ﬁ EasyChair Preprint

Ne 4045

A Secure Domain Name Resolution and
Management Architecture Based on Blockchain

Wenfeng Liu, Yu Zhang, Lu Liu, Shuyan Liu, Hongli Zhang and
Binxing Fang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 16, 2020

A secure domain name resolution and management
architecture based on blockchain

Wenfeng Liu, Yu Zhang, Lu Liu, Shuyan Liu, Hongli Zhang, Binxing Fang
Computer Science and Technology
Harbin Institute of Technology
Harbin, China
{15b903031, yuzhang}@hit.edu.cn, 19s003112@stu.hit.edu.cn, {1130320121, zhanghongli, bxfang} @hit.edu.cn

Abstract—The domain name system (DNS) is the infrastructure
of many services and applications, thus the availability and
consistency of the domain name resolution process are crucial
but have long troubled DNS. The availability problem is caused
by a denial-of-service (DoS) attack or a single point of failure
(SPOF). The consistency problem originates from the lack of
a forced data synchronization mechanism between authoritative
server replicas or between parent/child authoritative servers.
We proposed a novel blockchain-based domain name resolu-
tion and management architecture named FI-DNS to solve the
above problems fundamentally. FI-DNS solves availability and
consistency problems in the name resolution process from the
mechanism level and guarantees the authenticity and integrity
of name resolution results by using public-key cryptography. FI-
DNS also supports root zone collaborative management based on
smart contracts, which is compatible with the current governance
model led by Internet Corporation for Assigned Names and
Numbers (ICANN). We implemented the prototype system to
prove the feasibility and effectiveness of the FI-DNS architecture.
We built an experimental environment with real domain name
data, evaluated the name resolution performance and stability
of the FI-DNS prototype system, and compared the prototype
system with DNS.

Index Terms—DNS, name resolution architecture, blockchain,
availability, consistency

I. INTRODUCTION

DNS is the key infrastructure that provides services for
domain name resolution on the Internet. Internet applications
that use domain names, such as the web and e-mail, rely on
these services to translate domain names into IP addresses
correctly. At present, DNS continues to evolve and play broad
roles on the Internet, such as providing search engines with
anti-spam [1], replica server selections for the content delivery
network (CDN) [2], and DNS-based authentication of named
entities (DANE) [3]. The wide range of applications highlights
the importance of domain name resolution. Two critical issues
with the domain name resolution process: availability issue
and consistency issue have persisted for a long time, which
are limited by the DNS architecture itself and have yet to be
fundamentally solved.

The name resolution availability problem refers that au-
thoritative servers of a domain cannot respond to the name
resolution request. The cause of unavailability can be a single
point of failure (SPOF) risk (e.g., domain *.microsoft.com
was not available on 24-Jan-2001 [4]) or suffer a denial of
service (DoS) attack [5]. However, the primary reason for

both is the insufficient deployment number of servers. The
DNS specification (section 5 in [6]) requires a domain operator
to deploy more than two authoritative server replicas and to
ensure that replicas are in different physical locations/sites
and use different DNS software implementations. However,
maintaining multiple heterogeneous authoritative servers in
different locations is too expensive for small operators to
afford.

The name resolution consistency problem refers that the
resource record set (RRSet) of a domain name is incon-
sistent in different storage locations. Inconsistency includes
the following three cases: (1) the glue records in the parent
zone is inconsistent with the storage in the child zone. This
phenomenon called “lame delegation” has been studied by [7],
which we also call it “delegation inconsistency” phenomenon.
(2) The same RRSet is inconsistent between different authori-
tative server replicas, which we call the “replica inconsistency”
phenomenon. (3) The cached RRSet in the recursive resolver is
inconsistent with that stored in the authoritative server, which
we call the “cache inconsistency” phenomenon.

Cases (1) and (2) usually caused by misconfiguration, and
case (3) is caused by the DNS that only guarantees weak
consistency. Nevertheless, cache abuse behaviors [8] [9] and
cache poisoning attacks [10] will amplify the degree of the in-
consistency (3). In summary, the primary reason for the above
three inconsistencies is that DNS stores RRset of a domain
name in multiple DNS components (replica servers and cache
servers) to provide hierarchical domain name resolution (case
(1)) and accelerate name resolution process (cases (2) and (3)).
However, there is a lack of an inherent forcing mechanism in
current DNS architecture to ensure that the RRset in different
storage locations keeps consistent.

To fundamentally solve the availability and consistency
problems, we propose an name resolution architecture and
implement the corresponding prototype system (named FI-
DNS). In comparison with the traditional DNS architecture,
FI-DNS has the following characteristics (Figure 1):

Eliminate SPOF risk and Mitigate DoS attacks. FI-
DNS consists of a blockchain network and a distributed file
network, which contains plenty of peer nodes. Domain name
data (RRSet) is stored in multiple peer nodes of distributed
networks, and each peer node can independently provide
responses to queries against a name service. The failure of

DNS
Root
T indexing !
/ | Nwith glue record) '
'
| 1 indexing
Top-level ! B (with zonefile hash)
- 1
Domain | !
Vol |
RS A’ !
i
Second-level ! / :
Domain ,, ,’ '
'
N-level * ',/I’I * * L
Domain A e e <

Caching level

A authoritative server(master)

User

— index subdomain

© root peer

A authoritative server(slave) O authority peer ~ —-- query flow

D recursive resolver client

Fig. 1. Characteristics comparison between DNS and FI-DNS name resolution
architecture. FI-DNS consists of a two-tiered distributed network, the first tier
is a permissioned blockchain network and the second tier is a permissionless
distributed file network.

a few nodes will not affect the services provided by others.

Eliminate delegation inconsistency. FI-DNS no longer
stores glue records in parent zone but by storing the hash
value (of the subdomain) instead. Indexing subdomains with
unique hash values avoids the delegation inconsistency caused
by storing glue records in authoritative servers of both parent
and child domains.

Eliminate replica inconsistency. FI-DNS uses a consensus
algorithm to synchronize data between peer nodes in the
blockchain network. Zone files (store RRSet) are indexed by
file hash values from peer nodes to ensure the client queries
are consistent among all peer nodes.

Eliminate cache inconsistency. FI-DNS cancels the use of
recursive resolver to avoid inconsistency caused by caching.
[11] demonstrated that removing recursive resolver would only
add < 10% name resolution delay to the client.

The main contributions of this paper include:

1) A new secure domain name resolution architecture is
proposed, which attempts to fundamentally solve the
availability and consistency problem through an en-
hanced mechanism of the architecture.

A new collaborative domain name management archi-
tecture compatible with the current ICANN-led gover-
nance model, which utilizes identity-based permissioned
blockchain technology and blockchain smart contracts.
A prototype system named FI-DNS is developed, which
proves the feasibility of the name resolution architecture.
FI-DNS serves as a platform that provides the resolution-
as-a-service, thus empowers small domain name opera-
tors with the ability to resist DoS attacks and SPOF
risk. We designed an experimental simulation environ-
ment with real domain data to perform a performance
evaluation and compared it with current DNS.

2)

3)

II. BACKGROUND AND RELATED WORK

DNS provides a mapping of domain names to values. The
value type can be an IP address, a hostname, or any text string.
An authoritative server is a database for storing domain name
data. The data of the domain name in each level are stored
in their corresponding authoritative servers. Taking the DNS
root domain as an example (Figure 1, left), the root zone data
includes two parts, the domain data (of the root domain) and
the index data (of the top-level domain). DNS currently uses
the glue record [10] to index domain data of the subdomain,
and the glue record contains the hostname and the IP address
of the authoritative servers which stores the domain data of
the subdomain.

A recursive resolver maintains a cache database that stores
responses to all queries that it has issued and forces all clients
to share the cache (Figure 1, left). The cache-shared recursive
resolver is the notorious security weakness in DNS, and the
Kaminsky cache poisoning attack [10] is a typical example of
exploiting the vulnerability. Numerous studies have focused on
solving security vulnerabilities brought by the caching mech-
anism. Part of that are devoted to increasing the cryptographic
security protection of DNS, such as DNSSEC [12] and DNS-
over-DTLS [13]. Some other studies [11] propose to eliminate
the vulnerability by removing the recursive resolver itself, and
our architecture borrows this idea.

Studies on the use of blockchain technology for DNS are
relatively few. Namecoin [14] is the first (name, value) pair
registration and transfer system based on Bitcoin technology.
Blockstack Naming Service (BNS) [15] is an improvement
of Namecoin. Limited by the technical characteristics of
the permissionless blockchain network, Namecoin and BNS
use completely acentric name resolution architecture. This
unsupervised name system is entirely incompatible with the
existing ICANN-Iled “apply-approve-supervision” governance
model and cannot avoid damage caused by malicious cy-
bersquatting to the current domain name owners. Unlike
Namecoin and BNS, our architecture is designed based on
the identity-based permissioned blockchain that is compat-
ible with ICANN-dominated TLD management models. In
addition, Bitcoin’s slow transaction speed and low transaction
confirmation efficiency have been criticized for a long time.
Thus the performance of the BNS system based on Bitcoin
will be completely limited by Bitcoin.

DecDNS [16] is a distributed DNS data storage solution
based on blockchain technology, which is aimed to store
domain name data in the blockchain system. FI-DNS focuses
on solving the availability and consistency problems in the
current DNS. FI-DNS changes the process of indexing sub-
domain data and provides consistency capabilities with the
help of blockchain consensus mechanisms. FI-DNS not only
stores domain name data through the blockchain, but also
implements a collaborative root zone management architecture
based on blockchain smart contracts, which is compatible with
the current governance model.

ITI. DESIGN OF FI-DNS RESOLUTION ARCHITECTURE

In this section, we introduce the design of the FI-DNS reso-
lution architecture (figure 2), including its two-tier distributed
network, hash-based hierarchical data indexing, data storage
format, domain name resolution and verification processes,
and the smart contracts for root zone management.

A. Architecture Overview

Tire1

Tire2

© root peer node

O authoritative peer node D history version

zone file

====> index subdomain zone file

R: root zone

of zonefile T: TLD zone
certificate X.509
authority E@“ certificate

Fig. 2. FI-DNS name resolution architecture

The first tier is a permissioned network consisting of root
peer nodes. The root peer node acts like a root server in DNS,
responding to queries of root zone data. Besides, the root peer
node joins the permissioned blockchain network in an identity-
checked manner. All root peer nodes perform operations that
describe the actions of the entity (root/TLD Authority) on the
resource (TLD), such as TLD delegation and domain data
publication. Operations are defined by consensus-based smart
contracts of all root peer nodes. Accordingly, all entities that
initiate operations through root peers are constrained by same
smart contracts. Each entity is allowed to control the TLD
resources that have been delegated to itself. Moreover, each
entity can participate in the collaborative management of other
entities’ resources based on contract constraints.

The second tier is a permissionless distributed file network
consisting of authoritative peer nodes. The role of this node is
similar to the authoritative servers at various levels in DNS,
providing authoritative responses to all stored domain data. In
this network, all nodes can act as authoritative servers for all
domain names(such as TLDs, second-level domains (SLDs),
etc., other than root domain). The peers that store domain
name data no longer distinguish between the master and the
slave roles, all peers store data with equal identity. Figure 2
exhibits two authoritative peer nodes for the TLD Ta (yellow)
and Tc (orange), three peers for the TLD Te (green), and one
peer for the SLD Sa (gray). Each peer node can act as an

authoritative node for multiple domains. For example, Peer
No. 1 is the authoritative peer of three domains (TLD a/c/e),
and Peer No. 3 is the authoritative peer of three domains (TLD
c/e and SLD a).

Index subdomain data The prerequisite for implementing
a hierarchical index of domain name data is that the index
information of the subdomain’s zone file must be included
in the zone file of the parent domain. Only in this way can
the client obtain the resolved data of the target domain name
through multiple iterations of querying. DNS currently indexes
zone file of subdomain by storing the IP address (glue record)
of the authoritative servers that store the zone file of the
subdomain. Since the authoritative server does not have a
binding relationship with the stored data, the inconsistency
between the parent and child domains (lame delegation) cannot
be completely avoided. Figure 2 demonstrates that FI-DNS
indexes the zone file of the subdomain by indexing the hash
value of the zone file. The hash value of the zone file obtained
by the hash function has a natural binding relationship with
the zone file due to the hash function characteristics. When
the client gets the hash value of the subdomain zone file from
the parent domain, the zone file storing the subdomain data is
uniquely determined.

B. Storage

Example: Root Zone File Storage Zone File Storage Format

Key-Space Name-Space Data-Space
yop d L IndexItem 1{ k
jul SubDomainName
3 TLD ZonefileHash
%|(TLD Authorlty o f e Ha AuthorityPublicKey
2 Publchey nefile Has _~PublicationSig
< b/ndlng bmd/ng _-[_-vDelegationsig
E - - Location(opt)
S delegatlon publlcatlon- - }
e - -
3 e -
3 .
Index Item N

© DomainDataItem 1{
g Root Root RRSets
= Name applng Value LRRSig
© /’}
E -
S

authentlcny— - DomainDataItem N

and integrity

Fig. 3. FI-DNS zonefile storage format. Take the root zone file as an example
to display the data stored in zone file.

FI-DNS uses the authority public key of the domain in the
name resolution architecture to protect the authenticity of the
name resolution results, which is reflected in the data structure
of the zone file. The following are the three types of data stored
in the FI-DNS zone file: 1) the domain name belonging to the
hierarchical namespace, 2) the domain data representing the
mapping value of the domain name, and 3) the public key
representing the authority identity of the domain name. Take
the zone file of the root domain as an example (Figure3):

The structure IndexItem is used to store index informa-
tion for TLD. Indexltem uses five necessary fields, namely,
SubDomainName, ZonefileHash, AuthorityPublicKey, Publica-
tionSig, and DelegationSig to index TLD zonefile. The Sub-
DomainName field stores the TLD name. The ZonefileHash
field stores the hash value of the subdomain zone file. The

AuthorityPublicKey field stores the public key that uniquely
identifies the TLD authority entity. The DelegationSig field
is a digital signature generated by the root authority, and
represents a delegation action, which means that the TLD
(SubDomainName) is delegated to the entity holding the key
(AuthorityPublicKey). The PublicationSig field is a digital
signature generated by the TLD authority and is used to ensure
the authenticity and integrity of the hash value ZonefileHash
used for indexing TLD zone data.

The structure DomainDataltem stores data belonging to the
root domain name. DomainDataltem contains two necessary
fields. RRSet represents a resource record set with a format
that conforms to the DNS protocol and consists of five fields:
name, class, type, ttl, and rdata. The RRSig field is a digital
signature generated by the root authority signing the RRSet
field to protect the authenticity and integrity of the domain
data. The format is in accordance with the DNSSEC protocol.

Optimize large zone file storage. FI-DNS performs the
name resolution process by retrieving and downloading the
zone file through hash values. For large zone file (such as
> 100M B), the peer node takes lots of time downloading
zone file, resulting in slow name resolution. To alleviate this
situation, we propose a zone file partition algorithm to achieve
the goal of resolving the target domain name by the only need
downloading a small block of the zone file.

For a large zone file, we split it into N small zone file
blocks for uploading and retrieving. For each IndexItem (figure
3) that constitutes the zone file is taken out, and the hash
number is calculated according to its SubDomainName field.
The Indexitem is recombined into the new zone file blocks
based on the calculated hash number.

C. Domain Name Resolution and Verification

FI-DNS verifies while resolving. The red arrow indicates
the verification of the domain name delegation. This step is
implemented by verifying the delegation result (DelegationSig)
of the subdomain name, Verify([parent]AuthorityPublicKey,
DelegationSig) = True is required to guarantee the subdomain
name delegated to correct registrant. The blue arrow indicates
the authenticity check of the published zone file of the
subdomain, implemented by verifying the publication result
of the subdomain name, Verify ([child]AuthorityPublicKey,
ZoneFileHash) = True is required to guarantee the authenticity
of the hash index used to retrieve subdomain zone file.

Figure 4 shows an example of how to resolve the IP
address for the target domain name “www.example.com” in
the FI-DNS architecture and ensure the authenticity of the
name resolution process. To resolve “www.example.com”, the
root peer node searches the root zone file, then returns the
IndexItem containing the TLD “com” to the client. The client
first verifies (leftmost red arrow) that the TLD “com” has
been delegated to the public key that represents the TLD
authority entity. Thereafter, the client verifies (leftmost blue
arrow) the zone file published by TLD “com” authority with
the correct hash value. The client then uses the zone file
hash to index the TLD “com” zone file for finding the

public key
of root authority,

root com example.com
Indexltem k Indexltem k DomainDataltem k
] [com] [example.com] [www.example.com]
l hash value hash value
of com zonefile of examp[e.com 3 IP:1.2.3.4
| public key | H z%?efue i
of com authority -l public key “1.| Resource Record
|:. publication [of example.com Signature
signature authority
delegation L publication
signature signature
delegation
signature

— delegation verify =~ --------- > indexing subdomain zonefile

— zonefile data verify o~—F—> Inputs for generating signature

Fig. 4. Example of secured name resolution for domain ‘www.example.com’.
The red solid arrow indicates delegation verification, the blue solid arrow
indicates data (domain name data or index data) verification, and the black
dotted arrow indicates that the subdomain file is indexed with a hash value.

IndexItem containing SLD “example.com”. The client repeats
the verification operation until the RRSet and RRSig of the
IP address of “www.example.com” are obtained. Accordingly,
the target domain name is securely resolved. The client uses
zone file hash to retrieve TLD “com” zone file for finding the
IndexItem containing SLD “example.com”. The client repeats
the verification operation until the RRSet and RRSig of the
IP address of “www.example.com” are obtained. At this point,
the target domain name is securely resolved.

D. Smart Contract for Root Zone Management

TABLE I
SEMANTICS OF FI-DNS SMART CONTRACT

FI-DNS Operation
Example

Smart Contract Initiatlt))r — Outputs;gner
DelegationPublication RA — <TLD, TAPubKey >ra
DelegationTransition TA — < TLD, TAPubKey >
DelegationRevocation RA — <TLD,) >gra
DelegationRenewal TA — <TLD,ValidTo >1a
DelegationRedemption TA — <TLD,TAPubKey >74
DataPublication TA/RA — < ZoneData >4 /RA
Delegation Validation FI-DNS — True/False
DataValidation FI-DNS — True/False
RevokeOP RA/TA — <TLD,OP-ID >ga/ra
ConfirmOP RA/TA — < TLD,OP-ID >Ra/Ta

Smart contracts define all the operations that an authority
can perform on a domain, as well as the precondition and
results of those operations. The entity refers to all participants
of the first tier network, that is, the root and each TLD
authorities in the current DNS.

Table I shows the operation of all smart contract definitions
supported by the current FI-DNS. In the second column of
the table, RA represents the root authority, TA represents the
TLD authority, and Signer represents the entity that digitally
signs the operation output. All operations defined in the first
Column of table I that can be divided into two categories:

The first category are the delegation operations and data
publication operations. DelegationPublication binds the TLD
to a registrant, making the registrant become the authority of
the TLD. DelegationTransition replaces the authority of the
current TLD. DelegationRevocation revokes the delegation for
TLD, giving TLD an undelegated status. DelegationRenewal
extends the TLD delegation period. DelegationRedemption
redelegates the TLD that has expired to the original registrant.
The above operations are consistent with the current ICANN-
dominated DNS governance model [17]. The second category
is data publication operation. The root authority publishes
domain data through DataPublication operation, and TLD
authorities publish indexing data (Figure 3) through it.

The second category are two basic operations, which are
ComfirmOP and RevokeOP. ComfirmOP is used to vote on
a submitted controversial operation, use the majority vote
principle to resolve controversial operation, and reduce the
long-time suspension of pending operations. RevokeOP is used
to revoke previously initiated operations for the initiator.

permissioned

root peer

smart contract invoke

connection

ssionless -
distributed file
network

converter

authoritative peer

IPFS deamon

standard DNS query| i
connection

Client zonefile search
DIG
DNS resolver
verify

OpenSSL
validator
Fig. 5. The prototype system of the FI-DNS name resolution architecture

IV. IMPLEMENTATION

The FI-DNS prototype system consists of the following four
functional parts, which are: root peer, authoritative peer, client,
and converter. Figure 5 describes the implementation of the
architecture.

« Root peer provides root zone data storage/resolution
service and root zone data management service, which is
implemented on the open-source blockchain development
platform Hyperledger Fabric [18] (version 1.4).

« Authoritative peer provides authoritative zone file stor-
age/resolution, which is implemented on the distributed
file platform IPFS [19] (version 0.4.22).

o Client is responsible for domain name resolution and
makes cryptographic verification to the name resolution
process. The client implementation relies on two open-
source components — Domain Information Groper (DIG)
is used to issue queries compatible with DNS protocol
and receive corresponding responses. OpenSSL is used
to verify the digital signature of the response to ensure
authenticity and integrity.

« Converter encapsulates the root peer nodes and the au-
thoritative peer nodes, enabling all peer nodes to provide
a unified interface (standard DNS query/response) for
name resolution service.

V. EVALUATION

We built an experimental environment for FI-DNS prototype
system to evaluate the performance and stability of name
resolution process. Real domain data was used to compare
the FI-DNS prototype system with DNS.

A. Experimental Environment

The FI-DNS prototype system experimental environment
(Figure 7) is configured as follows: 5 cloud servers and 1 local
server. 1 cloud server from Linode cloud service provider, is
used to simulate 13 root peer nodes. 4 cloud servers are used
to simulate authoritative peer nodes, which are distributed in
4 data centers of Vultr cloud service provider. 1 local server
is used as a client to initiate a domain name resolution query
and verify the resolution process. Detailed server configuration
and data initialization information list in Table II.

The 13 root peer nodes form a permissioned blockchain
network, and the consensus copies of the root zone data are
stored in all root peer nodes. The four authoritative peer
nodes join the IPFS public network. To simulate various
name resolution scenarios, the zone files of 100 TLDs (each
zone file contains 10-10000 SLDs) are randomly stored in 3
authoritative peer nodes exclude Singapore node.

B. Data Collection

The FI-DNS name resolution process consists of 4 steps.
The delay of name resolution can be divided into two parts:
root delay and authoritative delay. Root delay is divided
into a root query delay (Figure 7, step 1) and a verification
delay (step 2). Authoritative delay can be divided into an
authoritative query delay and a verification delay (step 3,4).

We use a collector installed on the client to obtain the time
consuming of each step of name resolution. We performed
name resolution tests for the same domain names on FI-DNS
and DNS, summarized the collected data and plot in Figure 6.

C. Performance Analysis of Name Resolution Process

The name resolution performance is mainly evaluated by
the name resolution delay. Figure 6(a) shows the cumulative
distribution function (CDF) of the root and the authoritative
delays in name resolution tests. Test data are obtained by
randomly resolving names from 100 different TLDs. The
results show that the root delay is distributed in the [3.51s,
8.74s] interval, the average is 5.25s. The authoritative delay
is distributed in the [1.26s, 3.32s] interval, and the average is
2.43s. The measurement results show that the latency of the
root resolution (layer-1 network) is approximately twice that
of the authoritative (layer-2 network) resolution delay. This
is because the blockchain network needs to call the docker
virtual machine and execute a smart contract each time the
data is resolved. Calling the virtual machine while executing
the smart contracts will consume lots of time.

root
query

authoritative

authoritative
= query verification

root
= verification -

1o - o 109 . e FIDNS
J 104 U ® DNS (DNSSEC enabled)
¥ ®e o 6 o 0 %o,e
1 1) .
0.8 0.8 o .a:..,...n e .0 ° .
e’ W, e

0.6 1

o
o

~¥— root
¥ authoritative

CDF
“%

0.4

delay percentage
°
%

name resolution delay (s)
°
o

0.2

o
N
~

0.0
0.0-
1 2 3 4 5 6 7 8 9 10 100 1000 5000
name resolution delay (s) TLD scale (# SLD in TLD zone file)

10000 0 20 40 60 80
name resolution sequence

(a) Distribution of root delay and authoritative (b) Delay comparison of name resolution for (c) Comparison of name resolution delay fluc-
delay in FI-DNS different TLD sizes in FI-DNS tuation between FI-DNS and DNS (DNSSEC
enabled)

Fig. 6. The FI-DNS prototype system name resolution performance evaluation

TABLE II
DETAILED TEST ENVIRONMENT LIST, INCLUDING SERVER CONFIGURATION AND INITIAL STORAGE STATUS OF DOMAIN NAME DATA

Role Location Cloud provider | IP address Initial status Hardware specification

Root peer Frankfurt, Germany Linode 172.104.139.115 | With Root Data | 4vCPU, 8GB memory, 160GB hard disk
Dallas, United State 149.28.245.24

Authoritative peer é;’ggg; X;‘s‘:f;‘}if‘“gdom Vultr ?g;g?:}gz;& With TLD data |y opyy 1GB memory, 25GB hard disk
Singapore, Singapore 45.76.186.113 No TLD data

Client Shenzhen, China N/A 210.22.22.141 No Cache 4vCPU, 8GB memory, 120GB hard disk

Linode Cloud Server

data collector

"

IPFS Public Nerwork

I

2. root ’
verification ,
&

Local Test
Client

Vultr Cloud Vultr Cloud
Server 1 Server 2

4. authoritative
verification

Vultr Cloud
Server 3

E] authoritative peer
(without zonedata)

Vultr Cloud
Server 4

E] root peer client

Fig. 7. Domain name resolution experimental environment

Izl authoritative peer
(with zonedata)

We then analyze the time proportion of 4 steps of the FI-
DNS resolution process (describes in section V-B). Figure 6(b)
shows the delay of each resolution step that constitutes the
total name resolution delay. From the measurement results,
the root query delay plus the authoritative query delay account
for 90% of the total name resolution delay. The query delay
is determined by the size of zone file and the network
environment of the cloud service provider. The delay for
local signature verification (root and authoritative verification
defined in Figure 7 only occupies 10% of the name resolution
delay.

Finally, we compared the performance differences between
FI-DNS and DNS by resolving a set of identical domain

names. The DNS resolution delay is obtained by querying
Google caching resolver (IP:8.8.8.8) using the client. Figure
6(c) shows the name resolution delay comparison between FI-
DNS and DNS (with DNSSEC-enabled), and the experimental
data is obtained by randomly selecting 100 SLDs for name
resolution tests. The measurement results show the following:
FI-DNS and DNS delays are respectively distributed in the
[5.60s, 11.12s] interval and the [0.06s, 8.28s] interval. The
90th percentile of DNS delay is 5.60s, which is the minimum
resolution delay of FI-DNS, and the average resolution delay
of the DNS is 28.8% of FI-DNS. The Google caching resolver
reduces the name resolution delay by large-scale deployment
and using cache pools. However, we removed the use of the
cache server in our architecture, and this is the main factor
that causes the average name resolution delay gap between
the two.

D. Stability Analysis of Name Resolution Process

Name resolution stability refers to the delay fluctuation of
domain name resolution during the test sequence. Figure 6(c)
shows the comparison of the name resolution delay fluctuation
between FI-DNS and DNS. From the distribution of points on
the y-axis, the name resolution delay fluctuations of FI-DNS
and DNS are close, and FI-DNS is slightly better. The variance
of the FI-DNS name resolution delay is 1.12, which is 67.3%
lower than the variance of the DNS. Because FI-DNS uses
hash values to index files in subdomains, this indexing method
usually has a more stable number of queries than DNS. Once
the DNS resolver selects an authoritative server authorized
outside the domain, multiple queries will be added, which will

make the name resolution delay of the same domain name
unstable.

VI. DISCUSSION

Here, we give some high-level comparative discussions on
the design of FI-DNS name resolution architecture to other
designs. Firstly, FI-DNS is entirely different from Namecoin
[14] and Blockstack [15], both of which want to create
a new unsupervised, uncentered domain name system. For
this purpose, they need to isolate from the existing ICANN-
managed domain namespace and introduce a new namespace,
like .bit, but this will inevitably cause compatibility issues.
The FI-DNS solution is devoted to systematically solving the
availability and consistency problems in the existing resolution
system. It is an enhancement of the existing resolution archi-
tecturethus FI-DNS completely inherits the current namespace.
Secondly, FI-DNS is the first work that explores the possibility
of a distributed operation model for root zone management.
In current DNS, ICANN and TLD registries collaborate to
generate a root zone file, but the data needs to be aggregated
to a central data station, root zone data will be released after
auditing, thus there is a single point of failure risk contains
in the management process. To eliminate it, we need to use
permissioned blockchain technology and smart contract to help
us achieve this goal.

Next, we compare the compatibility of different designs
with DNS. Compatibility includes four aspects: namespace
compatibility, server-side compatibility, client-side compatibil-
ity, and communication protocol compatibility. Namecoin [14]
and Blockstack [15] do not meet all the four compatibilities
above. DecDNS [16] uses the blockchain only for storage
purpose, so it meets all the above four compatibilities at
the same time. Because our solution changes the subdomain
indexing format, we need the resolvers that understand this
new index method to perform name resolution, which causes
the only client-incompatibility.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a domain name resolution ar-
chitecture (FI-DNS) based on blockchain technology to solve
availability and consistency problems in DNS. We imple-
mented the prototype system to prove its feasibility and
effectiveness. Performance evaluation results show that the
resolution delay of FI-DNS is more than twice that of the
DNS due to the slow execution efficiency of the blockchain.
In our future work, we will attempt to improve the server end
resolution efficiency of the FI-DNS resolution architecture to
increase its practicality.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China under Grant SQ2018YFB180078

(1]

(2]

3

—

[4]

(5]

(6]

[7

—

[9

—

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

REFERENCES

C. Lewis and M. Sergeant, “Overview of best email dns-based list
(dnsbl) operational practices,” Internet Requests for Comments, RFC
6471, January 2012.

A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante, ‘“Draft-
ing behind akamai (travelocity-based detouring),” in ACM SIGCOMM
Computer Communication Review, vol. 36, no. 4. ACM, 2006, pp.
435-446.

P. Hoffman and J. Schlyter, “The dns-based authentication of named
entities (dane) transport layer security (tls) protocol: Tlsa,” Internet
Requests for Comments, RFC 6698, August 2012.

N. Brownlee, K. C. Claffy, and E. Nemeth, “Dns measurements at
a root server,” in GLOBECOM’01. IEEE Global Telecommunications
Conference (Cat. No. 01CH37270), vol. 3. 1EEE, 2001, pp. 1672—
1676.

C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra, “Measuring availabil-
ity in the domain name system,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1-5.

R. Elz, R. Bush, S. Bradner, and M. Patton, “Selection and operation
of secondary dns servers,” Internet Requests for Comments, BCP 2182,
July 1997.

V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang, “Impact of
configuration errors on dns robustness,” in ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4. ACM, 2004, pp. 319-330.

K. Schomp, T. Callahan, M. Rabinovich, and M. Allman, “On measuring
the client-side dns infrastructure,” in Proceedings of the 2013 conference
on Internet measurement conference. ACM, 2013, pp. 77-90.

T. Callahan, M. Allman, and M. Rabinovich, “On modern dns behavior
and properties,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 7-15, 2013.

D. Kaminsky, “Black ops 2008: It’s the end of the cache as we know
it,” Black Hat USA, vol. 2, 2008.

K. Schomp, M. Allman, and M. Rabinovich, “Dns resolvers considered
harmful,” in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, 2014, pp. 1-7.

R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Protocol
modifications for the dns security extensions,” Internet Requests for
Comments, RFC 4035, March 2005.

T. Reddy, D. Wing, and P. Patil, “Dns over datagram transport layer
security (dtls),” Internet Requests for Comments, RFC 8094, February
2017.

A. Loibl and J. Naab, “Namecoin,” namecoin. info, 2014.

M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in 2016 USENIX
Annual Technical Conference (USENIX ATC 16), 2016, pp. 181-194.
J. Liu, B. Li, L. Chen, M. Hou, F. Xiang, and P. Wang, “A data storage
method based on blockchain for decentralization dns,” in 2018 IEEE
Third International Conference on Data Science in Cyberspace (DSC).
IEEE, 2018, pp. 189-196.

“Bylaws for internet corporation for assigned names and num-
bers,” http://www.icann.org/resources/pages/governance/bylaws-en, ac-
cessed: 2019-10-25.

“The hyperledger fabric project,” https://hyperledger.org/projects/fabric,
accessed: 2019-10-25.

“The interplanetary file system (ipfs) project,” https://ipfs.io, accessed:
2019-10-25.

