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Abstract

In today's world of technology, we are surrounded by electronic gadgets and connected through the internet. The risk of

privacy invasion is at an all-time high. Cybersecurity plays an important role in preventing and precluding these threats and

provides a safeguard against these attacks. In this paper, we have focused on Android Malware detection, since its causes

have been seen skyrocketing due to easy access to a host device, which makes it susceptible to attacks and data breach.

Moreover, Android is open-source, due to which it exposes the application to foreign attacks. Drebin dataset - the most

extensive dataset for android malware detection, which is extracted from 15036 application files, was used for analyzes.

The feature extraction was performed using Random Forest Classifier and Extra Trees Classifier, top 15 features were

selected, and the accuracies were compared. The key focus of our work is to map the Android malware detection problem

into the Markov Decision Process which is the mathematical foundation of the Reinforcement learning algorithm. We have

implemented Q-Learning, a Deep Reinforcement Learning technique, for the classification of android malware on the

Drebin dataset. The accuracy of RL (94.30%) was compared with the performance of other malware detection techniques.

Keywords: Android Malware Detection, Markov Decision Process, Q-Learning, Reinforcement Learning, Extra Trees

Classifier, Random Forest Classifier.

1. Introduction

Cybersecurity is the protection of all hardware devices,

software-related technologies, and data associated with

the applications and devices connected with the

internet. Cybersecurity is very important in today's

world, as there are hackers and scammers all over the

internet, who try to steal sensitive user data, scam

people, and cause disruptions in the normal flow of

internet traffic. Today, Mobile devices are present in

every nook and corner of the world, and the privacy of

users and their data is of utmost importance. Android is

the most used and popular platform for mobile devices

[1]. A recent mobile threat report summarized the

comparison between malware samples collected from

different devices with varied mobile OS platforms (218

samples). They were analyzed in four quarters of 2012.

Interestingly, other platforms, such as iOS, Blackberry,

J2ME, Windows mobile, and Symbian, showed a

decline in malware samples, while Android showed a

twofold increase in the reported cases of malware [2].

Android has been detected with an increasing

amount of malware in the past few years. This number

has increased gradually in the past years, unlike other

OS platforms of malware that targeted other mobile

platforms [3]. The main cause behind this was the

open-source policy of Android. Android easily allows

the malware to be inserted into an Android app. There

has been a wide range of research for the detection of

malware in Android [4][5]. After various researches, it

was concluded that there are some patterns on which

we can divide the malware detection techniques to be

effective or not [6][7]. However, these researchers
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could not find an effective technique that would give

satisfactory results for the detection of unknown

malware files. Deep learning methods have also been

studied for detecting malware detection.

The dataset employed for malware detection is

the most comprehensive dataset available for research

based on android malware detection. The dataset used

is the Drebin Dataset and is provided by the Technische

Universitat Braunschweig. To get accurate and precise

results, the dataset was initially cleaned for extracting

any erroneous or lacking information, by employing

Extra Trees Classifier and Random Forest Classifier, in

tandem with the Q-Learning, for the identification of

malware.

A novel approach to complement Q-Learning has

been efficient in yielding desirable accuracy for the

recognition of malicious content without hampering the

critical attributes. The influence of this extensive

research paper will help curb malware attacks and

strengthen the security of data. Over the next sections

we formalize our objective and challenges through the

literature review of the present detection techniques

and show our methodology and results.

2. Literature Review

Most of the Android-targeted malware is divided into

four categories: Trojan, Spyware, Root Permission

Acquisition (exploit), and Installer (dropper).

Trojan: Trojan appears to be valid as a normal

program or application but when opened or executed, it

installs malware on the device. It may spread to other

parts of the device [8].

Spyware: Spyware is encompassed in the original

software and deployed to users. The main aim of

spyware is to collect data about people, groups, and

organizations without their known consent or by

fooling them. It can also gain control of the device

secretly without users' knowledge [9].

Root permission acquisition (exploit): Some

applications trick the user into giving root permission.

This gives hackers or exploiters almost full access to

the data and control of the device.

Adware: It keeps opening different pop-ups and

tries to redirect users to misleading sites and malware

[10].

A shocking increase in the cases of malware

intrusion reported has led to a massive increase in the

research being conducted on detecting and analyzing

Android malware.

Vinit B. Mohata and Dhananjay M. Dakhane [11]

advised 5 types of malware detection techniques:

Signature - Based, Behavioural - based, Specification -

based, Data - Mining based, Cloud Based. In signature

Based, malware detection is done during program

compilation. In specification-based, depending on the

behavior of a normal program, a rule set is defined. In

behavioral-based, different malware families are

studied on a target system. In data-Mining based,

defined patterns are detected from large amounts of

data, and classifiers are used for malware detection. In

cloud Based, Google uses a service called Bouncer to

check for malware in the apps uploaded on the play

store.

F Martinelli, F. Mercaldo, A. Saracino, and C. A.

Visaggio [12] in their research implemented a hybrid

model of n-gram ( for extracting the opcode ), and

feature selection techniques, while the app is in run

mode. They achieved an accuracy of 99.7% for the

detection of malware.

Vinod, P., Akka Zemmari, and Mauro Conti. [13]

implemented 2 feature extraction techniques: Absolute

Difference of Weighted System Calls (ADWSC) and

Ranked System Calls using Large Population Test

(RSLPT). After feature extraction, the accuracies were

compared on different datasets for malware detection

and most of the classifiers had an accuracy of 99%.

Ham, Hyo-Sik [14] employed an SVM classifier

for the detection of malware targeting the Android

platform, most of the malware was detected through

this approach, however, still, some undetectable

malware existed in the application.

As part of literature review, we have analysed

classification based on machine learning models and



highlighted the results accordingly in Figure 1.

Figure 1 The figure shows comparison between outputs
of different machine learning classifiers namely,
Bayesian networks, Decision Tree, Random Forest,
Naive Bayes and SVM.It can be seen that SVM gives
better results than others [14].

3. Objectives and Challenges

Android has been detected with a number of malwares

in the past few years, as depicted in Figure 2. This

number has increased gradually in the past years,

unlike other OS platforms of malware that targeted

other mobile platforms. The main cause behind this

was the open source policy of Android . Android easily

allows malware to be inserted in an Android app. There

has been a wide range of research for detection of

malware in Android. After a period of time, it was

concluded that there are some patterns on which we can

divide the malware detection techniques to be effective

or not. However,these researchers could not find an

effective technique which would give satisfactory

results for detection of unknown malware files. Deep

learning methods have also been studied for detecting

malware detection. These methods extract features

from famous Android apps,some of which contain

malware and some of them don’t. After extracting

features,machine learning algorithms were

implemented on them to train the model on these

features and to test these models for detection of

unknown malware files in Android apps [15].

The main motivation behind this research is to apply

reinforcement learning for cyber security issues and

compare it with the previous works done using Deep

Learning.

Figure 2 The figure shows a rapid increase in malware
samples collected from different devices over the years
on the android platform. They were analysed in 2016,
2017 and 2018 [15].

4. Methodology

Q-Learning with Random Forest analyses: The
dataset used is the Drebin Dataset and is provided by
the Technische Universitat Braunschweig. The dataset
consists of 215 attributes and their feature vectors. It is
extracted from 15,036 applications consisting of 5,560
malware files collected from August 2010 to October
2012 and 9,476 benign files [16]. All malware samples
are labeled as 1 of 179 malware families. Drebin is one
of the most popular benchmark datasets for Android
malware detection.

For training and subsequently testing our
Q-Learning model, the dataset was divided into a 3:2
ratio. The training dataset comprised 75% of the
available samples, i.e. 11,277 samples; consequently,
the testing dataset comprised 25% of the available
samples, i.e. 3,759 samples, for the analyses and
comparison of accuracies of the algorithm. Table 1
depicts the distribution of the Drebin dataset.

Dataset #Samples #Malign #Benign
Original 15,036 5,560 9,476

Training 11,277 4,170 7,107

Testing 3,759 1,390 2,369

Table 1 Distribution of Drebin  Dataset

Preliminary processing of data: Since the

datasets consist of a massive probability of having

erroneous attributes and entries increases with the

amount of data. The Drebin dataset is gigantic, so to

eradicate the chance of having false positives or

skewness in results due to the impact of fallacious data

entries, data was initially processed, cleaned, and

normalized.



Normalizing the data points: For an identical

weight of each attribute and contribution to the model,

the data needs to be normalized into a [0,1] range. This

was achieved by implementing the Min-max

normalization method using the following algorithm

[17].

Cleaning of data: To avoid the dataset being

contaminated with values that are missing and

redundant columns, such tuples are removed for

increasing the accuracy and quality of our results [18].

Feature Selection: Computational costs

skyrocket with an increase in the attributes or

dimensions of a dataset and also an increase in the

records. This hampers the functioning of the models.

So for better performance, the vital features were

extracted using either Random Forest Classifier or

Extra Trees Classifier [19].

Random Forest Classifier: A hundred thousand

decision trees are constructed in Random Forest. Each

decision tree is characterized by randomly selecting

variables and data. For predicting a particular tree in a

forest we use the remaining dataset. Each tree yields a

final answer, yes or no. Finally, the decision of the

majority of trees is chosen as the final decision [20].

Extra Trees Classifier:This method is similar to

Random Forest Classifying method. In this method, in

each tree, a random set of k features from the set of

features is given at each of the nodes. The only

difference between a random forest classifier and an

extra tree classifier is that all the features we select for

the split may or may not be the best features of the split

since the point to split is randomly chosen. This leads

to more diversified trees and less evaluation of splitters

at each node. Thus it is preferred over Random Forest

Classifier because it takes less time [21].

Implementing Reinforcement Learning:

Reinforcement Learning iteratively trains the agent and

increases the learning experience of the agent which

distinguishes it from other supervised learning

algorithms. Reinforcement Learning is defined by a

tuple of state, reward, and action. The agent interacts

with the environment for a particular set of states and

rewards. It performs an optimal action and the

environment gives a reward or a penalty. Environment

iteratively returns a new set of states and rewards to the

agent. We aim to maximize the reward and gradually

filter the bad actions and provide a set of suitable

actions for a particular state.

Figure 3 Reinforcement Learning Environment

Figure 3 depicts a Reinforcement Learning

environment, where an agent interacts for a particular

set of states and actions. The agent takes an optimal

action on the state and gives a reward. The

environment then returns the agent a new set of states

and rewards. The agent again takes a new optimal

action and gives a reward, this process takes place

iteratively until a terminal state is reached [22].

Markov Decision Processes MDP's: The

mathematical formulation of Reinforcement Learning

can be described using Markov Decision Processes

(MDP’s) which consists of  (equation 2):

( S, A, T, R, 𝛾 ) (2)

where S: a set of states, A: a set of actions,

T(st+1|st, at): maps a state-action pair at time t onto a

distribution of states at time t+1, R(st, at, st+1): reward

function, 𝛾: the discount factor, between 0 and 1: this

quantifies the difference in importance between

immediate rewards and future rewards.

Memorylessness: once the current state is known, the

history of the previous states can be erased because the

current Markov state contains all useful information

from history.

For our use case:

S: each state is a tuple of possible

combinations of feature values.

A: actions defined are either benign or



malicious.

T: next state is defined as the next tuple in the

dataset.

R: if predicted true reward of +1 else a penalty

of -1.

𝛾: discount factor is chosen as 0.95.

Summing across all time steps t (equation 3). For

𝛾 = 1, r(x, a) is a reward function. For state ‘x’ and

action ‘a’, it gives the reward associated with taking

that action at state ‘x’. We’re trying to maximize the

sum of future rewards by taking the best action in each

state. Using Markov Decision Processes we set up our

reinforcement learning problem and formalize the goal.

Classification using Q-Learning: Q learning

improves the behavior of a learning agent iteratively by

using Q-values Q(s, a). Where Q(s, a) is the estimation

of how good it is to take an action at a state ‘s’. Every

time any action is performed, a reward or a penalty is

awarded until it reaches a terminating state where it is

said to complete one episode. Actions are chosen based

on an 𝝐-greedy policy: either take an action with

maximum q value or perform a random action.

Qt(s, a) = Qt-1(s, a) + 𝛼( R(s, a) + 𝛾maxa'Q(s',

a')-Qt-1(s, a)  ) (4)

Bellman’s Equation for calculation Q value at a

state ‘s’ on taking an action ‘a’, where Q(s, a) is the old

q value, 𝛼 is the learning rate, R(s, a) is the reward at

state ‘s’ and action ‘a’, 𝛾 is a discount factor and max

Q(s', a') is the estimate of optimal future value

(equation 4). We maintain a Q table to store the q value

of each state-action pair. Figure 4 depicts the flowchart

or process of Q-Learning for training the model.

Figure 4 Flowchart of Q Learning algorithm
implementation

5. Experimental Results

The focus of this paper was to apply the Reinforcement

Learning algorithm ( Q-learning ) in the field of

cybersecurity, as major work/research has not been

done in this field. The accuracy of the model varied

with varying values of learning rate.

We utilized feature selection using both Random

Forest and Extra Trees classifiers at several learning

rates and obtained the following accuracies and F1

score for our model.

Q-Learning with Random Forest analyses: As

demonstrated in table 2, the Random Forest Classifier,

accuracy decreased with an increased learning rate. It

performed the best at a learning rate of 0.00039 with an

accuracy of 87.652%.

Learning Rate Accuracy F1-Score
2.5e-05 87.19% 0.791

0.00015 86.56% 0.877

0.00039 87.65% 0.899

0.095 86.14% 0.769

1.490 57.17% 0.349

3.725 34.43% 0.027

Table 2 F1-Score and accuracy along with the learning rate
for Q-Learning on applying Random Forest Classifier



Figure 5 shows the learning rate v/s accuracy for
Random Forest Classifier with Q-Learning

Q-Learning with Extra Trees Classifiers

analyses: Table 3 shows the variation of accuracy and

f-score along with the learning rate. In the Extra trees

Classifier, the accuracy decreased with an increased

learning rate. The performance was the best at a

learning rate of 0.00039 with an accuracy of 94.30%.

Learning Rate Accuracy F1-Score
2.5e-05 88.51% 0.922

0.00015 88.56% 0.923

0.00039 94.30% 0.932

0.095 84.86% 0.852

1.490 56.70% 0.561

3.725 29.31% 0.133

Table 3 F1-Score and accuracy along with the learning rate
for Q-Learning on applying Random Forest Classifier

Figure 6 shows the learning rate v/s accuracy for Extra
Trees Classifier with Q-Learning

The results differed if we used different feature

selection methods, as depicted in figure 5 and figure 6.

Extra tree classifiers performed better at a learning rate

of 0.00039 with an accuracy of 94.30%, whereas

87.65% using Random Forest Classifiers. Therefore,

we used the Extra Trees Classifier for feature selection

and our model showed an accuracy of 94.30% at a

learning rate of 0.00039 and f-score of 0.873.

Reinforcement Learning v/s other Machine

Learning algorithms on Drebin dataset: In the past

years, various researchers have built models to classify

benign and malware files using Drebin dataset with

different approaches like machine learning, deep neural

networks, etc. Through the works of various

researchers, SVM performed with an accuracy of

94.2%, Random Forest had an accuracy of 94.10%,

Decision Tree had an accuracy of 92.8%, Gradient

Boosting had an accuracy of 89.96% and LSTM had an

accuracy of 70%, as depicted in Figure 7. Our model

had an accuracy of 94.30 % and performed better than

all other models on the Drebin dataset.

Figure 7 shows the comparison of accuracy and
f1-score for Reinforcement Learning model v/s other
algorithms on Drebin dataset.

Algorithm Accuracy F1-Score
SVM [23] 94.20% 0.92

Random
Forest [24]

94.10% 0.94

Decision Tree
[24]

92.87% 0.93

Gradient
Boosting [24]

89.96% 0.89

LSTM [25] 70% 0.104

Reinforceme
nt Learning

94.30% 0.932

Table 4 depicts the accuracy of each algorithm for Android
malware detection using the Drebin database.



Table 4 depicts the accuracy of each algorithm for

Android malware detection using the Drebin database.

LSTM had the least accuracy of 70%, followed by

Gradient Boosting (89.96%) and Q-Learning had the

best accuracy of 94.30%, and f1-score of 0.932, and

learning rate of 0.00039.

6. Conclusion

Android being the most used and widely available

open-source software, has led to a shocking increase in

the number of android malware detected. To Avoid the

risk due to presence of malware in Android devices,

effective detection technique is an essential process.

However due to the constantly changing nature of

Android malware, there is a need for such a detection

strategy that also inline itself accordingly. We proposed

and presented the Reinforcement learning algorithm as

a detection mechanism for Android malware.

Q-Learning when applied with Extra Trees Classifier

provided the best results for the detection of android

malware. It had an accuracy of 94.30% for segregating

the samples as benign or malign (malicious). In

conclusion, it can be stated that this work is like a proof

of concept to formalize the Android malware detection

method via Markov Decision Process. We have shown

the five tuples of Markov Decision Process formulation

that are state, action, transition, reward and discount

and map the detection strategy into them which is used

as the mathematical foundation of the Reinforcement

Learning algorithm. We experimented with the

Q-learning variant of Reinforcement learning algorithm

and used Q-table to maintain the state-action pair. For

the efficient feature extraction, we used Random forest

classifier and Extra tree classifier and juxtapose our

performance against competing approaches. To our best

knowledge, such a mechanism of using Q-learning for

the android malware has seldom been investigated

before. The key purpose of exploring the q-learning for

this detection is to enable the environment to retrain

itself thus reducing the heavy training cost. However,

more exploration can be done towards modelling the

MDP formulation to get better accuracy in future.
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