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Abstract 

In order to perceive the behavior presented by the multiphase chemical reactors, the ant colony 

optimization algorithm was combined with computational fluid dynamics (CFD) data. This 

intelligent algorithm creates a probabilistic technique for computing flow and it can predict various 

levels of three-dimensional bubble column reactor (BCR). This artificial ant algorithm is 

mimicking real ant behavior. This method can anticipate the flow characteristics in the reactor 

using almost 30 % of the whole data in the domain. Following discovering the suitable parameters, 

the method is used for predicting the points not being simulated with CFD, which represent mesh 

refinement of Ant colony method. In addition, it is possible to anticipate the bubble-column 

reactors in the absence of numerical results or training of exact values of evaluated data. The major 

benefits include reduced computational costs and time savings. The results show a great agreement 

between ant colony prediction and CFD outputs in different sections of the BCR. The combination 

of ant colony system and neural network framework can provide the smart structure to estimate 

biological and nature physics base phenomena. The ant colony optimization algorithm (ACO) 

framework based on ant behavior can solve all local mathematical answers throughout 3D bubble 

column reactor. The integration of all local answers can provide the overall solution in the reactor 

for different characteristics. This new overview of modelling can illustrate new sight into 

biological behavior in nature.      

Keywords: bubble column reactor; ant colony optimization algorithm (ACO); flow pattern; 

machine learning; computational fluid dynamics (CFD), big data 

 

 

 



 

1-Introduction 

 

Multiphase bubble column reactor (BCR) types are highly important for different industries 

because of their applications and efficiency (Kumar, Degaleesan, Laddha, & Hoelscher, 1976; H 

Li and Prakash, 2002; Schäfer, Merten, & Eigenberger, 2002). A BCRôs structure is composed of 

a cylindrical vessel with a gas distributor at the bottom section so that the gas bubbles are fed into 

the reactor (Bouaifi, Hebrard, Bastoul, & Roustan, 2001; Dhotre, Ekambara, & Joshi, 2004; 

Lefebvre and Guy, 1999; Shah, Kelkar, Godbole, & Deckwer, 1982). Therefore, the gas is sparked 

in other phases for separation or chemical reaction. Moreover, this phase may have two forms; i.e., 

liquid-solid mix and liquid phase (Cho, Woo, Kang, & Kim, 2002; Kantarci, Borak, & Ulgen, 

2005; Pino et al., 1992; M. Pourtousi, Sahu, & Ganesan, 2014). The BCR is particularly beneficial 

in petrochemical, chemical, metallurgical, and biochemical industries, and they are utilized as 

multiple reactors and contactors since these fluid-structure domains give a large surface area 

(Bombaļ, Rek, & Levec, 2019; Rieth and Gr¿newald, 2019; Shi et al., 2019; Shu, Vidal, Bertrand, 

& Chaouki, 2019). The BCRs in different industries such as pharmaceutical or biochemical are 

used in the processes that involve reactions such as chlorination, oxidation, polymerization, 

hydrogenation, and alkylation, which are advantageous for the production of synthetic fuels(Chen, 

Hasegawa, Tsutsumi, Otawara, & Shigaki, 2003; Ruzicka, Zahradnēk, Drahoġ, & Thomas, 2001; 

Sokolichin and Eigenberger, 1994; S. Wang et al., 2003). The Fischer-Tropsch process is 

considered as a major application of the mentioned reactors in the chemical industries (Prakash, 

Margaritis, Li, & Bergougnou, 2001). It is the process of indirect coal liquefaction, resulting in 

various kinds of fuels like synthetic fuels, methanol synthesis, and transportation fuels(Chuntian 



and Chau, 2002; Maalej, Benadda, & Otterbein, 2003; Rabha, Schubert, & Hampel, 2013). The 

production of these kinds of fuels is environmentally advantageous compared to the fuels derived 

from petroleum (Behkish, Men, Inga, & Morsi, 2002; Kantarci, et al., 2005; Michele and Hempel, 

2002). The BCRs are extensively used due to their specific operation and design. The high heat 

transfer coefficients are characteristics of the bubble columns (Buwa and Ranade, 2003; Kantarci, 

et al., 2005; Krishna and Van Baten, 2003; Leonard, Ferrasse, Boutin, Lefevre, & Viand, 2015; 

Luo, Lee, Lau, Yang, & Fan, 1999). As the advantage of the bubble columns, it can be stated that 

a catalyst or other packing chemical components are able to stay a long period even though they 

are extensively used(Asil, Pour, & Mirzaei; Kannan, Naren, Buwa, & Dutta, 2019; Liu and Luo, 

2019; Shi, Yang, Li, Zong, & Yang, 2019; Xin, Zhang, He, & Wang). Also, it is possible to add 

or remove the online catalyst easily(Deen, Solberg, & Hjertager, 2000; Díaz et al., 2008; Masood 

and Delgado, 2014; Shimizu, Takada, Minekawa, & Kawase, 2000; Thorat and Joshi, 2004). Thus, 

the bubble columns are used in biochemical and chemical industries. In order to get effective 

BCRs, it is necessary to consider their design scale(Krishna, Baten, & Urseanu, 2001; Masood, 

Khalid, & Delgado, 2015). Hence, if the reactors are improved by computation and simulation of 

the columnôs hydrodynamics, then a perfect understanding concerning the process can be provided 

(M Pourtousi, Ganesan, & Sahu, 2015; Razzaghian, Pourtousi, & Darus, 2012; Verma and Rai, 

2003). Various numerical methods are available for estimation of the multiphase flow in the BCRs. 

Nevertheless, the scholars have difficulties in the simulation of the full gas movement (Besagni, 

Gu®don, & Inzoli, 2018; Hanning Li and Prakash, 2001; Silva, dôĆvila, & Mori, 2012). In order 

to numerically simulate complex turbulence behavior in the two-phase reactor, often the 

supercomputers provide the opportunity to calculate the liquid flow in the very complicated 

geometries. In experimental observation, If the fluid flow is needed to be measured during 





Mezghiche, 2010). In addition, they can be devoid of various errors including the accuracy in 

monotonous conditions. In addition, using the different inputs and output procedure is beneficial 

when the output-input association is inherently meaningful(Lu and Liu, 2013). Therefore, the 

methodôs learning process is completely dependent on the data both for experimental or simulated 

cases (Babanezhad, Rezakazemi, Hajilary, & Shirazian; A. Mosavi, S. Shamshirband, E. Salwana, 

K.-w. Chau, & J. H. Tah, 2019). The recent research works have been mainly focused on a specific 

dimension of soft computing methods used for flow patterns production in the BCRs. According 

to the research works, the relationship between the machine learning and CFD results in important 

concepts for the computation of different properties of BCRs. A number of researchers, e.g., 

Mohammad Pourtousi (2016) used different type of big data in the bubble column reactor in the 

machine learning algorithm and they predicted pattern recognition of gas and liquid flow in the 

BCR (Fotovatikhah et al., 2018; Yaseen, Sulaiman, Deo, & Chau, 2018). In this study, ant colony 

method is combined to predict the flow pattern in the BCR. The application of ant colony algorithm 

is an appropriate alternative rather than using the CFD approach, which is costly in terms of 

computation, for the flow simulation in BCRs. In this study, the flow characteristics were trained 

in the BCR by pheromone-based communication of biological ants and compare the results with 

existing CFD data(Marco Dorigo and Gambardella, 1997; Xu, Chen, Zhu, & Wang, 2010). As a 

combination of optimization methods and fuzzy system have not been fully used to simulate 

biological and physics-based phenomena. In this paper, ant optimization method with fuzzy system 

was used to predict continuous data. For the first time, the optimization method is used as a solver 

of machine learning to simulate bubble column characteristics. 

 

 







Intelligent Ants or artificial algorithms of ant method stand for multi-agent methods to mimic the 

real behavior of ants. In this study, this method was used to predict the gas-liquid flow pattern in 

the column. More description about this method can be found in (Baker and Ayechew, 2003; Bell 

and McMullen, 2004; Blum, 2005; Castillo, Neyoy, Soria, García, & Valdez, 2013; M Dorigo, 

Birattari, & Stützle; Marco Dorigo and Blum, 2005; T. Li, Sun, Sattar, & Corchado, 2014; Maroosi 

and Amiri, 2010; McMullen, 2001; Mocholi, Jaen, Catala, & Navarro, 2010; Mohan and Baskaran, 

2012; Mullen, Monekosso, Barman, & Remagnino, 2009; Rao, Srinivasan, & Venkateswarlu, 

2010; Suganthi and Samuel, 2012; Tian, Ma, & Yu, 2011; Valdez, Melin, & Castillo, 2014; Yu, 

Yang, & Yao, 2009). (see Fig.2) 

 

 

Figure 2: a) Ants food-finding schematic; b) Ants with an obstacle (starting problem); b) Ants with an obstacle (best 

solution).  

 

 

3-results 



In the present study, through simulating a cylindrical BCR reactor by CFD method, different 

parameters of the fluid are acquired as the CFD outputs parameters. The output parameters consist 

of the x, y, and z coordinates which denote pressure, air superficial velocity, and air volume 

fraction, simultaneously. In this study, the CFD outputs were assessed by combining the 

intelligence optimization algorithm of ant colony and fuzzy inference system (FIS) with.  

To use the Ant colony algorithm, part of the CFD outputs were considered as input and the others 

were considered as output. In this research, five inputs were utilized; the first input was the x 

coordinate, the second input was y coordinate and the third was the z coordinate. The pressure 

which was one of the traits of the fluid inside the BCR is the fourth input; air superficial velocity 

another characteristic of the fluid inside BCR is the fifth input, whereas air volume fraction is 

considered as output. To initiate the learning process by artificial intelligence (ant colony 

algorithm), the following conditions are assumed: 

The maximum iteration is 100, the total data number is 1500, the value of p represents a percentage 

of the data that has been used in the learning processes and is considered as %70. In the training 

process, %70 of the data was involved and %100 of the data was evaluated in the training process. 

The clustering type was assumed as Fuzzy c-means (FCM). With the above mentioned 

assumptions, by considering the input of the x coordinates and the output of the air volume fraction, 

the training and testing processes were performed separately for 20, 30, and 40 numbers of ants. 

As presented in Fig. 3, the best Regression (R) value is 0.30 for a number of 30 ants which shows 

that FIS does not have sufficient intelligence in the learning process using the ant colony algorithm, 

and the change in the number of ants has made no significant enhancement in the FIS intelligence. 



 

Figure 3: ant colony algorithm training and testing process with one input (number of ant =20, 30, 40; number of 

data=1500; max iteration=100; P=%70; FCM clustering). 

 

To boost the system intelligence, the number of inputs was increased and evaluated; the x 

coordinate and y coordinate were considered as inputs, and learning processes were carried out for 

20, 30, and 40 ants separately. Fig. 4 doesnôt show much enhancement in system intelligence. 



 

Figure 4: ant colony algorithm training and testing process with two inputs (number of ant =20, 30, 40; number of 

data=1500; max iteration=100; P=%70; FCM clustering). 

 

To elevate the ant colony algorithm intelligence, the increase in the number of inputs from 2 to 3 

was considered and z coordinate was considered as third input and the air volume fractions were 

considered as output. By conducting separate training and testing procedures for various numbers 

of ants, no significant changes are observed in intelligence as shown in Fig. 5. 





 

Figure 6: ant colony algorithm training and testing process with four inputs (number of ant =20, 30, 40; number of 

data=1500; max iteration=100; P=%70; FCM clustering). 

 

Afterward, in order to attain favorable system intelligence, another characteristic of the fluid inside 

BCR i.e. air superficial velocity was considered as the fifth input, and the learning processes were 

carried out for 20 ants. As presented in fig.7, the value of R for the training process has increased 

from about 0.20 to 0.96 and for the testing process, it has increased to 0.95, which indicates a very 

favorable enhancement in the system intelligence and the achievement of complete intelligence 

for the system. Using this intelligence, various parts of the BCR can also be predicted. In Fig. 8, 

points of BCR that participated in the learning process are observed that used in the ant colony 

algorithm learning process. 







 

Figure 9(b): Testing process target and prediction (number of ant =20; number of data=1500; max iteration=100; 

P=%70; FCM clustering). 

 

 

 

Figure 10: Ant colony algorithm Prediction (number of ants =20; number of data=1500; max iteration=100; P=%70; 

FCM clustering). 



4 -Conclusion 

Current work describes the simulation of the gas fraction based on different bubble column 

characteristics with ant colony approach. In particular, the CFD data are considered as training 

inputs of the ant colony method, and this method predicts the behavior of the bubble column 

reactor. The simulation of the gas fraction is implemented in a 3D domain of fluid-structure and it 

is compared with the results of CFD. In the training process, the reactorôs top bottom and middle 

levels are chosen for computing the BCR hydrodynamics because of the gas holdup behavior at 

the mentioned levels. The Ant colony method model is an appropriate tool for prediction with 

almost 30 percent of data in the learning state. Nevertheless, the tuning parameters of this model 

significantly enhance the ant colony methodôs intelligence. Also, it is possible to train it in a highly 

short period of time (iteration), which provides a quick learning procedure having very small 

computational time and efforts. Moreover, as no obstacle of computational time is present, a higher 

amount of data can be generated in the input domain of data indicating novel reactor conditions 

with no experimental or numerical outcomes. This new perception of data analysis with artificial 

ants and local search algorithms is sophisticated process for post-processing the data as other 

researchers started with other soft-computing methods. Prediction of the fluid flow around bubbles 

can be very complicated and estimation of the vortex structure near bubbles requires more training 

data. This new combination of CFD and AI can provide more tuning parameters in AI prediction 

of the reactor to achieve accurate prediction results, and enables us to organize data during training 

and optimization base on the biological overview. For future studies, other biological optimization 

methods can be combined with inference fuzzy system to predict the BCR hydrodynamics. 

However, the ant colony method can be modified based on different ants such as Tapinoma 

nigerrimum, Redwood ant and Myrmecia.   
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