ﬁ EasyChair Preprint

Ne 1274

DCASE 2019 Challenge: Audio Tagging with
Noisy Labels and the Effect of Model Architecture

Maxim Shugaev, Lehan Yang, Theo Viel and Khoi Nguyen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2019



Detection and Classification of Acoustic Scenes and Events 2019

Challenge

DCASE 2019 CHALLENGE: AUDIO TAGGING WITH NOISY LABELS AND THE EFFECT
OF MODEL ARCHITECTURE

Technical Report

Maxim V. Shugaev*, Lehan Yang?, Theo Viel?, Khoi T. Nguyen*

! University of Virginia, 395 McCormik Road, Charlottesville, VA 22904-4745, USA,
mvs9t@virginia.edu
2 University of Sydney, 456P+HW Camperdown, New South Wales, Australia,
xsourse.cc@gmail.com
3 Ecole des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77420 Champs-sur-Marne, France
theo.viel.enpc @gmail.com
4 VNG Corporation182 Le Dai Hanh, Ho Chi Minh City, Vietnam,
tuankhoi94 @ gmail.com

ABSTRACT

In this study we investigate the use of noisy-labeled data for pre-
training multi-label audio tagging models. The system is imple-
mented based on Neural Network architecture using convolutional
and dense layer applied to log-scale mel-frequency spectrograms of
the input data. Pretraining on the full noisy dataset is compared
with pretraining on a part of the noisy dataset, selected automati-
cally based on a model trained on a curated data, and with use of
a curated only data for building an audio tagging system. In ad-
dition, the effect of the model architecture on the performance of
the system is assessed. In particular, the baseline model consisted
of four convolutional blocks followed by a fully connected head is
com-pared with models build based on densely connected blocks.
The effect of the number of blocks and pooling, for generation of
features for fully connected part, is verified. Use of an optimized
architecture along with 64 frequency channels in preprocessed mel-
spectrograms has allowed us to build a fast baseline model with
5-fold cross-validation label-weighted label-ranking average preci-
sion (Iwlrap) score reaching 0.87 and taking only 60-90 seconds
(5-folds) for generating a prediction on the public portion of test
dataset. The final system is composed of 15 models trained with
slightly modified parameters and selected to minimize correlations
between model predictions in the ensemble.

Index Terms— Audio classification, deep learning, convolu-
tional neural network, noisy data

1. INTRODUCTION

The Detection and Classification of Acoustic Scenes and Events
(DCASE) is a series of challenges aimed at developing sound clas-
sification and detection systems. In particular, DCASE 2019 [1]
includes acoustic scene classification (1), audio tagging with noisy
labels and minimal supervision (2), sound event localization and
detection (3), sound event detection in domestic environments (4),
and urban sound tagging (5). This report summarizes results of
our study and points out the key features of our system used for
Task 2. The objective of Task 2 is building a model based on
small amount of reliable, manually-labeled data, and a larger quan-

tity of noisy web audio data in a multi-label audio tag-ging task
with a large vocabulary setting. The dataset provided for Task 2,
FSDKaggle2019[2], includes curated data composed of 4970 au-
dio files of the total duration 10.5 hours (manually-labeled and
verified data from FSD[3]) and noisy data composed of 19,815
clips of the total duration 80 hours (taken from YFCC dataset[4]).
The total number of considered classes is 80. A method based
on conversion of audio files into log-scale mel-frequency spectro-
grams followed by use of a convolutional neural network (CNN)
has reached the best performance for a variety of tasks in DCASE
2018 challenge[5]. Therefore, we apply this method in our study
and focus on two aspects: effective use of data with substantial level
of noise for building sound classification system, and optimization
of CNN architecture to boost the system performance. The report
is organized in the following: the data preprocessing is discussed
in Section 2 and is followed by description of the training setup
in Section 3.1, use of noisy data in Section 3.2, data augmentation
in Section 3.3, CNN model architectures 3.4, and ensembling of
individual model for the final system in Section 3.5. The main con-
clusions of the work are summarized in Section 4.

2. DATA PREPROCESSING

The audio files before use as an input are converted into log-scale
mel-frequency spectrograms. The silence with the level be-low 60
dB is trimmed in the beginning and the end of each file. Despite 128
frequency channels in mel-spectrograms were considered initially,
and, as demonstrated in Section 3.4, are necessary for deep models,
such as DenseNet121[6], smaller models, considered in our study,
reach the best performance for 64 frequency channels. Moreover,
reduction of the number of channels accelerates the training and
inference time. Use of 32 frequency channels also has been tested
but leads to decrease of the cross validation (CV) score by 0.016
Iwlrap in comparison with 64 frequency channel setup. The window
size of fast Fourier transform has insignificant effect on the model
performance and is set to be equal 1920. During training random
4 second intervals in spectrograms are selected, while files having
shorter durations are expanded with using constant zero padding
in the beginning and the end of the file. Use of 4 second chunks
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Figure 1: Learning rate scheduling publicity.

instead of 1 or 2 seconds improves the model performance and also
allows to avoid significant performance drop at the inference time,
when only 8 intervals are selected to generate the prediction for each
file. The input image size for the model is 64 x256x1. We have
tested normalization of data both based on image (1) and global
train set statistics (2). The mode performance reaches the similar
level; though, the best CV score is reached for global normalization.
In the final system we include models trained with both strategies
to crease a diversity.

3. TRAINING AND INFERENCE

3.1. Training setup

The training procedure consists of two stages. At the first stage
one cycle cosine annealing with warm up applied, as illustrated in
Figure 1. The maximum learning rate is 0.001, and the number of
epochs is ranged between 50 and 80 for different setups used to
create a variety in the final ensemble. Binary cross entropy loss
with logits is applied. Depending on the strategy of noisy data use,
the training set is composed of the curated data, noisy data, or their
mixture, as discussed in Section 3.2. At the second stage we fine-
tune the model based on the curated data only. Reduce learning rate
when a metric has stopped improving schedule with patience 3 and
minimum learning rate 10~ is sequentially applied three time with
saving and loading the model with the best CV score. 5-fold cross
validation scheme is considered, and the total CV score is computed
as an average over the folds. The total training time for one fold is
1-2 hours on P100 GPU, so the training of entire model takes 6-
9 hours. Label-weighted label-ranking average precision, /wlrap,
metric is used for model evaluation.

3.2. Use of noisy data

One of the keys to perform well in the challenge was to find a way
to efficiently use the noisy data. In fact, it is much more difficult to
obtain 5000 curated labels than 20,000 noisy ones, therefore taking
advantage of the “approximately” labelled data can be extremely
valuable for building a system. For the challenge, we have used 2
strategies: (1) pretraining on full noisy data and (2) pretraining on
a mixture of the curated data with most confidently labeled noisy
data.

The first method enables a better weight initialization. Models
have already learnt to recognize spectrograms and, therefore, strug-
gle less on curated data. The training policy described previously
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is then applied. It clearly appeared that noisy labels are not enough
for models to perform well. Though, this strategy has the advantage
of requiring little work and human decision making.

The second idea is to select some of the noisy labels to include
in the training. To achieve this, we create the best possible model
using curated data only, and get predictions on noisy data. Then,
the n samples that were the most correctly predicted are kept. As
some classes were easier to detect than others, we limit the number
of noisy samples to 50 per class. We also only kept samples that
had one label. The metric used to evaluate our predictions is the
logarithmic loss. Those selected samples are used alongside with
curated samples during the first stage of the training setup, note that
only curated samples are kept for validation. A best choice of n is
the key to improve the results. For n = 5000, this method slightly
outperforms the first strategy based on pretraining with noisy data
only. n was chosen by listening the audio samples and by maximiz-
ing the local cross-validation score. Finally, we considered two step
pretraining with use of the noisy data followed by use of curated
data (or a mixture of curated and noisy data), as described below.

Results are shown in the table below. “n = 07, ”n = 50007,
”n = 150007, and ’n = max” refer to pretraining on curated data
only, curated data + 5000 files from the noisy data set with the most
confident label, curated data + 15000 files from the noisy data set
with the most confident label, and only data from the noisy data set,
respectively. For “pretraining, n = 0” (and “pretraining, n = 5000”)
the pretraining procedure consists of two steps: pretraining of the
model only on data from the noisy data set followed by pretraining
on a curated data (and curated data + 5000 files from the noisy data
set with the most confident label, respectively). In all considered
cases, the models after pretraining are fine tuned on curated data
only, as described in the previous subsection. In the analysis of the
model architecture we used pretraining on the mixture of curated
data and 5000 files from the noisy data set.

Table 1: Performance of model M3 trained with different strategies
of noisy data use evaluated using 5-folds CV. The error represents
the standard deviation of the mean.

CV(lwlrap)

n=20 0.858+0.005

n = 5000 0.872+0.005
n = 15000 0.865+0.004
n = max 0.866£0.004
pretraining, n = 0 0.870+£0.005
pretraining, n = 5000  0.872+0.005

3.3. Data augmentation

In the setup that has reached the best performance two augmenta-
tion techniques, MixUp[7] and spectral augmentation[8], are used.
MixUp provides 0.01-0.015 CV boost that can be explained by the
fact that sounds, in contrast to images of real objects, are transpar-
ent: two simultaneous sounds do not overlap each other but present
simulations. Therefore, training the model on a combination of sev-
eral samples with different sounds improves the model capability of
sound recognition under conditions of back-ground noise and pres-
ence of several sounds at the same time. The alpha parameter for
MixUp is taken to be equal to 0.4. Spectral augmentation with 2
frequency masks with the blanking fraction in the range 0.0-0.15
and 2 temporal masks with the blanking fraction in the range 0.0-
0.3 gives additional 0.005 CV improvement. Use of multisample
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dropout[9] with 16 samples and 0.1 dropout probability leads to de-
crease of CV score by approximately 0.002; however, it is applied
for training of one model in the final ensemble. Other models are
trained without dropout.

3.4. Model architectures

The models tested in our study are summarized in Table 2. The
model MO, suggested as the baseline system for DCASE 2019
in Ref.[10], gives 0.855 CV lIwlrap for our best setup (Table 3).
This model consists of 4 convolutional blocks composed of 2 cas-
caded 3x3 convolutions, as specified in Table 2. The convo-
lutional part is followed by 2x2 Average Pooling, Global Max
Pooling, and two fully connected layers with Parametric Recti-
fied Linear Unit (PReLU) activation function. The initial explo-
ration per-formed for the most common computer vision models
has demonstrated that DenseNet models[6] outperform ResNet[11]
ResNeXt[12], CBAM-ResNeXt[13], and NasNet[14] architectures
for audio classification based on log mel-scale spectrograms. There-
fore, when we design models for DCASE 2019 challenge, we tried
to increase the number of dense connections. In particular, the base
block for our models includes concatenation of the output of the
first convolutional layer with the input of the convolutional block,
as schematically illustrated in Figure 2. Replacement of the convo-
lutional blocks in MO model by our base blocks and use concatenate
pooling (concatenate output of max and average pooling) boost the
overall model performance to 0.868 (M1, Table 3).

P
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Figure 2: Schematic representation of M3 model depicting concate-
nation of outputs described in the text and Table 2.

Increase of the number of convolutional blocks from 4 to 5 (M4)
does not lead to model improvement and results in decrease of CV
to 0.865, Table 3. This decrease suggests that adding skip connec-
tions between the fully connected part and intermediate convolu-
tional layers may help with training the model. Adding the skip con-
nections in M1 for the second and third layers, which is referred as
pyramid pooling, (M2) does not provide a performance gain in com-
parison with M1 (the model is shallow enough). However, adding
skip connections to M4, as illustrated in Figure 2, (M3) leads to sub-
stantial boost of the model CV to 0.872. For comparison, we also
tested the performance of DenseNet121[6] model in our pipeline
that gave only 0.836 CV. To reach 0.85+ CV we needed to increase
the number of frequency channels in mel-spectrograms to 128 fol-
lowed by rescaling the images to 256512 resolution. Therefore,
we can conclude that deeper models, such as DenseNet121, require
more than 64 frequency channels in contrast to models used in our
setup.
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3.5. Ensembling

Use of 64 frequency channels has allowed us to shorten the infer-
ence time. In particular, each model (5-folds) takes only 1-1.5 min
for generation of a prediction on the publicly available test set with
performing the inference for 8 4-second chunks sampled with reg-
ular interval selected based on the length of the file. Therefore, our
final system includes 15 5-fold models, which takes approximately
20 and 60 minutes to generate the final prediction on P100 GPU for
public and private portion of test set, respectively. The models in
the ensemble are trained with slightly different parameters and are
selected to minimize correlations between model predictions, given
each model has larger CV than 0.864 Iwlrap. The range of the pre-
diction for each class is rescaled to [0,1] interval for each model,
and the system output is calculated as an average of individual out-
puts of 15 models. On the public portion of the test dataset the
system has reached 0.739 Iwlrap.

4. SUMMARY

This report describes a system build to accomplish Task 2 in
DCASE 2019 challenge. The input audio files are converted into
log-scale mel-frequency spectrograms and then is used as an input
for CNN. Use of 64 frequency channels has allowed us to decrease
the model training and inference time keeping the sufficient level
of model performance. MixUp and spectral augmentation are used
and lead to increase of the model CV by 0.015-0.020 Iwlrap. Two
main topics, use of data with noisy labels and the optimization of the
model architecture, are considered. The best model performance is
achieved for pretraining the model on a mixture of the curated data
and 5000 samples from the noisy dataset, selected automatically
based on a model trained on a curated data and having the most
confident labels. Increase of the number of noisy samples to 15,000
(out of 19,815) reduces the model performance to the level achieved
for pretraining on noisy data only. Use of convolution blocks with
dense connections along with concatenate pooling to produce fea-
tures for fully connected part has boosted the model CV by 0.01.
Adding the fifth convolutional block along with skip connections
to the head part of the model further increases the model CV by
0.005. The final system is composed of 15 models trained in 5-
fold CV setup, and the output is computed as a mean of individual
predictions of the models in the ensemble.
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Table 2: Description of neural network architectures. Convolutional blocks are encapsulated in square brackets, and the first two numbers
in each line represent the kernel size and the number of filters. Concatenate referees to concatenation of the input and the result of the first
convolutional layer in a block. Pyramid Pooling refers to concatenation of the results of the second, third, fourth (and fifth) convolutional
blocks. In the last row, numbers represent the number of output features of each linear layer.

Feature size MO (baseline) [ M1

| M2 ]

M3 ] M4

3 x 3,64, BN, ReLU

64x256 x 1 Log mel-spectrograms
3 x 3,64, BN, ReLU
64x256 x 64 3 x 3,64, BN, ReLU Concatenate

3 x 3,64, BN, ReLU

2x2 Avr Pooling

[ 3% 3,128, BN, ReLU ]

32x128 x 128 3 x 3,128, BN, ReL.U

3 x 3,128, BN, ReLU
Concatenate
3 x 3,128, BN, ReLU

2x2 Avr Pooling

[ 3 x 3,256, BN,ReLU |

3'x 3,256, BN, ReLU

16 x64 x 256 Concatenate
| 3x3,256,BN,ReLU | 3 % 3,256, BN, ReLU
2x2 Avr Pooling
[ 3 x 3,512, BN,ReLU ] 3 % 3,512, BN, ReL.U
8 x32 x 512 3% 3.512. BN, ReLU Concatenate
L ’ Y - 3 x 3,512,BN, ReLU
2 X2 Avr 2 X2 Avr None 2x2 Avr Pooling
Pooling Pooling
3 x 3,1024, BN, ReLU
4 x16 x 1024 Concatenate
3 x 3,1024, BN, ReLU
Adaptive Adaptive Adaptive
Adaptive Concat Concat Concat Adaptive
Max Pooling Pooling Pyramid Pyramid Concat Pooling
512 1024 Pooling Pooling 2048
features features 1792 3840 features features
features
BN, 128, PReLU, BN, 80 BN, 256, PReLU, BN, 80

Table 3: The performance of the considered model architectures evaluated as average over 5-fold CV. The error represents the standard
deviation of the mean.
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