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Abstract—With the development of aerospace technology, 

more and more scientific activities are carried out in the universe. 

Due to the microgravity environment of space, the force and 

control of the 6-DOF platform are completely different from 

those on the earth. Aiming at the 6-DOF non-contact platform in 

space microgravity environment, this paper built a virtual 

prototype model in ADAMS. The control-oriented dynamics 

equations were derived according to the model parameters. And 

the 6-DOF backstepping sliding mode controller and interference 

observer were designed in MATLAB/Simulink. Combining 

virtual prototype model and control system, the co-simulation 

model was proposed. According to the simulation results, the 6-

DOF backstepping sliding mode controller can control the 

dynamic equation model or virtual prototype model within 0.5s 

effectively. And the correctness of the dynamic model is verified. 

In the simulation of applying sweep interference to the floating 

platform, it can be concluded that after 2s, the controller 

designed in this paper can control the displacement and angle of 

the floating platform within 2.5×10-6 m and 1.5×10-5 rad, which 

were lower than the traditional sliding mode controller by 90% 

and 78.6%, respectively. However, the input forces of biaxial 

non-contact Lorentz force drivers were within 1N, which is only 

17.2% of the traditional sliding mode controller. 
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I. INTRODUCTION  

With the development of aerospace technology, scientific 
and technological activities under the space microgravity 
environment are increasing gradually. Micro-vibration has 
always been an dominant factor influencing space science 
experiment activities [1]. It widely exists in space microgravity 
environment and reduces the ideal working conditions for 
scientific and technological activities in space. High-frequency 
vibrations include crew activities on the spacecraft and air 
conditioning. Low-frequency vibration sources include solar 
panel tremor, gravity gradient resistance, and wind wheel 
imbalance. They are sufficient to reduce the performance of 
ultra -precision instruments, such as high-resolution cameras or 
remote laser communication [2]. 

For an optical observation lens, a vibration of 10 microns in 
space will cause an observation error of 500 km on the ground 
[3]. Therefore, the micro-vibration suppression and isolation 

technology on the spacecraft has received more and more 
attention from scholars [4]. 

Passive vibration isolation and active vibration isolation are 
two important forms of vibration isolation. However, passive 
vibration isolation technology is often powerless in the face of 
low-frequency vibration [5]. With the development of vibration 
isolation technology in recent years, active vibration isolation 
technology has made great progress in the microgravity 
environment. Active vibration isolation has a strong ability to 
attenuate low-frequency vibration in any environment [6]. 

In recent years, active vibration isolation platforms have 
achieved many new results. Currently, active vibration 
isolation platforms used in space microgravity environments 
are mainly divided into two categories, namely the traditional 
Stewart platform and the new drive platform. The Stewart 
platform belongs to a parallel robot structure [7]. In the same 
time, the related theoretical research and practical application 
are relatively mature. However, its response speed is slow 
relatively. New drive platforms such as piezoelectric vibration 
isolation platform and magnetic suspension vibration isolation 
platform [8]. Due to high accuracy and high response 
characteristics, piezoelectric actuators are widely used in 
positioning and vibration control [9]. Nevertheless, its 
displacement is only in the micron level, which is not suitable 
for millimeter-level micro vibration isolation. The Lorentz 
force driver mounted on the magnetic suspension vibration 
isolation platform has the characteristics of fast response speed 
and precise positioning ability.  It is suitable for positioning 
and vibration isolation control of space-sensitive payloads. 

There are several examples of control research on non-
contact platforms. J.-l. LI, J.-b. WANG, and W. HE proposed a 
6-DOF platform control transfer function model, using PID 
control to achieve vibration isolation and positioning control 
[10]. Q. Wu, H. Yue, R. Liu, L. Ding, and Z. Deng used eight 
single-axis Lorentz force actuators to achieve over-constraint 
control of the platform, and established a dynamic model 
including cables. In the meanwhile, compared PID control with 
sliding mode control [11]. 

In this paper, a virtual prototype of the non-contact 6-DOF 
platform is built in the ADAMS software. In the meantime, the 
6-DOF backstepping sliding mode control algorithm with 
interference observer is studied [12]. The current work is 
organized as follows. In Section 2, the virtual prototype model 
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is presented. The control-oriented Kane dynamics equations are 
derived in Section 3. Then in Section 4, 6-DOF backstepping 
sliding mode controller and interference observer are designed. 
Co-simulation model is built in Section 5. To verify the 
system’s performance, simulations are carried out in Section 6. 
Finally, the conclusions are summarized in Section 7. 

 

II. INTRODUCTION OF THE VIRTUAL PROTOTYPE MODEL 

The 3D model of the platform was assembled through 
CREO, and then the virtual prototype was constructed in 
ADAMS software. As shown in Fig.1, the entire 6-DOF 
platform is deployed in a space-free environment. The floating 
platform and the fixed platform are connected by three biaxial 
non-contact Lorentz force actuators (Biaxial NLFA) [13]. The 
three actuators are separated by 120°. And each Biaxial NLFA 
can generates two driving forces, which are the force directed 
to the z-axis and a force along the tangential direction of the 
floating platform. The interference force application point can 
be set at any position of the floating platform, and it         
contains interference forces in three orthogonal directions. 
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Fig.1 Non-contact 6-DOF platform virtual prototype 

III. CONTROL-ORIENTED DYNAMICS 

In Fig.1, where N0 is the inertial coordinate system, S0 is the 
fixed platform coordinate system, and F0 is the floating 
platform coordinate system. Among them, the fixed platform is 
fixed together with the spacecraft, and there is only a small 
angle of rotation between S0 and N0, which can be ignored. And 
F0 can be converted to S0 through coordinate transformation 
matrix (S/F)C. 

In the case of small-angle rotation coordinate 
transformation, the transformation matrix can be simplified as: 
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According to the Kane dynamic formula combined with the 
coordinate system transformation matrix, the dynamic equation 
of the floating platform can be derived as follows: 
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Where, 

X is the vector of translation and rotation, which can be 
represented as: 

[ ]T

x y zX x y z   =  

The vector of control force in x, y and z directions can be 
expressed as: 

1 [ ]T

u x y z
F F F F=  

The vector of control torque around the x, y and z axis can 
be taken as: 

1 [ ]T

u x y zM M M M=  

Any interference force exerted on the floating platform can 
be resolved as a 6-DOF component around the center of mass 
of the floating platform, which can be expressed as: 

1
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The moment of inertia matrix of the floating platform can 
be marked as: 
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The third-order identity matrix can be expressed as follows: 
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In order to facilitate the design of the control algorithm, the 
dynamic formula can be represented as: 

u v xF F M X+ =                         () 

IV. DESIGN OF CONTROLLER AND SOLVER 

In this paper, the backstepping sliding mode control and 
interference observer are combined and applied to the non-
contact 6-DOF vibration isolation platform. The controller 
designed need to make the entire 6-DOF closed-loop system 
meet the expected dynamic and static performance indicators 
by comprehensively considering the control law and 
interference observations. And according to the position of the 
Biaxial NLFA, the input force solution matrix is derived. 

A. Description of control system 

The state space equation of the 6-DOF platform can be 
described as: 

1 2
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                   () 



Where, Fv   is the total uncertainty, which can be predicted 
by the 6-DOF interference observer. 

B. Design of backstepping sliding mode controller 

 

Assuming that the Ideal position is xd , the tracking error 

matrix can be expressed as: 

1 1 dz x x= −  

Then, 

1 2 dz x x= −  

Define the Lyapunov function: 
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Define x2： 

2 2 1 1dx z x c z= + −  

Where c1 is a positive real number.  

And z2 is a virtual control item, which can be represented 

as: 
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Therefore, 
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Define the switching function as: 
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Where，k1>0. 
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Since k1+c1>0, obviously, if σ=0, then z1=0, z2=0 and 

1
0V  . For this, the next step of design is needed. 

Define the Lyapunov function: 
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The backstepping slide mode controller can be designed 

as: 
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Where, h and β are six-order diagonal matrices, and the 

elements on the diagonal are all positive real numbers. ˆ
vF  is 

the observation vector of the interference observer. 

Then 
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where， 
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T
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Then if it is guaranteed that N is a positive definite matrix, 

we have 
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4
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By selecting the values of h, c1 and k1, N can be made a 

positive definite matrix, thus ensuring 2 0V  . Therefore, the 

backstepping slide mode controller can achieve stable control. 

C. Design of interference observer 

The interference observer is designed as： 

ˆ
u vz KF KF= − −                            () 

ˆ
v xF z KM X= +                           () 

where, ˆ
vF is the 6-DOF interference observation value 

vector of the floating platform. And K is taken as: 
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D. Calculation of input force of Biaxial NLFA 

According to Fig.1, it can be seen that the direction 

matrix of the input force of the Biaxial NLFA can be 

expressed under F0 as: 
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The position matrix of the three Biaxial NLFA can be 

expressed as follows under F0: 
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According to the position of the three Biaxial NLFA on 

the floating platform and the coordinate transformation matrix, 

we can see: 
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where, the input force vector of the three Biaxial NLFA 

can be expressed as: 
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The solution matrix can be taken as: 
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V. INTRODUCTION OF THE CO-SIMULATION 

MODEL 

This paper used ADAMS software to complete the 
mechanical dynamics system modeling of the 6-DOF platform, 
and used MATLAB/Simulink to develop the 6-DOF control 
system program. The specific steps were to import the virtual 
prototype model in the ADAMS software into 
MATLAB/Simulink, and used S-function to write the 
programs of the backstepping sliding mode control module, the 
interference observer module and the dynamics module to 
realize the co-simulation. In Fig.2, the "Dynamics equations" 
module is generated according to the dynamic equations in 
Section 3. The "ADAMS_sub" module is a virtual prototype 
model derived from Adams software. The "Back-stepping 
sliding mode controller" module is a 6-DOF control model 
adapted from the control algorithm in Section 4. And the 
"Interference observer" module can observe the 6-DOF 
component of any interference force on the floating platform. 

 

Fig.2 Combined model of dynamic system and control system 

VI. MODEL VERIFICATION AND SIMULATION ANALYSIS 

This section mainly verified the dynamic equations model 
and the virtual prototype model in ADAMS, and analyzed the 
simulation results. 

A. Co-simulation model verification 

To verify the correctness of the co-simulation model, it is 
necessary to verify that the 6-DOF control system is effective. 
The 6-DOF control system was designed based on Kane 



dynamics equations. Therefore, it is essential to verify the 
consistency of the feedback of the control system through the 
"ADAMS_sub" module and the "Dynamic equations" module. 

The control conditions were set as: 

(1) The controller started control after interference was 
applied to the floating platform for 1 s. 

(2) The interference input on the interference source was 
set as: x, y and z directions were sinusoidal interference with a 
magnitude of 1 N and a frequency of 50 Hz. 

As shown in Fig.3 and Fig.4, in 0~1 s the floating 
platform is only affected by sinusoidal interference, and the 
backstepping sliding mode controller started to control the 
floating platform at 1s. The controller can realize stable control 
of the floating platform within 0.5 seconds. The degree of fit 
between the simulation trajectory of the "Dynamic equations" 
module and the simulation trajectory of the "ADAMS_sub" 
module can reach more than 98.5%. The results show the 
correctness of the derivation of the 6-DOF dynamic formula 
for the floating platform, and also show that the control 
program is reliable and has a certain degree of stability. 

 
Fig.3 Virtual prototype verification（θy） 

 
Fig.4 Virtual prototype verification（z） 

 

B. Simulation analysis 

The simulation conditions are set as follows: Sweep 
frequency interference with a frequency of 0.1-100 Hz and a 
magnitude of 1N was applied to the x, y, and z axes of the 
interference source within 0~5s. 

As shown in Fig.5, the 6-DOF backstepping sliding mode 
controller (BSMC) designed in this paper can control the 
vibration amplitude within 1×10-5 m after 1 s, and the 
displacement trajectory shows a trend of convergence. 
Otherwise, the traditional sliding mode controller (SMC) has 
no obvious trend of convergence in suppressing the amplitude. 
And in 3.6 ~ 4 s, it can be observed that the position control of 
the floating platform using BSMC is 90% more accurate than 
that of SMC. 

  

Fig.5 Comparison of displacement control effects (z) 
In Fig.6, it can be seen that the performance of BSMC for 

angle control is better than SMC. And after 2 s, BSMC can 
control the angle of rotation of the floating platform around the 
z axis within 1.5×10-5 rad. On the contrary, SMC can only 
control the angle around 7×10-5 rad. 

 
Fig.6 Comparison of angle control effects(θz) 

It can be concluded from Fig.7 that peak value of the input 
force of Biaxial NLFA 1 in the z direction is below 1N when 
BSMC is used. In contrast, the peak value of input force is 
around 5.8 N when using SMC. 



 
Fig7. Input force of Biaxial NLFA 1 (F1z) 

The performance of BSMC was analyzed under the 
condition of applying sweep frequency interference to the 
floating platform. The simulation results show that after 2s, 
the amplitudes of position and angle control of the floating 
platform by the BSMC are 90% and 78.6% lower than that 
of the SMC respectively. On the contrary, the input force 
required of Biaxial NLFA 1 in the z direction is only 17.2% 
of SMC. 

 

VII. CONCLUSION 

Based on the virtual prototype model parameters 

established in ADAMS software, this paper derived the 6-

DOF dynamics equations under the space microgravity 

environment. A 6-DOF backstepping sliding mode 

controller(BSMC) is designed and equipped with a 6-DOF 

interference observer. Based on the position of Biaxial 

NLFA on the platform, the input force solution matrix is 

derived. According to the design of the controller, a control 

program is designed in MATAB/Simulink. In the co-

simulation of the dynamic system and the control system, 

the model was verified, and the results showed that the 

degree of fit between the dynamic formula model and the 

virtual prototype model was above 98.5%. In the simulation 

of applying sweep frequency interference to the floating 

platform, it can be concluded that after 2 s, the 6-DOF 

BSMC controlled the amplitude of position and angle of the 

floating platform by 90% and 78.6%, respectively. And its 

input force required was only 17.2% of SMC. 
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