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Abstract. Process mining event logs are traditionally formatted to re-
flect the execution of a collection of individual process instances, with a
fixed case notion. In practice, process instances are often intertwined, and
the scope of a particular process is less static. When flattening complex
application data to traditional event log formats, like XES, problems such
as divergence and convergence occur in the resulting event logs. Object-
centric process mining with its object-centric event log (OCEL) format
were introduced to tackle these issues, supporting multiple case notions
with a single event log. While the adoption of object-centric logging is
starting to gain momentum in several domains, the use of OCEL for event
logs of blockchain applications has seen little research. In this paper, we
investigate blockchain data structures and map them to OCEL logging
capabilities. We present an approach to extracting data from blockchain
applications that requires little domain knowledge. We discuss how to
map data items to fit object-centric event logs and provide and analyze
a corresponding OCEL event log for a blockchain application. The ap-
proach is evaluated based on a use case and contrasted to a previous case
study.

Key words: process mining, OCEL, blockchain.

1 Introduction

Blockchain is a distributed ledger that allows for computer-based coordination
between parties in an otherwise trustless environment [21, p. 3]. Second gen-
eration blockchains (e.g., Ethereum) can act as execution engines for arbitrary
code. Applications that are implemented on blockchains (decentralized applica-
tions, short: DApps) generate data during runtime that can be made subject
to data analysis. However, blockchain data may be fragmented and encrypted,
and accounts and keys may change over time: properties that pose challenges to
analyzing blockchain data, e.g., with process mining techniques [14].

Process mining is a set of techniques to generate knowledge from process
data [10]. As process mining is heavily dependent on data, different data ex-
change formats have been discussed to achieve interoperability between data
producing and data consuming systems. Widely-adopted as a format for event
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logs and an input format for process mining tools is the eXtensible Event Stream
(XES) thanks to an early proclamation as an event log format standard [8].
XES allows only a single case notion which can cause problems in the event
log, e.g., divergence and convergence [3]. To overcome these problems, the more
recently established Object-Centric Event Log (OCEL) standard allows multiple
case notions in one event log [7].

To date, XES remains the most widely-used standard for process mining
event logs for blockchain applications [4]. Several approaches to creating XES
event logs from blockchain data for process mining have been proposed. An
overview of the existing approaches was presented in a recent systematic lit-
erature review [13]. [11] focuses on creating single-case notion event logs from
blockchain log entries that are specified in smart contract code and written onto
the blockchain. Their tool has been developed further and made blockchain plat-
form independent [5]. [6] used fine-grain execution data of transactions that were
generated by Ethereum nodes. They grouped the data by their sender address
to create a case notion. Similarly, [16] decoded smart contract function calls and
used names of called functions as activity names in event logs. [18] introduced
steps to analyze the sojourn time between submissions of transactions and their
inclusion in a block. There have also been initiatives to make blockchain event
logs less dependent on a single-case notion. [12] extracted log entries for the
Ethereum DApp Cryptokitties and presented a ”artifact-centric” logging format
based on an OCEL extension. The extension, however, has no process mining
tool support. Current tools that create XES logs from blockchain data attempt
to deal with data fragmentation and account changes by limiting the logging
to certain accounts and event types impeding to document the full extent of a
DApp’s behavior.

In this paper, we address the above limitations with a two-pronged approach,
specifically object-centric process mining for DApps and more comprehensive
data capture. As such, we explore using the OCEL logging format to incorporate
various types of execution data of an application in a blockchain environment in
a single event log. The approach is aimed at suiting dynamic deployments and
distributed logging, as commonly seen in blockchain applications. We make the
following contributions: (1) we propose an object-centric approach to retrieving
and decoding blockchain application data, (2) we broaden the set of considered
data sources to include, among others, function calls and input data, logged vari-
able values, dynamically created smart contracts and application structure, and
tracking digital assets including cryptocurrency and (non-)fungible tokens (FTs
and NFTs); (3) we conduct an initial evaluation of the proposed approach to in-
vestigate technical feasibility and comparatively analyze the resulting OCEL-log
with an earlier case study that was based on XES.

We argue that challenges in creating event logs for blockchain applications
can effectively be tackled using object-centric logging formats. In this paper, we
explore particularities of data structures in a blockchain environment and map
them to the capabilities of OCEL. We describe a data extraction method that
flexibly responds to changes in a DApp’s structure and updates of application
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code. For an initial validation of the approach, we conduct an assertion [22] as
a basis for future experiments.

The remainder of the paper is structured as follows: In Sec. 2 we describe
the XES and OCEL logging formats. Sec. 3 describes data attributes that relate
to execution data in a blockchain environment (specifically Ethereum) and that
may be part of a comprehensive event log of a DApp. Our approach to extracting
blockchain data is presented in Sec. 4. This is succeeded by presenting extracted
data for the DApp Augur, and analysis and an evaluation of the approach in
Sec. 5. The evaluation compares data availability and process mining insights
with a case study performed on the same DApp with a single-notion event log.
We discuss the findings of the paper in Sec. 6 and conclude the paper in Sec. 7.

2 Logging Formats in Process Mining

For every process mining endeavor, which aims to derive insights from process
data, the data is the foundation. To ensure interoperability between different
information systems (e.g., systems producing event data as output and systems
consuming event data as input for process mining) a standardized exchange
format called eXtensible Event Stream (XES) was agreed on in 2010 and defined
as a standard in 2016 [1, 2]. XES is an instantiation or dialect of the eXtensible
Markup Language (XML). XES defines syntax and semantics for an event log.
As its main ingredients, XES defines the notions of a log, traces, events, and
their respective attributes [2]. A log can contain traces, which in turn comprise
events. A trace represents a single process instance.

However, during actual process executions, events often belong to multiple
cases. An often-cited example is that of an online store where a customer created
multiple orders with multiple items each; the store might send all items in a single
shipment, or each item separately; and the customer might receive one invoice,
or one per order, or one per shipment. What should the case notion be based on:
one case per shipment, order, invoice, or customer? For most answers, cases are
intertwined. Deciding on a case notion and creating a corresponding XES log
hence includes a step of flattening the log. Approaches to flatten the event log
may result in some of the following three issues. (1) Deficiency: if an event does
not have the chosen case notion it does not appear in the data. (2) Convergence:
if an event relates to two distinct cases in the chosen case notion, it will appear
duplicated in the data. (3) Divergence: events of two different cases and a shared
third case may appear causally related although they are not [3, 1].

To address these problems a new standard was published in 2020: Object-
centric Event Log (OCEL) [7]. Like XES, OCEL also comprises events and their
attributes. A major innovation of OCEL allows events to refer to multiple case
notions. This is achieved by introducing objects which represent “physical and in-
formational entities composing business processes such as materials, documents,
products, invoices, etc.” [7, p. 4]. Objects and events have many-to-many rela-
tions in OCEL (see Fig. 1).
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Fig. 1: UML diagram conceptualizing OCEL (adaption from [7]).

3 Data attributes for object-centric event logs from the
Ethereum blockchain

Second-generation blockchains like Ethereum can be used as infrastructure for
the execution of code that is deployed as smart contracts in contract accounts
(CAs). Apart from CAs, a second type of accounts exists that are controlled by
the private key holder (e.g., a user); these are called externally owned accounts
(EOA)!. A blockchain is an append-only ledger. Data of the ledger is stored
in consecutively created blocks. Each block is linked to its predecessor. Blocks
contain transactions and transaction receipts, among others. Transactions cap-
ture transitions from one state of the blockchain to another [19]. The result of
executing a transaction is hashed, and the hash is stored in the respective re-
ceipt; the receipt allows verifying that each machine that executes a transaction
arrives at the same result, including CA log entries created as part of a contract
invocation. Such log entries are used to communicate on-chain data as well as
state changes to off-chain processing units.

On the Ethereum blockchain, transactions may contain invocations of smart
contract functions, which result in computational steps being executed on the
Ethereum Virtual Machine (EVM). These computational steps can be captured
in transaction traces. Transaction traces exist on different levels of granularity.
They can include assembly-level operations, e.g., comparisons and bit-wise logic
operations, or push operations (within the EVM’s computational stack); but they
also comprise logging operations (emitting log entries) and system operations
(e.g., creations of CAs and message calls between CAs) [19]. In contrast to earlier
approaches, we here make use of relevant parts of traces. Fig. 2 is a class diagram
depicting the relations between transactions, contracts, log entries, and traces.

Transaction traces exist temporarily and are not stored permanently in blocks
of the Ethereum blockchain. In order to retrieve traces for historic transactions,
transactions have to be replayed on the EVM (replay the transition from one
state of the blockchain to the next) and the computational steps have to be
stored separately from the blockchain. For that purpose, different tracers exist
for the most widely used Ethereum execution client Geth?:3,

! https://ethereum.org/en/developers/docs/accounts/, accessed 2023-05-15

2 https://ethereum.org/en/developers/docs/nodes-and-clients/, accessed 2023-06-03

3 https://geth.ethereum.org/docs/developers/evm-tracing/built-in-tracers, accessed
2023-05-16
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Fig. 2: Class diagram showing relations between contracts, transactions, events,
and traces.
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Fig. 3: Schema of a single tree-like deployment structure of smart contracts and
possible message calls between accounts.

Depending on the objective of a process analysis, different data are relevant.
In the context of user and contract behavior analysis as well as value stream
analysis, from the sources above we considered the data listed in the following
as relevant.

Contract creations: Knowing the accounts belonging to a DApp is essen-
tial to identify transactions that concern the DApp and contain user or ap-
plication data. The creation of a CA is documented in a transaction trace with
the mnemonic ”CREATE” or ”CREATE2” combined with other data attributes
(e.g., creator and costs of the creation). The EVM interprets the accompanying
input data and attempts to deploy it as smart contract code. CAs can be added
to a DApp at initial deployment, but there are also mechanisms for updating
or adding smart contracts to running DApps, e.g., the factory pattern, registry
pattern [20], or diamond proxy?. A set of CAs belonging to one DApp that gets
deployed can be seen as a tree structure (or a forest consisting of several trees
or sub-trees). Every CA of a DApp has a single creator (parent) and can have
several children that it can create (e.g., through the aforementioned patterns).
Additionally, the CAs of the DApp can send each other message calls laterally
without traversing the creation branches. Contracts of the DApp can also be
called from outside of the DApp (see Fig. 3).

Message calls of CAs and EOAs: Message calls between accounts can
be of different kinds, and are all documented in transaction traces with the
mnemonic "CALL”. (1) Function calls appear when an account calls a CA’s
function. Data attributes sent with the message call include, e.g., sender address,
receiver address, input and output data, fees, and transfers of Ethereum’s native
token Ether (ETH) (which can be 0). (2) Ether transfers without function calls

* https://eips.ethereum.org/EIPS /eip-2535, accessed 2023-05-16
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are solely directed to value transfers without additional input data and without
triggering the execution of function logic. Accompanying data are, e.g., sender
address, receiver address, fees, and the amount of transferred ETH.

Log entries: Log entries are used to communicate information about CAs’
code execution to entities outside of the smart contract®. Log entries have to be
specified in smart contract code in order to be emitted. Within limits, developers
can choose what information shall be exposed with log entries. If smart contracts
operate with ERC-tokens, however, developers are advised to implement stan-
dard interfaces including certain sets of events, e.g., to document token creation
and transfers (e.g., ERC-20°, ERC-7217 ).

Function call parameters as well as log entry parameters are emitted in en-
coded form and can be decoded using the corresponding Application Binary
Interface (ABI) of a CA. ABIs are created at compile time and document a
CA’s interface functions (which can be called) as well as a set of log entries that
are defined in the smart contract or inherited from other contracts®. An ABI’s
coverage of the log entries is not always complete. Before the recent introduc-
tion of Solidity v0.8.20, log entries according to the ERC-standard as well as log
entries emitted through invoked code from imported libraries were not included
in an ABI.

4 Data extraction method

The goal of the data extraction method is to gather as much data about a DApp
as possible with minimum knowledge about the DApp. Therefore, the extraction
method has to be capable of identifying DApp information from a small amount
of input data. Hence, the extraction method takes as input a) a non-empty set of
accounts of a DApp, and b) a block range. In order to extract the execution data
of the DApp, two steps follow: 1) discover the creation sub-tree(s) of the DApp
and 2) compute and transform execution data. Fig. 4 visualizes the extraction
method that is described in this chapter. Since the approach exploits information
of transaction traces and partially decodes them, it can be seen as an extension
of [16].

1) Discover the creation sub-tree(s) of a DApp. We start with the input
set of accounts of the DApp and a block range. All operations will take place
within the specified block range. First, we retrieve transactions that have one of
the input accounts as a sender or receiver account. We then look for transactions
that contain message calls with ETH transfers from or to accounts from the input
accounts. The newly identified transactions are replayed by an EVM of a Geth
Ethereum Archival node to retrieve the full traces for the transactions. For that

5 https://ethereum.org/en/developers/docs/smart-contracts/anatomy /#events-and-
logs, accessed 2023-06-04

6 https://eips.cthereum.org/EIPS /eip-20#events, accessed 2023-05-16

7 https://eips.cthereum.org/EIPS /eip-7214specification, accessed 2023-05-16

8 https://docs.soliditylang.org/en/v0.8.13 /abi-spec.html, accessed 2023-05-16
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purpose, a build-in debug tracer is used with the call tracer setting and instructed
to output log entries?. We then forward and backward search for DApp accounts
along the create sub-tree to identify: a) Child CAs: If the trace data includes
contract creations by known DApp accounts these newly created CAs (children)
are added to the set of DApp accounts. b) Parent accounts: If the trace data
includes creations of smart contracts that are already known to be part of the
DApp, the creating contracts (parents) are added to the set of DApp accounts.
If any formerly unknown account was added to the set of DApp accounts, the
previous three steps are repeated. The goal is to discover the whole create sub-
tree of the DApp within the block range. If the input set contains accounts from
different create sub-trees, several create sub-trees can be discovered.

That way, several types of information can be retrieved as raw data: 1) The
creation sub-tree; meaning all parent or child contracts that belong to the spec-
ified set of DApp contracts within the block range. 2) All message calls that
were executed in transactions that involved DApp contracts, including those
with ETH transfers and function calls with encoded raw data within the block
range. 3) Encoded raw data of all log entries that were emitted in a transaction
that involved a DApp account in the specified block range.

2) Compute and transform execution data. The raw data of message calls
and log entries are then decoded based on the Application Binary Interfaces'®
of DApp CAs that were identified in the transaction traces.

A CA’s ABI specifies information to decode data of log entries and function
calls in transaction traces. The ABI of a CA holds information about log entries
that can be emitted by a smart contract with the exception of log entries accord-
ing to an ERC-standard and log entries originating from imported libraries in
CA code (as of Solidity v0.8.20 all log entries are included in the ABI, see Sec. 6).
To maximize the number of retrieved log entries and to expand options for token
tracking, ABIs of DApp CAs are expanded by adding standard events of ERC
tokens'!. Additionally, the ABI of a CA holds information about functions that
can be called from outside the CA. All in all ABI specifications can be used to
decode the log entry and function call raw data using existing libraries!?:13.

The extraction method makes use of the third-party service Etherscan
which provides access to Ethereum data. We used Etherscan to retrieve the
transactions and ABIs of identified DApp CAs.

14

% https://geth.ethereum.org/docs/interacting-with-geth /rpc/ns-
debug#debug_tracetransaction, accessed 2023-04-03

10 https://ethereum.org/en/glossary/#abi, accessed 2023-06-03

1 https://ethereum.org/en/developers/docs/standards/tokens/, accessed 2023-06-03

12 https://github.com /iamdefinitelyahuman/eth-event /blob/master /eth_event /main-
.py, accessed 2023-03-01

13 https://web3py.readthedocs.io/en/latest /web3.contract.html#web3.contract.Con-
tract.decode_function_input, accessed 2023-03-02

' https://etherscan.io/, accessed 2023-06-06
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https://ethereum.org/en/glossary/#abi
https://ethereum.org/en/developers/docs/standards/tokens/
https://github.com/iamdefinitelyahuman/eth-event/blob/master/eth_event/main.py
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Fig. 4: Extraction method for creating object-centric event logs from blockchain
data.

The extracted data is saved tabularly with one row representing a message
call or a log entry. We use the PM4Py library function convert_log_to_ocel()'®
to convert the tabular data to OCEL. Note that while little domain knowledge
is needed to extract the event log data, a certain level of domain knowledge is
still needed to format the data to OCEL (e.g., for choosing data attributes as
objects).

5 Data Analysis and Evaluation

For an initial validation of the approach, we conduct an assertion [22]. For the
assertion, we choose the DApp Augur!® (v1.0). Augur is an implementation of a
betting platform on Ethereum. A bet starts by creating a market that contains
a statement about a future event. Users can participate in the bet by placing
assets in a market. If there is disagreement about the outcome of the event,
users can create disputes. Once disputes are resolved, markets finalize and the
bet is settled [17]. For Augur, a process mining case study based on a single-case
notion event log was presented previously [9]. The previous case study will be
used to compare the single notion approach to an object-centric approach in
terms of data availability and possible insights. To retrieve the object-centric
log, we employ the extraction method described in Sec. 4. We will use similar
input data as [9]: we extract data starting from Augur’s central logging CA”
and for the blockrange [5926229, 11229573]. The resulting log is available for

5 https://pmdpy.fit.fraunhofer.de/static/assets/api/2.7.3/generated /pm4py.convert.
convert_log_to_ocel.html, accessed 2023-07-18

16 https://augur.net/, accessed 2023-06-04

17 0x75228dce4d82566d93068a8d5d49435216551599
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https://pm4py.fit.fraunhofer.de/static/assets/api/2.7.3/generated/pm4py.convert.convert_log_to_ocel.html
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download'®. In the following, we describe the resulting data (the creation tree
and OCEL event log) and present a brief analysis of the data.

DApp contracts and creation sub-tree. The data extraction was heavily
based on identifying CA creations during the observed block range. For Augur,
we identified a total of 20866 CAs containing application logic and 1 EOA that
served as an initial deployer. The high number of created CAs hints towards
extensive use of the factory pattern in Augur’s implementation. A visualization
of the creation tree (as described in Sec. 3) is depicted in Fig. 5 - nodes represent
accounts, and arcs represent creations. The majority of the DApp’s CAs were
created by a small number of contracts (nodes with many creations are plotted
towards the inside of Fig. 5). To better show the tree structure, Fig. 5a con-
tains a subset of 102 creations in which the arcs between creating accounts and
created accounts are clearly visible. Fig. 5b shows the entire creation tree. The
accounts with the highest number of creations were given designated names on
Etherscan. Those include the following accounts with the number of creations
in parenthesis: ShareTokenFactory (7337)'°, MapFactory (3704)%°, MarketFac-
tory (2944)?1, InitialReporterFactory (2917)?2, MailbozFactory (2909)%, Dis-
puteCrowdsourcerFactory (915)%4, Fee TokenFactory (142)25, Fee WindowFactory
(142)%6, Augur Deployer (40)%7, UniverseFactory (6)%®, and ReputationToken-
Factory (2)%.

Event log data. The resulting OCEL-log for Augur comprises 24 activities
based on decoded log entries (934167) as well as 1 activity for message calls
between accounts (117531). For the block range, all 11 activities of the XES-log
from [9] also appear in the OCEL-log. The numbers of the activities’ appear-
ance match with one exception: 12 contribute to dispute events are missing in
the OCEL-log (explanation in Sec. 6). Compared to the XES-log, the OCEL-log
has 13 additional activities referring to (a) DApp administration, being create
universe (1), create fee window (116), sell complete sets (863), redeem fee win-
dow (962), create order (24003), fill order (15194), and cancel order (15150),
(b) activities describing token flow, being burn token (18456), give approval
(54934), mint tokens (93593), token was transferred (284860), and transfer to-
ken (401854), and (c) activities referring to message and function calls with ETH

8 https://ingo-weber.github.io/dapp-data/augur.html, accessed 2023-06-06
19 0x60a977354a6bad4310b2eec061bcf19632450e51d
20 0x67£53b749fe432274e3£53752a91da89ef86777e
21 0x518530aca60154403012f17¢7b8e26£38f7494ee
22 0xbcab2c29b535fd63bdcTca3befa56116550f4¢59
23 0xe33calebb783343035b11a7e755¢29¢28b 763540
24 0x1be98680697390chcdcdcd14albe8add733bf7T
25 0xe86a4beb10155a5bd7ebb430ce13438341e808a8
26 0x5b4140771615b25{22a4bf52f77e35cdccc5b663
27 0xd82369aaec27c7a749afdb4eb71add9e64154cd6
28 0xe62e470c8fbad9aeade87779d536¢5923d01bb95
29 0x8fee0da3a35£612f88fb58d7028d14¢7d99a3643
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(a) Subset of 102 creations (b) 20 866 observed creations

Fig. 5: Creation tree of Augur (blue: DApp CAs; orange: EOA Augur Deployer).

transfers (117273), of which several are message calls into DApp accounts and
which were decoded to retrieve human readable function names and input pa-
rameters (39043). The events in the log are described by a total of 95 attributes,
from which we created three objects types: DApp contracts, DApp users and
markets. We reckon that other object types including transaction or block might
be beneficial for specialized types of analysis, too (e.g., for security analysis).

Analysis. For the analysis, we filtered the OCEL-log to include all common
events with the XES-log, additional log entries from Augur’s central logging CA,
and token transfers. We included objects for markets and DApp accounts. The
resulting object-centric directly-follows graph is depicted in Fig. 6. In addition to
the results from [9] we can see that events occur that are not related to a market
but are triggered by a DApp contract, e.g., create universe, create fee window,
and create order. The event transfer token is only rarely triggered by the main
logging contract. Instead a high number of other DApp accounts manage the
token distribution in Augur.

As described in Sect. 2, a central advantage of object-centric logging for-
mats is avoiding deficiency, convergence, and divergence that can happen when
flattening data to suit a single case notion. We investigated if these advantages
apply to the OCEL-log we extracted. In terms of deficiency we found activi-
ties that relate only to a selection of object types. E.g., the market notion does
not cover the activities create universe, or create fee window. Additionally, to-
ken transfers between DApp accounts and user accounts cannot be related to
markets either. The same is true for Ether transfers between accounts. In par-
ticular, when transfers and Gas fees are involved, deficiency should be avoided
to cover process costs accurately. The Augur process had a total transfer volume
of 349131 ETH between accounts during DApp execution (note that during one
transaction ETH can be transferred from account to account and might count
several times) which can go unnoticed focusing on the market case notion only.
Convergence would appear in the Augur log mainly for activities relating to the
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Fig. 6: Object-centric directly-follows graph discovered with contracts, markets,
and transactions as objects.

market as well as the user account notion. Those include, e.g, create market,
redeem as initial reporter, create dispute, etc., all of which would have to be du-
plicated to represent the process in two event logs. Divergence becomes an issue
depending on the chosen notion. Events could appear related through a common
CA object although they are not. To illustrate the divergence issue with Augur
as an example: Augur is one DApp consisting of multiple CAs. The code in the
CAs execute different parts of the application. E.g., market behavior is processed
in CA 0xA. In parallel an incentive system with a native token is implemented
in CA 0xB. If the single case notion DApp account was selected, different to-
ken transfers between different users that were active in different markets might
appear related, although they are not.

6 Discussion

The analysis in the previous section illustrated benefits of using an object-centric
logging format over a single case notion format. Applying our approach and the
subsequent analysis also uncovered several points to debate.

The current implementation of this paper’s data extraction method relies
on the third-party service Etherscan. The source code of Etherscan is not fully
public so its use for data retrieval reduces transparency in the research process.
However, that dependence was accepted for two reasons: 1) Etherscan is an in-
dexed data store of the Ethereum blockchain. To reduce the size of the Ethereum
blockchain, only the results of transactions are stored on-chain, while the op-
erations leading up to the transactions’ outcomes (transaction traces) are not.
For querying data from a blockchain archival node that means: for a CA 0xA,
only those transactions can be queried that have OxA as a sender or receiver of
a transaction in a certain block range. It is also possible that CA 0xA received
a message call during the execution of a transaction from the sender EOA 0xB
to the receiver CA 0xC. In that case, the message call 0xC — 0xA is not stored
on-chain. Indexing services such as Etherscan provide data stores that save (a
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subset of) such message calls and make them easily queriable. It is also possible
to circumvent using a third-party service by creating a local database contain-
ing message calls between all active accounts within a block range. 2) Retrieving
DApp CA’s ABIs. Log entry data as well as function names and inputs are
stored on the blockchain encoded. Decoding the data requires information from
the CA’s ABI. Etherscan provides a number of verified ABIs for CAs, which we
drew from. If the smart contract code of the CA is known, the ABI can also be
computed by a Solidity compiler.

To discover all accounts belonging to a DApp, the extraction method hinges
on knowing at least one contract of each creation sub-tree. If multiple root de-
ployers exist, creation sub-trees may partially not be discovered. Note, however,
that transaction traces of undiscovered sub-tree accounts can still be logged, if
they contain message calls or creations by known DApp accounts. That was also
the case in the Augur log. 12 contribute to dispute events were missing in our
extracted data. We investigated the issue and found a second deployer EOA that
is not labeled on Etherscan®’. As a result, a fraction of the DApps transactions
could not be discovered. Vice versa, if a root deployer account was used to deploy
more than a single DApp, the extraction method could discover accounts that do
not belong to the DApp and mistakenly extract non-DApp-account data. Pre-
cautions can be taken by choosing distinguished block ranges during extraction
or explicitly excluding accounts from considered candidates of DApp accounts.
Both countermeasures require a level of domain knowledge though.

Furthermore, the extraction method assumes transparency about log entries
of a CA. Types of log entries are documented in a CA’s ABI. In Solidity, ABIs
only include information about log entries that are explicitly included in a CA’s
smart contract code and inherited log entries of another smart contract3!. There
may, however, be log entries emitted by library code of a CA, which were not
included in the ABI. This paper’s extraction method thus, could not capture
library log entries for Augur. Library log entries were only recently included in
the ABI for new Solidity compiler versions®? (as of Solidity v0.8.2033). For smart
contracts written in older Solidity code, however, the issue persists.

This paper’s approach was implemented with the Geth-based Ethereum client
Erigon, so that the rich features of Geth were available for transaction trace gen-
eration. We cannot make a statement about reproducibility with other clients
except Geth and Erigon. However, both clients have a combined market share
of ca. 70% of all Ethereum clients, which makes the approach accessible for the

%9 0x57f1¢2953630056aaadb9bfbda05369e6af7872b

31 https://github.com/ethereum /solidity /issues/13086, accessed 2023-06-03

32 https:/ /github.com/ethereum /solidity /pull /10996, accessed 2023-06-03

33 https://github.com/ethereum/solidity /releases/tag/v0.8.20, accessed 2023-06-06
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majority of node operators3.

We also noticed limitations when using OCEL. In blockchain applications
such as Augur, different types of objects exist, e.g., DApp CAs, transactions, user
accounts, etc. Some of these objects might change their role as a process instance
progresses. E.g., the same user account in Augur can be sender as well as receiver
of a token. Documenting an object’s changing roles over time is currently not
explicitly supported in OCEL. Hence an integrated picture showing full traces
of an object with its changing roles cannot be depicted. The same phenomenon
was described by [12, 15] as an issue in representing ”object evolution”.

Another challenge for log generation is determining the order of events in
a blockchain environment. In past studies, a blockchain event’s timestamp was
defined as the timestamp of the block it was included in. There may, however,
be an order to events or transactions within a block. Similarly, EVM traces
of individual transactions represent a (tree) structure with an order of events.
Events and message calls in the same block appear to have occurred at the same
time when only considering the inclusion block’s timestamp. OCEL requires
a timestamp to determine the order of events and does not allow additional
complementary ordinal variables. We hence had to manipulate the timestamps
to preserve the events’ and message calls’ order.

The presentation of the paper’s approach is heavily based on the technology
of Ethereum blockchains. In addition to the Ethereum Mainnet, from which we
extracted the data, the approach is also applicable on other Ethereum-based net-
works used in enterprises. Some of the concepts we made use of are transferable
to other blockchains. For one, executable code is deployed as smart contracts
also in other second generation blockchains (e.g., Hyperledger Fabric3® and can
be grouped to identify code belonging to one application. Also the notion of
transactions of assets is a concept shared by all blockchains [21, p.5] and can be
exploited to retrieve object-centric process mining logs across platforms.

7 Conclusion

Based on the literature, we showed shortcomings of the single notion logging
format XES to capture execution data of DApps. We presented an approach
to retrieving execution data from dynamically deployed blockchain applications
with little prior knowledge about the application. Based on one case application,
we examined the suitability of the current object-centric logging standard in
process mining as an event log format for blockchain applications’ execution data.
For the considered case, we observe a first indication that OCEL is a suitable
format with respect to mapping the distributed nature of blockchain logging
in different accounts and varying levels of object types (CAs, EOCs, tokens,

34 https://clientdiversity.org/#distribution, accessed 2023-06-03
35 https://hyperledger-fabric.readthedocs.io/en/latest /smartcontract /smartcontract.html,
accessed 2023-07-18
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transactions, etc.) and tackles deficiency, convergence, and divergence issues.
We also note that OCEL appears to be unsuitable for depicting the transition
of objects between roles within the same activity, e.g., an EOC being a sender
in one event Transfer and a receiver in another event Transfer.
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