruct the original data as closely as 
possible. 

• x̂ = [�̂�1, �̂�2, �̂�3, , . . . . �̂�𝑛] : The reconstruction vector, 
which is the result of the decoding process and has the 
same dimensions as the original input vector. Each 
element x̂ᵢ is a reconstruction of the corresponding 
characteristic xᵢ of the original input. 

• e = x - x̂ = [e₁, e₂, e3, ...., eₙ]: As reconstruction error 
vector, a vector representing the difference between 
the original input and the reconstructed vector. It 
calculates the error for each feature and expresses it as 
a vector. Unlike the traditional method of representing 
the error as a single scalar value, this allows you to 
evaluate the reconstruction performance for each 
attribute separately. 

D. Scaling methods: Data preprocesing for performance 

analytics 

We intend to use various scaling methods to evaluate the 
performance of our proposed model. It is a data preprocessing 
technique used to adjust the scale or distribution of features in 
a dataset. These methods are crucial in preparing data for 
machine learning algorithms, ensuring that each feature 
contributes equally to the performance of the model. We 
present the mathematical definitions of the typical scalers used 
in this study. 

* Corresponding author 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

• MinMaxScaler: It scales the features to a fixed range, 
typically between 0 and 1. It scales each feature 
individually by subtracting the minimum value and 
dividing by the range (maximum minus minimum) of 
the feature. For a given vector x = [x1, x2, x3, …..., xn], 
the scaled value  𝑥𝑖

′ is calculated as: 

𝑥𝑖
′ =  

𝑥𝑖−𝑥min

𝑥max−𝑥min
× (𝑏 − 𝑎) + 𝑎               (3) 

where xi is the original feature value, xmin is the 
minimum value of the feature, and xmax is the 
maximum value of the feature. [a, b] is the desired 
range.  

• StandardScaler: It standardizes features by removing 
the mean and scaling to unit variance. It centers the 
distribution around zero and scales the data so that the 
standard deviation is one.  For a given vector x = [x1, 
x2, x3, …..., xn]: 

𝑥𝑖
′ =  

𝑥𝑖−μ

𝜎
                             (4) 

where xi is the original feature value, 𝜇 is the mean of 
the feature, and 𝜎  is the standard deviation of the 
feature. 

• RobustScaler: It scales features using statistics that are 
robust to outliers. It removes the median and scales the 
data according to the Interquartile Range (IQR). For a 
given vector x = [x1, x2, x3, …..., xn]: 

𝑥𝑖
′ =  

𝑥𝑖−Median(x)

𝑄3−𝑄1
                             (5) 

where xi is the original feature value and Median(x) is 

the median of the feature. Q1 is the 1st quartile (25th 

percentile) of the feature and Q3 is the 3rd quartile (75th 
percentile) of the feature.  

• Normalizer: It scales each sample (row) independently 
to have unit norm (i.e., the vector has a length of one). 
Unlike other scalers that operate on features (columns), 
the Normalizer operates on samples (rows). For a 
given vector x = [x1, x2, x3, …..., xn]:  

𝐱′ =  
𝐱

‖𝐱‖2
                        (6) 

where ‖𝐱‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1 .   

 

III. MAHALANOBIS-AUGMENTED VECTOR RECONSTRUCTION 

OF AUTOENCODER FOR IMPROVED ANOMALY DETECTION  

In this section, we present an improvement to 
autoencoder-based anomaly detection using Mahalanobis 
Distance and applying the concept of vector reconstruction 
error. Autoencoder, with different scaling methods, is a neural 
network model that compresses and reconstructs input data, 
learning patterns from normal data. The model can reconstruct 
normal data well, but it can be characterized by poor 
reconstruction of anomalous data. Mahalanobis Distance 
measures the distance between a data point and the center of a 
distribution, and is effective at detecting outliers in 
multivariate data.  

This distance measure is applied to the autoencoder's latent 
space to improve the performance of anomaly detection. 
Traditional methods treat the reconstruction error as a single 
value, but in this paper, we treat it as a vector. Vector 

reconstruction error calculates the reconstruction error for 
each attribute, providing more detailed outlier information. 
The anomaly detection uses the result of Mahalanobis 
Distance for each attribute after compressing the data through 
an encoder. The calculated distance vector is then compared 
to a threshold value to finally determine whether each data 
point is an outlier. 

Fig. 2 Mahalanobis-Augmented vector reconstruction of 
autoencoder 

A. Data Handling  

In this study, we leveraged a HAI (HIL-based Augmented 
ICS) security dataset collected from a real industrial control 
system (ICS) testbed augmented with a hardware-in-the-loop 
(HIL) simulator [8]. From this dataset, we selected and applied 
only temperature-related data. All training datasets were 
assumed to be normal. For the test dataset, we applied our 
rules to generate normal and outlier data and performed 
performance evaluation based on it. 

The first step involves loading the temperature data from 
data file. This file likely contains time-stamped temperature 
readings from a steam trap. We extract the 
'outlet_temperature' column, which represents the temperature 
measurements over time. Time series data, like temperature 
readings, often exhibit patterns such as trends, seasonality, and 
cycles. Understanding these patterns is crucial for detecting 
anomalies. 

 

Fig. 3 Steam trap temperature over time in the training data 
set 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

 

Fig. 4 Temperature distribution in the training data set 

A time series plot would show temperature fluctuations 
over time. This graph might reveal daily cycles in steam trap 
operation, with higher temperatures during peak usage hours 
and lower temperatures during off-hours (Fig. 3). The data 
analysis might reveal that the steam trap operates in a 
temperature range of 28°C to 33°C, with a mean of 30.5°C and 
a standard deviation of 1.2°C (Fig. 4).  

The test data for anomaly detection system is carefully 
constructed to evaluate the model's performance under various 
conditions. We generate a total of 1,500 synthetic data points, 
which serves as a comprehensive test set for our steam trap 
temperature anomaly detection model. 

Most of the test data, specifically 90% or 1,350 data points, 
are designed to represent normal operating conditions. These 
normal data points are generated using a Gaussian distribution 
with parameters derived from our original dataset. The mean 
and standard deviation of the normal operating temperatures 
from the training data guide this generation process. This 
ensures that our normal test data closely mimics the typical 
temperature readings we would expect from a properly 
functioning steam trap. 

The remaining 10% of the test data, amounting to 150 data 
points, are deliberately created as anomalies. These 
anomalous data points are generated to fall outside the normal 
operating range, which we define as two standard deviations 
above and below the mean temperature from our training data. 
To create these anomalies, we use a uniform distribution that 
spans from three standard deviations below the lower bound 
of the normal range to three standard deviations above the 
upper bound. This approach ensures that our anomalies are 
distinctly different from normal operations, yet not so extreme 
as to be unrealistic. Fig. 5 shows the test data, including 
normal and abnormal data. 

 

Fig. 5 Generated test data 

B. Model implementation  

We implement an autoencoder using Keras. The 
autoencoder consists of an encoder that compresses the input 
into a lower-dimensional latent space, and a decoder that 
reconstructs the input from this latent representation.  

The implementation allows us to repeat for all scaling 
methods for performance evaluation with preprocessed data.  
The loss values during the training process for each scaling 
method can be plotted as shown in Fig. 6.  This graph allows 
us to compare the starting points of each scaling method based 
on the initial loss values. It shows the extent to which each 
scaling method transformed the initial data distribution.  

The slope of the graph serves as an indicator for comparing 
the learning rates of different methods, with a steeper slope 
signifying a more rapid learning process. Additionally, the 
final loss values after a specified number of training epochs 
provide insight into the effectiveness of each scaling method 
in enhancing model performance. The stability of the learning 
process for each method can be assessed by examining the 
fluctuations in the graph; smooth curves suggest stable 
training, whereas jagged curves indicate instability.  

 

Fig. 6 Model Loss by using StandardScaler 

C. Anomaly detection 

The trained encoder is employed to transform the data into 
latent space. Subsequently, we compute the Mahalanobis 
distance for each point within this space to detect anomalies. 
The Mahalanobis distance quantifies the number of standard 
deviations a point is from the mean of a distribution, 
considering the covariance structure. This methodology is 
particularly efficacious for identifying outliers in multivariate 
datasets. 

Using no scaling preprocessing, our anomaly detection 
algorithm might achieve with AUC (0.50). The ROC curve for 
this method would show a steep initial climb, quickly reaching 
a high true positive rate with a low false positive rate as shown 
in Fig. 7. 

 

Fig. 7 ROC curve with No Scaling 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

D. Performance Comparison 

A key part of our strategy is comparing different data 
scaling methods. We implement and evaluate five scaling 
approaches: No Scaling, MinMaxScaler, StandardScaler, 
RobustScaler, and Normalizer. 

For each scaling method, we train a separate autoencoder 
model and perform the entire anomaly detection process. This 
allows us to assess how different scaling techniques affect the 
model's ability to detect anomalies. The comparison of scaling 
methods is crucial because it helps us understand how 
different ways of preprocessing the data impact the 
performance of our anomaly detection system. 

We provide a comprehensive view of the model's 
performance, balancing its ability to correctly identify 
anomalies with its tendency to raise false alarms using the 
following metrics: 

• Accuracy: Overall correctness of the model 

• Precision: Proportion of true anomalies among 
detected anomalies 

• Recall: Proportion of detected anomalies among all 
true anomalies 

• F1-score: Harmonic mean of precision and recall 

• ROC-AUC: Area under the Receiver Operating 
Characteristic curve 

• Confusion Matrix: Detailed breakdown of true 
positives, false positives, true negatives, and false 
negatives 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present the results of experiments 
conducted with the model proposed in this work. We repeat 
for the five scaling methods including no scaling proposed for 
our experiments. The autoencoder is trained with training data 
consisting of normal data. 

A. Authors and Affiliations 

After training with normal data, the model is evaluated 
using the test data presented earlier to select the best scaler. 
This test data includes both normal and anomalous data. The 
trained autoencoder is used to detect outliers on the test data 
for comparison. The ROC curves (Fig. 8) are draw based on 
these detections and various evaluation metrics are calculated.  

 

  

(a) MinMaxScaler (b) StandardScaler 

 
 

(c) RobustScaler (d) Normalizer 

Fig. 8 ROC curves using training data based on scaler 
selection 

Thus, both the ROC curve and the evaluation metrics such 
as Accuracy, Precision, Recall, F1-score, and AUC are 
calculated based on the test data. They are intended to evaluate 
the generalization performance of the model and represents 
the model's performance on new data that was not used for 
training. 

This approach can avoid overfitting, meaning that by using 
separate test data rather than training data. We can also check 
if the model is overfitting the training data. By using new data 
to evaluate the performance of your model, we can better 
predict how the model will perform in real-world situations.  
By using the same test data for all scaling methods, we can 
fairly compare the performance of each method. The scaling 
methods selected here should perform well in real-world 
applications. 

B. Comparing anomal detection by scalers  

We conducted a comparative visual analysis of outlier 
identification across various scaling methodologies. Our 
experimental protocol involved applying distinct scaling 
techniques to both the training and test datasets. The 
procedure commenced with the training of an Autoencoder, 
followed by outlier detection on the test data. Subsequently, 
we generated visualizations to illustrate the results.  



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

 
(a) MinMaxScaler 

 
(b) StandardScaler 

 

(c) RobustScaler 

 
(d) Normalizer 

 
(e) No Scaling 

Fig. 9  Anomaly detection results based on scaler selection 

The visual representations comprise three key elements: 
the original test data (represented by blue data points), the 
detected anomalies (indicated by red data points), and the 
anomaly detection threshold (demarcated by a green dashed 
line). This multifaceted visualization approach enables a 
rigorous comparative analysis of the impact of various scaling 
methodologies on the outlier detection process within our 
Autoencoder-based anomaly detection framework. By 
juxtaposing these elements across different scaling techniques, 
we can elucidate the nuanced effects of data preprocessing on 
the model's ability to discriminate between normal and 
anomalous instances in the latent space. 

These graphical representations facilitate a comparative 
visual analysis of outlier determination across various scaling 
methodologies. The resultant visualizations are intended to 
yield the following analytical insights:  

• The distribution of outliers that each scaling method 
detects 

• The appropriateness of the thresholds  

• Patterns of false positives and false negatives 

• Differences in anomaly detection across scaling 
methods 

C. Performance Metrics Comparison Across Different 

Scalers 

The predictive outcomes exhibit varying degrees of 
congruence with the actual results. In the domain of machine 
learning and model performance evaluation, this phenomenon 
can be elucidated through the application of a confusion 
matrix. A confusion matrix represents a tabular configuration 
designed to facilitate the visualization of algorithmic 
performance, particularly in classification tasks. By 
juxtaposing the model's predictive output—categorized as 
either positive or negative—against the ground truth, we can 
systematically categorize the outcomes into four distinct 
quadrants. This classification scheme provides a 
comprehensive framework for assessing the model's 
predictive accuracy and error patterns: 

• True Positive (TP): Positive prediction + Positive 
outcome  

• False Positive (FP): Positive prediction + Negative 
outcome  

• False Negative (FN): Negative prediction + Positive 
outcome  

• True Negative (TN): Negative prediction + Negative 
outcome 

TABLE I.  COMPARING CONFUSION MATRIX BY SCALERS 

  TP FP 

No Scaling 
FN 1,346 0 

TN 154 0 

MinMaxScaler 
FN 1,231 115 

TN 0 154 

StandardScaler 
FN 1,346 0 

TN 81 73 

RobustScaler 
FN 1,339 7 

TN 27 127 

Normalizer 
FN 1,346 0 

TN 154 0 

 

TABLE I presents a comparative analysis of various 
scaling methodologies' performance, utilizing a confusion 
matrix framework. The unscaled model demonstrates perfect 
discrimination between positive and negative classes, 
achieving optimal precision and recall. 

The application of MinMaxScaler maintains the model's 
ability to correctly identify negative instances but introduces 
a degree of misclassification in positive cases. This suggests a 
diminished capacity for class differentiation when employing 
MinMaxScaler, as evidenced by an increase in false positive 
rates. 

StandardScaler implementation preserves the model's 
accuracy in positive case identification. However, it exhibits a 
tendency to misclassify certain negative instances as positive, 
indicating a shift in the decision boundary that favors positive 
predictions. 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

Interestingly, the Normalizer scaling method yields results 
identical to the unscaled model, suggesting that this 
normalization technique does not significantly alter the 
model's discriminative capabilities in this context. 

The RobustScaler demonstrates a marginal decline in 
overall performance, manifesting as slight decreases in both 
true positive and true negative rates. This implies that the 
RobustScaler somewhat compromises the model's ability to 
accurately classify both positive and negative instances, albeit 
to a lesser extent than some other scaling methods. 

These findings underscore the critical role of scaling 
method selection in model performance, particularly in the 
context of binary classification tasks. The varied impacts of 
different scaling techniques on classification outcomes 
highlight the importance of careful consideration and 
empirical validation when choosing preprocessing methods 
for machine learning models. 

TABLE II.  PERFORMANCE METRICS COMPARISON ACROSS DIFFERENT 

SCALERS 

 Acc. Pre. Recall 
F1-

score 

ROC 

Curve 

No Scaling 0.89 0.0 0.0 0.0 0.5 

MinMaxScaler 0.92 0.57 1.00 0.3 0.75 

StandardScaler 0.95 1.00 0.47 0.64 0.96 

RobustScaler 0.98 0.95 0.82 0.8 0.99 

Normalizer 0.89 0.89 0.0 0.0 0.50 

 

As shown in TABLE II, RobustScaler performed the best 
across all performance metrics, with the highest ROC-AUC of 
0.99 and overall superior performance. StandardScaler shows 
best on Precision, but has a lower Recall and therefore a lower 
F1 Score. MinMaxScaler has the highest value for Recall at 
1.0, but its F1 Score is somewhat lower due to its lower 
Precision. No Scaling and Normalizer have relatively low 
performance, making them less efficient than the other scalers. 

No Scaling scored very poorly on all performance metrics, 
showing that not scaling can lead to poor performance because 
the model does not learn the distribution of the data well. In 
particular, both Precision and Recall are zero, suggesting that 
the model made no predictions at all for that particular class. 

When using MinMaxScaler Accuracy (0.923) and Recall 
(1.0) are high, but Precision (0.572) is low. This indicates that 
the model overpredicts the positive class, resulting in a high 
accuracy for true positives, but also a high number of false 
positives. This can be advantageous in situations where Recall 
is important like a diagnosing a disease, but the low Precision 
can lead to many false alerts. 

 

Fig. 10 Performance metrics comparison across different 
scalers 

Fig. 10 provides an at-a-glance comparison of the 
performance of Accuracy, Precision, Recall, F1 Score, and 
ROC-AUC values for each scaler. The x-axis represents the 
scaler used and the y-axis represents the value of each 
performance metric, with values ranging from 0 to 1.  

StandardScaler scores the highest in Precision (1.0) but 
has a low Recall (0.474). This means that the model is very 
strict when predicting the positive class, predicting only true 
positives, but may miss many positives. This can be 
advantageous in situations where precision is important for 
spam filtering.  

Normalizer performs similarly to No Scaling, with lower 
overall performance. The Normalizer converts the length of 
each sample to 1, which makes the data have a relatively 
uniform size, but it can lose information about the distribution 
or relationships in the data. It may not be suitable if your data 
needs to retain its original distribution. 

RobustScaler performs well across all performance 
metrics, with particularly high scores in Accuracy (0.977), F1 
Score (0.882), and ROC-AUC (0.99). It is robust to outliers in 
the data, providing stable performance across a wide range of 
data distributions. It performs well on general classification 
problems and is efficient even on data with outliers. 

 

V. CONCLUSON  

In this paper, we aimed to enhance the performance of 
anomaly detection methods using autoencoders. By applying 
the Mahalanobis Distance to the latent space of the 
autoencoder, we improved the effectiveness of anomaly 
detection in real-world applications. Unlike existing methods 
that treat reconstruction error as a single value, we considered 
it as a vector by calculating the reconstruction error per feature, 
providing more detailed outlier information. Our experimental 
evaluation demonstrated that data scaling significantly affects 
the results of anomaly detection. Among the five scalers tested, 
RobustScaler emerged as the most advantageous choice due 
to its resistance to the influence of outliers, leading to stable 
performance not distorted by extreme values. The proposed 
model showed improved performance in accuracy, precision, 
recall, F1 score, and ROC-AUC metrics. These findings 
suggest that our approach can effectively enhance anomaly 
detection methods, making them more practical for real-world 
applications. 



The 10th International Conference on Next Generation Computing (ICNGC 2024) 

 

ACKNOWLEDGMENT  

This research was supported by “Regional Innovation 
Strategy (RIS)” through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education (MOE) 
(2021RIS-002) and Institute for Information & 
communications Technology Planning & Evaluation(IITP) 
grant funded by the Korea government (MSIT)(No.IITP-RS-
2022-II221203, Regional strategic Industry convergence 
security core talent training business).  

REFERENCES 

[1] Sanketh Harnoorkar, "A Study of Anomaly Detection 
Techniques," International Journal for Research in Applied 
Science and Engineering Technology, Vol. 8, pp. 960-962, 
2020. 

[2] A. S. Deepthi and  K.Venkata Rao, “Anomaly Detection Using 
Principal Component Analysis,” IJCST Vol. 5, Issue 4, pp. 
124-126, 2014. 

[3] T. Dunning and E.Friedman, “Practical Machine Learning: A 
New Look at Anomaly Detection,” O’Reilly, 2014. 

[4] Z. Chen, C. Yeo and B. Lee and C. Lau, “Autoencoder-based 
network anomaly detection,” 2018 Wireless 
Telecommunications Symposium (WTS), pp. 1-5, 2018. 

[5] A. Borghesi,  A. Bartolini, M. Lombardi, M. Milano and Luca 
Benini, “Anomaly Detection using Autoencoders in High 
Performance Computing Systems,” arXiv, vol. 1811.05269, 
2018. 

[6] M. S. Minhas and J. S. Zelek, “Semi-supervised Anomaly 
Detection using AutoEncoders,” ArXiv, Vol. 2001.03674, 
2020. 

[7] S. Erniyazov, Y. Kim, and C. G. Lim, “Comparative Study on 
Anomaly Detection Performance Using Autoencoder and 
LSTM Autoencoder in Temperature and Sound Time Series 
Data,” International Conference of Next Generation 
ConvergenceTechnology 2024 (ICNGCT 2024), 106-111, 
2024. 

[8] Shin, Hyeok-Ki, Woomyo Lee, Jeong-Han Yun, and 
HyoungChun Kim. "{HAI} 1.0:{HIL-based} Augmented {ICS} 
Security Dataset." In 13Th USENIX workshop on cyber 
security experimentation and test (CSET 20), 2020.   

 

 


