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Abstract. The aim of this work is to study the Solutions of degenerate
Riemann-Liouville fractional integro-differential equations d

dt
( M
Γ(1−α)

∫ t

−∞(t−
s)−αx(s)ds) = Ax(t)+

∫ t

−∞ a(t−s)x(s)ds+ 1
Γ(β)

∫ t

−∞(t−s)β−1x(s)ds+

f(t). Our approach is based on the R-boundedness of linear operators
Lp-multipliers and UMD-spaces.
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1. Introduction

The aim of this paper is to study the existence and of solutions Riemann-
Liouville fractional integro-differential equations by using methods of max-
imal regularity in spaces of vector valued functions.
In this work, we study the existence of periodic solutions for the following
Riemann-Liouville fractional integro-differential equations

(1.1)

d

dt
(

M

Γ(1− α)

∫ t

−∞
(t− s)−αx(s)ds) = Ax(t) +

∫ t

−∞
a(t− s)x(s)ds

+
1

Γ(β)

∫ t

−∞
(t− s)β−1x(s)ds+ f(t); 0 ≤ t ≤ 2π

where Γ(.) is the Euler gamma function, α, β ∈ R+, 0 ≤ β ≤ α, A and M
are a linear closed operators on Banach space (X, ∥.∥) such that D(A) ⊆
D(M), f ∈ Lp([−r2π, 0], X) for all p ≥ 1 and r2π := 2πN ( some N ∈ N),
a ∈ L1(R+), and xt is an element of Lp([−r2π , 0], X) which is defined as
follows

xt(θ) = x(t+ θ) for θ ∈ [−r2π, 0].

In [4], Aparicio et al, studied the existence of periodic solution of de-
generate integro-differential equations in function spaces described in the
following form:

(Mu′)′(t)−Λu′(t)− d

dt

∫ t

−∞
c(t−s)u(s)ds = γu(t)+Au(t)+

∫ t

−∞
b(t−s)Bu(s)ds+f(t),
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and periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π).
Here, A,B,Λ and M are closed linear operators in a Banach space X satis-
fying the assumption D(A) ∩D(B) ⊂ D(Λ) ∩D(M), b, c ∈ L1(R+), f is an
X-valued function defined on [0, 2π], and γ is a constant.
In [21], S.Koumla, Kh.Ezzinbi, R.Bahloul established mild solutions for some
partial functional integrodifferential equations with finite delay

d

dt
x(t) = Ax(t) +

∫ t

0
B(t− s)x(s)ds+ f(t, xt) + h(t, xt)

where A : D(A)X → X is the infinitesimal generator of a C0-semigroup
(T (t))t≥0 on a Banach space X, for t ≥ 0, B(t) is a closed linear operator
with domain D(B) ⊃ D(A).

This work is organized as follows : In Section 2 we collect some pre-
liminary results and definitions. In section 3, we study the existence and
uniqueness of strong Lp-solution of the Eq. (1.1) solely in terms of a prop-
erty of R-boundedness for the sequence of operators (ik)α((ik)αM − A −
ã(ik)− (ik)−βI)−1. We optain that the following assertion are equivalent in
UMD space :

(1): ((ik)αM −A− ã(ik)− (ik)−βI) is invertible and
{((ik)α((ik)αM −A− ã(ik)− (ik)−βI)−1, k ∈ Z} is R-bounded.

(2): For every f ∈ Lp(T;X) there exist a unique function u ∈ Hα,p(T;X)
such that u ∈ D(A) and equation (1.1) holds for a.e t ∈ [0, 2π].

2. Preliminaries

In this section, we collect some results and definitions that will be used
in the sequel. Let X be a complex Banach space. We denote as usual by
L1(0, 2π,X) the space of Bochner integrable functions with values in X.

For a function f ∈ L1(0, 2π;X), we denote by f̂(k), k ∈ Z the kth Fourier
coefficient of f :

f̂(k) =
1

2π

∫ 2π

0
e−k(t)f(t)dt,

where ek(t) = eikt, t ∈ R.
Let u ∈ L1(0, 2π;X). We denote again by u its periodic extension to R.

Let a ∈ L1(R+). We consider the the function

F (t) =

∫ t

−∞
a(t− s)u(s)ds, t ∈ R.

Since

(2.1) F (t) =

∫ t

−∞
a(t− s)u(s)ds =

∫ ∞

0
a(s)u(t− s)ds,

we have ∥F∥L1 ≤ ∥a∥1∥u∥L1 = ∥a∥L1(R+)∥u∥L1(0, 2π;X) and F is periodic of
period T = 2π as u. Now using Fubini’s theorem and (2.1) we obtain, for
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k ∈ Z, that

(2.2) F̂ (k) = ã(ik)û(k), k ∈ Z

where ã(λ) =
∫∞
0 e−λta(t)dt denotes the Laplace transform of a. This iden-

tity plays a crucial role in the paper.
Let X,Y be Banach spaces. We denote by L(X,Y ) the set of all bounded

linear operators from X to Y . When X = Y , we write simply L(X).

Proposition 2.1 ([2, Fejer’s Theorem]). Let f ∈ Lp(0, 2π;X)), then one
has

f = lim
n→∞

1

n+ 1

n∑
m=0

m∑
k=−m

ekf̂(k)

with convergence in Lp(0, 2π;Y ).

R-boundedness-UMD space,Lp-multiplier and Riemann-Liouville
fractional integral. We shall frequently identify the spaces of (vector or
operator-valued) functions defined on [0, 2π] to their periodic extensions to
R.

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e.
rj(t) = sgn(sin(2jπt)). For x ∈ X we denote by rj ⊗ x the vector valued
function t → rj(t)x.

The important concept of R-bounded for a given family of bounded linear
operators is defined as follows.

Definition 2.2. A family T ⊂ L(X,Y ) is called R-bounded if there exists
cq ≥ 0 such that

(2.3) ∥
n∑

j=1

rj ⊗ Tjxj∥Lq(0,1;X) ≤ cq∥
n∑

j=1

rj ⊗ xj∥Lq(0,1;X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N, where 1 ≤ q < ∞. We
denote by Rq(T) the smallest constant cq such that (2.3) holds.

Remark 2.3. Several useful properties of R-bounded families can be found
in the monograph of Denk-Hieber-Prüss [14, Section 3], see also [1, 2, 12,
25, 22]. We collect some of them here for later use.

(a) Any finite subset of L(X) is is R-bounded.
(b) If S ⊂ T ⊂ L(X) and T is R-bounded, then S is R-bounded and

Rp(S) ≤ Rp(T).
(c) Let S,T ⊂ L(X) be R-bounded sets. Then S · T := {S · T : S ∈

S, T ∈ T} is R-bounded and

Rp(S ·T) ≤ Rp(S) ·Rp(T).

(d) Let S,T ⊂ L(X) be R-bounded sets. Then S +T := {S + T : S ∈
S, T ∈ T} is R- bounded and

Rp(S+T) ≤ Rp(S) +Rp(T).
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(e) If T ⊂ L(X) is R- bounded, then T∪{0} is R-bounded and Rp(T∪
{0}) = Rp(T).

(f) If S,T ⊂ L(X) are R- bounded, then T ∪ S is R-bounded and

Rp(T ∪ S) ≤ Rp(S) +Rp(T).

(g) Also, each subset M ⊂ L(X) of the form M = {λI : λ ∈ Ω} is
R-bounded whenever Ω ⊂ C is bounded (I denotes the identity
operator on X).

The proofs of (a), (e), (f), and (g) rely on Kahane’s contraction principle.
We sketch a proof of (f). Since we assume that S,T ⊂ L(X) are R-

bounded, it follows from (e) (which is a consequence of Kahane’s contraction
principle) that S ∪ {0} and T ∪ {0} are R-bounded. We now observe that
S∪T ⊂ S∪ {0}+T∪ {0}. Then using (d) and (b) we conclude that S∪T
is R-bounded.

We make the following general observation which will be valid through-
out the paper, notably in Section 4. Whenever we wish to establish R-
boundedness of a family of operators (Mk)k∈Z, if at some point we make an
exception such as (k ̸= 0), (k /∈ {−1, 0}) and so on, then later we recover the
property for the entire family using items (a), (c) and (f) of the foregoing
remark. The corresponding observation for boundedness is clear.

Definition 2.4. Let ε ∈]0, 1[ and 1 < p < ∞. Define the operator Hε by:
for all f ∈ Lp(R;X)

(Hεf)(t) :=
1

π

∫
ε<|s|< 1

ϵ

f(t− s)

s
ds

if lim
ε→0

Hεf := Hf exists in Lp(R;X) Then Hf is called the Hilbert trans-

form of f on Lp(R, X).

Definition 2.5. A Banach space X is said to be UMD space if the Hilbert
transform is bounded on Lp(R; X) for all 1 < p < ∞.

Definition 2.6. For 1 ≤ p < ∞ , a sequence {Mk}k∈Z ⊂ B(X,Y ) is said to
be an Lp-multiplier if for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y ) such

that û(k) = Mkf̂(k) for all k ∈ Z.

Proposition 2.7. LetX be a Banach space and {Mk}k∈Z be an Lp-multiplier,
where 1 ≤ p < ∞. Then the set {Mk}k∈Z is R-bounded.

Theorem 2.8. (Marcinkiewicz operator-valud multiplier Theorem).
Let X, Y be UMD spaces and {Mk}k∈Z ⊂ B(X,Y ). If the sets {Mk}k∈Z
and {k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier
for 1 < p < ∞.

Definition 2.9. The Riemann-Liouville fractional integral operator of order
α > 0 is defined by

Iα
−∞f(t) =

1

Γ(α)

∫ t

−∞
(t− s)α−1f(s)ds
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where Γ(α) =
∫ +∞
0 e−ttα−1dt, is the Euler gamma function.

Definition 2.10. The Riemann-Liouville fractional integral derivative op-
erator of order α > 0 is defined by

Dα
−∞f(t) =

1

Γ(1− α)

d

dt
(

∫ t

−∞
(t− s)−αf(s)ds)

Those familiar with the Fourier transform know that the Fourier trans-
form of a derivative can be expressed by the following:

d̂x

dt
(k) = ikx̂(k), ∀k ∈ Z

and more generally,

d̂nx

dtn
(k) = (ik)nx̂(k), ∀k ∈ Z

A similar identity holds for anti-derivatives

Îs
−∞f(k) = (ik)−sx̂(k), ∀k ∈ Z

D̂s
−∞f(k) = (ik)sx̂(k), ∀k ∈ Z

Remark 2.11. If we set u(x) = eikx for k ∈ Z we have

1)Dα
−∞u(t) = (ik)αeikx

2)Iα
−∞u(t) = (ik)−αeikx.

3. Periodic solutions in UMD space

For a ∈ L1(R+), we denote by a ∗ x the function

(a ∗ x)(t) :=
∫ t

−∞
a(t− s)x(s)ds

with this notation we may rewrite Eq. (1.1) in the following was:

(3.1) Dα
−∞Mx(t) = Ax(t) + (a ∗ x)(t) + Iβ

−∞x(t) + f(t) for t ∈ R.

we have â ∗ x(k) = ã(ik)x̂(k). We define

∆k = ((ik)αM −A− ã(ik)I − (ik)−βI)

and

σZ(∆) = {k ∈ Z : ∆k is not bijective}
the periodic vector-valued space is defined by

Hα,p(T;X) = {u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = (ik)αMû(k) for all k ∈ Z}
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Definition 3.1. For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂
B(X,Y ) is an (Lp, H1,p)-multiplier, if for each f ∈ Lp(T, X) there exists
u ∈ H1,p(T, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

Lemma 3.2. Let 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X) (B(X) is the set of all
bounded linear operators from X to X). Then the following assertions are
equivalent:
(i) (Mk)k∈Z is an (Lp, Hα,p)-multiplier.
(ii) ((ik)αMk)k∈Z is an (Lp, Lp)-multiplier.

We begin by establishing our concept of strong solution for Eq. (3.1)

Definition 3.3. Let f ∈ Lp(T;X). A function x ∈ Hα,p(T;X) is said to be
a 2π-periodic strong Lp-solution of Eq.(3.1) if x(t) ∈ D(A) for all t ≥ 0 and
Eq. (3.1) holds almost every where.

Proposition 3.4. Let A be a closed linear operator defined on an UMD
space X. Suppose that
σZ(∆) = ϕ .Then the following assertions are equivalent :

(i):
(
(ik)α((ik)αM −A− ã(ik)I − (ik)−βI)−1

)
k∈Z is an Lp-multiplier

for 1 < p < ∞
(ii):

(
(ik)α((ik)αM −A− ã(ik)I − (ik)−βI)−1

)
k∈Z is R-bounded.

Proof. (i) ⇒ (ii) As a consequence of Proposition (2.7)
(ii) ⇒ (i) Let as,k = (ik)−s, s ∈ R, k ̸= 0

Define Mk = (ik)α(Ck −A)−1, where Ck := (ik)αM − ã(ik)I − (ik)−βI. By
Theorem (2.8) it is sufficient to prove that the set {k(Mk+1 −Mk)}k∈Z is
R-bounded. Since

k [Mk+1 −Mk]

= k
[
(i(k + 1))α(Ck+1 −A)−1 − (ik)α(Ck −A)−1

]
= k(Ck+1 −A)−1 [(i(k + 1))α(Ck −A)− (ik)α(Ck+1 −A)] (Ck −A)−1

= kMk+1 [aα,k(Ck −A)− aα,k+1(Ck+1 −A)]Mk

= kMk+1 [aα,kCk − aα,k+1Ck+1 + (aα,k+1 − aα,k)A]Mk

= kaα,kMk+1CkMk − kaα,k+1Mk+1Ck+1Mk + k(aα,k+1 − aα,k)Mk+1AMk

= kaα,kMk+1CkMk − kaα,k+1Mk+1Ck+1Mk

+ k(
aα,k+1 − aα,k

aα,k
)Mk+1(aα,kMkCk − I).

Observe that for α > 0 we have that |(i(k + 1))α − (ik)α| can be estimated
by (ik)α−1 uniformly in k according to the definition of |(ik)α| and the mean

value theorem. This implies that
k(aα,k+1−aα,k)

aα,k
is bounded sequence. Since

kaα,k also is bounded for α > 0. Since products and sums of R-bounded
sequences is R-bounded [23, Remark 2.2]. Then the proof is complete. □
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Lemma 3.5. Let 1 ≤ p < ∞. Suppose that σZ(∆) = ϕ and that for every
f ∈ Lp(T;X) there exists a 2π-periodic strong Lp-solution x of Eq. (3.1).
Then x is the unique 2π-periodic strong Lp-solution.

Proof. Suppose that x1 and x2 two strong Lp-solution of Eq. (3.1) then
x = x1 − x2 is a strong Lp-solution of Eq. (3.1) corresponding to f = 0.
Taking Fourier transform in (3.1), we obtain that

(ik)αMx̂(k) = Ax̂(k) + ã(ik)x̂(k) + (ik)−βx̂(k), k ∈ Z.
Then

((ik)αM −A− ã(ik)I − (ik)−βI)x̂(k) = 0

It follows that x̂(k) = 0 for every k ∈ Z and therefore x = 0. Then x1 = x2
. □

Theorem 3.6. Let X be a Banach space. Suppose that for every f ∈
Lp(T;X) there exists a unique strong solution of Eq. (3.1) for 1 ≤ p < ∞.
Then

(1) for every k ∈ Z the operator ∆k = ((ik)αM −A− ã(ik)I − (ik)−βI)
has bounded inverse

(2)
{
(ik)αM∆−1

k

}
k∈Z is R-bounded.

Before to give the proof of Theorem 3.6, we need the following Lemma.

Lemma 3.7. if ((ik)αM −A− ã(ik)I − (ik)−βI)(x) = 0 for all k ∈ Z, then
u(t) = eiktx is a 2π-periodic strong Lp-solution of the following equation

Dα
−∞(Mu)(t) = Au(t) + (a ∗ u)(t) + Iβ

−∞(u)(t).

Proof. We have ((ik)αM −A− ã(ik)I − (ik)−βI)x = 0.
Then

(ik)αMx = Ax+ ã(ik)x+ (ik)−βx

We have u(t) = eiktx and by Remark 2.11 (2),

Dα
−∞(Mu)(t) = (ik)αeiktMx = eikt((ik)αx)

= eikt[Ax+ ã(ik)x+ (ik)−βx]

= Aeiktx+ ã(ik)eiktx+ (ik)−βeiktx]

= Au(t) + (a ∗ u)(t) + Iα
−∞u(t)

Proof of Theorem 3.6: 1) Let k ∈ Z and y ∈ X. Then for f(t) = eikty ,
there exists x ∈ Hα,p(T;X) such that:

Dα
−∞(Mu)(t) = Au(t) + (a ∗ u)(t) + Iβ

−∞(u)(t) + f(t)

Taking Fourier transform. We have ̂Dα
−∞Mx(k) = (ik)αMx̂(k) and Îβ

−∞x(k) =

(ik)−βx̂(k)
Consequently, we have

(ik)αMx̂(k) = Ax̂(k) + ã(ik)x̂(k) + (ik)−βx̂(k) + f̂(k)
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[(ik)αM−A−ã(ik)−(ik)−β]x̂(k) = f̂(k) = y ⇒ ((ik)αM−A−ã(ik)−(ik)−β)
is surjective.
if ((ik)αM − A − ã(ik) − (ik)−β)(u) = 0, then by Lemma 3.7, x(t) = eiktu
is a 2π-periodic strong Lp-solution of Eq.(3.1) corresponing to the function
f(t) = 0 Hence x(t) = 0 and u = 0 then ((ik)αM − A − ã(ik) − (ik)−β) is
injective.
2) Let f ∈ Lp(T;X). By hypothesis, there exists a unique x ∈ Hα,p(T, X)
such that the Eq. (3.1) is valid. Taking Fourier transforms, we deduce that

x̂(k) = ((ik)αM −A− ã(ik)− (ik)−β)−1f̂(k) for all k ∈ Z.

Hence

(ik)αMx̂(k) = (ik)αM((ik)αM −A− ã(ik)− (ik)−β)−1f̂(k) for all k ∈ Z

Since x ∈ Hα,p(T;X), then there exists v ∈ Lp(T;X) such that

v̂(k) = (ik)αMx̂(k) = (ik)αM((ik)αM −A− ã(ik)− (ik)−β)−1f̂(k).

Then
{
(ik)αM∆−1

k

}
k∈Z is an Lp-multiplier and

{
(ik)αM∆−1

k

}
k∈Z is R-

bounded. □

4. Main result

Our main result in this work is to establish that the converse of Theorem
3.6, are true, provided X is an UMD space.

Theorem 4.1. Let X be an UMD space and A : D(A) ⊂ X → X be
an closed linear operator. Then the following assertions are equivalent for
1 < p < ∞.

(1): for every f ∈ Lp(T;X) there exists a unique 2π-periodic strong
Lp-solution of Eq. (3.1).

(2): σZ(∆) = ϕ and
{
(ik)αM∆−1

k

}
k∈Z is R-bounded.

Lemma 4.2. [2]. Let f, g ∈ Lp(T;X). If f̂(k) ∈ D(A) and Af̂(k) = ĝ(k)
for all k ∈ Z Then

f(t) ∈ D(A) and Af(t) = g(t) for all t ∈ [0, 2π].

Proof. 1) ⇒ 2) see Theorem 3.6
1) ⇐ 2) Let f ∈ Lp(T;X) . Define

∆k = ((ik)αM −A− ã(ik)I − (ik)−βI)

By Lemma 3.2, the family
{
(ik)αM∆−1

k

}
k∈Z is an Lp-multiplier it is equiv-

alent to the family
{
∆−1

k

}
k∈Z is an Lp-multiplier that maps Lp(T;X) into

Hα,p(T;X),
namely there exists x ∈ H1,p(T, X) such that

(4.1) x̂(k) = ∆−1
k f̂(k) = ((ik)αM −A− ã(ik)I − (ik)−βI)−1f̂(k)
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In particular, x ∈ Lp(T;X) and there exists v ∈ Lp(T;X) such that v̂(k) =
(ik)αMx̂(k)

(4.2) ̂Dα
−∞Mx(k) := v̂(k) = (ik)αMx̂(k)

Using now (4.1) and (4.2) we have:

̂Dα
−∞Mx(k) = (ik)αMx̂(k) = Ax̂(k)+â ∗ x(k)+Îβ

−∞x(k)+f̂(k) for all k ∈ Z.

Since A is closed, then x(t) ∈ D(A) [Lemma 4.2 ]
and from the uniqueness theorem of Fourier coefficients, that Eq. (3.1) is
valid . □
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