
EasyChair Preprint
№ 10678

SQL Interface Development for Spatial Data
Retrieval on Document-Based Databases Using
Caching Mechanisms

Kadek Dwi Bagus Ananta Udayana and
Tricya Esterina Widagdo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 7, 2023

 SQL Interface Development for Spatial Data

Retrieval on Document-Based Databases Using

Caching Mechanisms

Abstract— Over the years, there has been a growing trend

towards the increased adoption of NoSQL data, gradually

replacing SQL data due to its numerous advantages. However,

NoSQL data also has its drawbacks, and one of these is the limited

features or functions for processing spatial data. Currently,

Pradipta [1] and Adzkiya [2] have developed a SQL interface

capable of processing spatial data in document-based NoSQL

databases. However, the SQL interface still has weaknesses in

terms of performance and handling big data. Therefore, in this

final project, the SQL interface system developed by Adzkiya [2]

is further improved to address these weaknesses. The approach

used to enhance performance by utilizing Redis to store cached

data. Secondary storage and batch data retrieval methods are used

for handling big data. The SQL interface system was tested by

employing diverse queries with various variations. The success

parameters of the testing include the performance of the SQL

interface system and the accuracy of the obtained data. Based on

the evaluation results, the developed system has achieved optimal

performance, as evidenced by reduced query times. Big data

handling has also been addressed, as all data can be processed

efficiently without encountering memory issues like heap out of

memory.

Keywords—redis, big data, NoSQL, SQL, Spatial

I. INTRODUCTION

Spatial data, particularly geospatial data, describe the
properties of various objects in the world [3]. Spatial data is
easily accessible online in formats such as Well-Known Text
(WKT), shapefile, GeoJSON, etc. The utilization of spatial data
greatly influences the advancement of current technologies. For
example, applications like Google Maps heavily depend on
spatial data to determine accurate locations [4]. Spatial data is
also considered big data, with increasing utilization due to the
advancements in Artificial Intelligence, Internet of Things, and
Robotics [4].

One of the storage options for spatial data is NoSQL
databases. NoSQL databases do not follow the rules of
Relational Database Management Systems (RDBMS) and
provide flexible schemas suitable for parallel computation [5].
Applications that utilize spatial data require a database with a
flexible schema and fast query capabilities, making NoSQL
databases suitable for spatial data-intensive applications.
However, NoSQL databases have limited spatial functions as
they were not initially designed for that purpose [6]. In contrast,
SQL databases support many spatial functions, including the use
of extensions like PostGIS.

One model of NoSQL databases is the document-based
NoSQL database. Pradipta [1] has developed a SQL interface for

retrieving spatial data in document-based MongoDB databases.
The development achieved capabilities for projection and
selection operations. The development idea revolves around
finding the equivalence between SQL queries and NoSQL
DBMS queries, in this case, MongoDB. Adzkiya [2] further
extended the SQL interface developed by Pradipta [1] to make
it applicable to all NoSQL databases. Additionally, data retrieval
from NoSQL databases was minimized. Fu [7] also developed a
SQL interface for retrieving spatial data in column-based
databases, which successfully handles big data retrieval.

II. BASIC CONCEPTS

A. Spatial Data

Spatial data has experienced rapid development over time.
Spatial data, referred to geospatial data, describes the properties
of various objects in the world [3]. The properties include the
geographical position of an object, typically represented using
coordinate systems. Objects in spatial data can be tangible, such
as natural or man-made structures, or intangible, such as national
boundaries. IBM [8] states that spatial data is a collection of
information that describes the location and characteristic
attributes of specific objects. The location refers to the
geographic coordinates on the Earth's surface. Spatial data
availability ranges from static to dynamic [8]. Static spatial data
encompasses the fixed locations of buildings or natural events,
while dynamic spatial data comprises the ever-changing
movements of vehicles and wind patterns [9].

B. NoSQL Database

NoSQL stands for "Not Only SQL" and is a well-known
database model nowadays. Initially, NoSQL was a literal
combination of "No" and "SQL," used to compete against SQL
databases. NoSQL databases do not adhere to the principle of
Relational Database Management Systems (RDBMS) and are
designed for parallel computation [5]. NoSQL databases started
to emerge around 2019 and have since experienced rapid
development [10]. This growth can be attributed to the attractive
features offered by NoSQL databases. First, they are non-
relational, with most NoSQL databases lacking JOIN
operations. Related data is stored together to provide fast
performance. Second, they are distributed, with data stored on
multiple different servers. Third, they are horizontally scalable,
allowing for the addition or removal of servers to process data
optimally. Lastly, they are schema-free. Unlike SQL databases
that require schema contracts upfront, NoSQL databases do not
have such requirements for creating a database.

C. Caching

Caching technology is commonly used in system and
technology development nowadays because caching can
temporarily store data, and accessing this cached data is
relatively fast. The quick access time is due to the cache data
being stored in memory [11]. Various technologies now offer
caching mechanisms, including Redis and cached.

D. Caching Query

Caching query has been implemented in both SQL and
NoSQL databases. For example, caching query is implemented
in the Microsoft SQL Server DBMS. According to its official
documentation, query results are stored in the user's database
cache for repeated query usage [12]. Three conditions must be
met for utilizing cached results. First, the user must have
accessed all tables involved in the query. Second, there must be
an identical query between the new query and a previously
cached query. Lastly, there should be no data changes in the
tables involved in the cache. When a query modifies data in a
table, a signal is sent to remove the associated cache.

According to Microsoft's documentation [12], there are two
main cases where query results should not be cached. First,
queries that use built-in functions whose results can change even
when there are no data changes, such as DATE functions.
Second, queries that return more than 10 GB of data or data
where each row's size exceeds 64 KB. In Microsoft SQL Server,
the cache is cleared immediately if it remains unused for 48
hours or when the cache size approaches the maximum limit
[12].

E. Related Research

Adzkiya [2] proposed an architecture for managing spatial
data in a document-based NoSQL database using the PostGIS
extension, as seen in Fig 1. The green color in Adzkiya's [2]
architecture represents the improved processes compared to
Pradipta's [1] final project. In the system architecture created by
Adzkiya [2], spatial data processing begins with SQL query
retrieval on the Frontend side. After obtaining the SQL query,
an Abstract Syntax Tree (AST) is created. Then, a new query is
generated in the format of a NoSQL database query, obtained
from the process of parsing the SQL query and mapping it to the
stored metadata. The retrieved data is sent along with the SQL
rebuild process. Finally, the query is rebuilt again in the SQL
rebuild process to execute the data in PostgreSQL. The rebuilt
query involves the data sent in the previous process along with
any SQL operations that haven't been performed. By executing
this rebuilt SQL query, the data corresponding to the given query
in the SQL interface is obtained.

Fig 1. Architectural Diagram SQL Interface Adzkiya [2]

III. PROPOSED SOLUTION

A. Initial Design

To add performance enhancing capabilities and handle big
data on SQL interface that has been made by Adzkiya, then
created a solution design as can be seen in Fig 2. The system
starts when the user provides an SQL query in the user interface.
The SQL query is then converted into a Redis query to check
whether the data is already stored in the cache. If cached data is
available, the next step is to rebuild the query from the data
obtained in the cache into an SQL query. This SQL query is used
to query the PostgreSQL database, and the results are displayed
in the user interface. However, if there is no cached data
available, the next step is to transform the query into a NoSQL
query. After obtaining the NoSQL query, it is used by the
NoSQL client to query the NoSQL database. The retrieved data
is stored in a string and/or secondary storage and then sent to the
query builder process. In the query builder process, an SQL
query is obtained, which is used by the PostgreSQL client to
obtain the final result. The result is then displayed in the user
interface.

B. Improving System Performance

 The system can generate a list of possible queries to be
searched in Redis, allowing for optimization. The idea behind
forming the query list is involves reducing selection in the query,
adding projection to the query, or reducing selection and adding
projection to the query. For example, there is query like this.

SELECT NAMA, KELURAHAN FROM rumahsakit WHERE
NAMA = 'RUMAH SAKIT CIPTO MANGUNKUSUMO' AND
KELURAHAN = 'PEGANGSAAN'

Fig 2. Architectural Design New SQL Interface

By using that query, the list of possible query that can be

searched on Redis can be seen n Table 1.

Table 1. List Query Possible to Check

No Possible Query Description

1 SELECT * FROM rumahsakit WHERE NAMA
= 'RUMAH SAKIT CIPTO MANGUNKUSUMO'
AND KELURAHAN = 'PEGANGSAAN'

Adding

Projection

2 SELECT * FROM rumahsakit WHERE NAMA
= 'RUMAH SAKIT CIPTO MANGUNKUSUMO'

Adding

Projection

& Reducing

Selection

3 SELECT * FROM rumahsakit WHERE
KELURAHAN = 'PEGANGSAAN'

Adding

Projection

& Reducing

Selection

4 SELECT * FROM rumahsakit Adding

Projection

& Reducing

Selection

5 SELECT *KELURAHAN*NAMA* FROM
rumahsakit WHERE NAMA = 'RUMAH
SAKIT CIPTO MANGUNKUSUMO' AND
KELURAHAN = 'PEGANGSAAN'

Query Exact or

Adding

Projection

6 SELECT *KELURAHAN*NAMA* FROM
rumahsakit WHERE KELURAHAN =
'PEGANGSAAN'

Reducing

Selection

7 SELECT *KELURAHAN*NAMA* FROM
rumahsakit WHERE NAMA = 'RUMAH
SAKIT CIPTO MANGUNKUSUMO'

Reducing

Selection

8 SELECT *KELURAHAN*NAMA* FROM
rumahsakit

Reducing

Selection

C. Big Data Handling

During the retrieval process from the document-based
NoSQL database, there is a possibility that the data retrieved has
a large amount. Large amounts of data may not be retrieved by

the SQL interface. To address this problem, a solution is to
execute the transformed NoSQL query using batch processing.
The idea is to limit the amount of data retrieved for each batch.
This solution ensures that the SQL interface system does not
overload or experience out-of-memory issues when retrieving
data from the document-based NoSQL database.

Once all the data has been retrieved from the document-
based NoSQL database, another challenge that may arise is
when the amount of data obtained exceeds the query size limit
in PostgreSQL, which is 2,147,483,648 characters. Therefore, a
solution is designed to set a threshold limit for the data to be
stored in a string after obtaining it from the NoSQL database. If
the data exceeds the specified threshold, it will be stored in a
string as well as secondary storage.

IV. IMPLEMENTATION

A. System Description

The SQL interface system employs two distinct flows to
process the provided queries. When a query is given to the SQL
interface, it enters the first flow, where the query is checked to
determine if it can utilize the data stored in Redis.

Fig 3. Activity Diagram SQL Interface

If there is relevant data available in Redis, a subsequent
check is conducted to ascertain whether the data is fully stored
in Redis or if some portions are also stored in secondary storage.

In the case of partial data in secondary storage, a subset of that
data is retrieved and combined with the existing data in Redis.
Subsequently, all the acquired data, whether solely from Redis
or a combination of Redis and secondary storage, is utilized to
construct a new query. This new query is then employed to
retrieve the final data displayed in the SQL interface.

However, if no relevant data is found in Redis, the query
proceeds to the second flow. The second flow follows a similar
pathway to the SQL interface system developed by Adzkiya
(2021), involving the retrieval of data from a document-based
NoSQL database with certain enhancements.

B. System Architecture

The implemented interface will consist of enhancement

three modules, namely the RedisUtils, Get Data, and SQL

rebuilder with explanation as follows.

1. RedisUtils module is the core of the performance

improvement issue in the SQL interface system. As seen

in Fig 4. Flow Diagram RedisUtils Module, the input

SQL query is first checked to determine if it can utilize

the data stored in Redis, which is the result of previously

executed SQL queries. Redis serves as a key-value-

based NoSQL database for storing cache data.

Fig 4. Flow Diagram RedisUtils Module

If there is data on redis can be used, then checked if some

of data stored on secondary storage. If some of data

stored on secondary storage, then get that data first and

used it to create new SQL query. The SQL query used

to get final data and show it to interface.

2. Get Data & SQL Rebuilder Module

In the SQL interface system developed by Adzkiya [2],
there are the SQL Rebuilder and Get Data modules.
These modules need improvement to address the issue
of handling big data, as shown in Fig 5. The process
started when function Get Data called looping function
Get Result. Get Result is function to retrieved data from
NoSQL database using batch method. Terminated
condition happen when NoSQL database return empty
data. After that, check if system used secondary storage.
If system used it, then insert some data to secondary
storage and after that call function rebuild new AST.

Fig 5. Flow Diagram Get Data & SQL Rebuilder Module

C. Testing

Based on the two testing objectives, namely improvement
performance and data correctness, several test cases are created
to examine the system SQL interface.

The constructed test cases consist of a set of queries used to
evaluate the SQL interface system. In this evaluation, there are
a total of 16 test cases divided into two categories based on the
testing objectives of the SQL interface system. For the category
of queries used to retrieve small-sized data, subcategories are
also defined:

a. Queries used to retrieve small-sized data

1. Queries with projection of all fields

2. Queries using aliases

3. Queries with different column projection orders

4. Queries invoking spatial operations

5. Queries using two collections

6. Queries using SQL clauses/operations not

supported in the previous SQL interface system

b. Queries used to retrieve large-sized data.

D. Evaluation

Referring to Table 2 and Table 3, on average, the system can
reduce execution time by approximately 51.75%. to retrieve
small data. Retrieve small data found on Q-01 until Q-12. This
reduction is achieved when queries utilize the caching
mechanism, resulting in reduced time for the Get Data phase and
SQL query transformation.

Table 2. Data Retrieval not Use Caching Mechanisms

ID
Transform
SQL to
NoSQL (ms)

Get
Data
(ms)

Rebuild
Query SQL
+ final
result (ms)

Buffer
(ms)

Total
(ms)

Q-01 28.7 30 47 9.6 115.3

Q-02 17 22 44.3 18.4 101.7

Q-03 25.3 17 64.7 10.3 117.3

Q-04 28 29.3 37.3 6.7 101.3

Q-05 16 19 58.7 3 96.7

Q-06 21.3 27.7 55.7 3 107.7

Q-07 20.7 25 57.3 1.3 104.3

Q-08 10 15 55 4 84

Q-09 25.3 43.7 54.3 11.7 135

Q-10 18 43.3 58.3 3.1 122.7

Q-11 33.7 48.7 111.3 16.3 210

Q-12 22 31.3 46.7 9.3 109.3

Q-13 27.3 135915.7 17284 1976.3 155203.3

Q-14 27.7 36543 7848.7 107.6 44527

Q-15 25.3 1598.3 162 19.4 1805

Q-16 36 1396 171.3 13.4 1616.7

For example on ID Q-01, when not use caching mechanism,
get data phase takes time 30 ms, while use caching mechanism
takes time 5ms. This happen because, get data from redis faster
than get data from NoSQL database. Same when transform SQL
query to NoSQL query. When not use caching mechanism, it
takes time 28.7 ms while use caching mechanism takes time 5.7
ms. This happen because, when not use caching mechanism
there is some process like handle subquery with, subquery from,
subquery where, etc. But, when use caching mechanism, it
simply just transformed SQL query to key Redis.

Table 3. Data Retrieval Use Caching Mechanisms

ID
Transform
SQL to Redis
key (ms)

Get
Data
(ms)

Rebuild
Query SQL
+ final
result (ms)

Buffer
(ms)

Total
(ms)

Q-01 5.7 5 42.7 10.9 64.3

Q-02 3.3 3.3 44.3 9.1 60

Q-03 3.3 3.3 47.3 8.8 62.7

Q-04 2.3 2 33 5 42.3

Q-05 7 3.7 41.3 6 58

Q-06 5 5 40 7 57

Q-07 7.3 5.7 41.7 5.6 60.3

Q-08 3 2.7 37.7 5.6 49

Q-09 11 2.7 43 14 70.7

Q-10 9.7 2 44 15.3 71

Q-11 10.3 10.3 38 11.4 70

Q-12 6.7 6.7 38 10.9 62.3

Q-13 6 790.3 8703.3 1096.7 10596.3

Q-14 5 671.3 6416 59.4 7151.7

Q-15 5.7 810 3075.3 14 3905

Q-16 7.3 725 2986.7 12.3 3731.3

Fig 6. Data on Secondary Storage for ID Q-13

From the conducted test cases in the second category, Q-13 until
Q-16, it can be concluded that the system is capable of handling
big data. As can be seen on Fig 6, when system handle big data,
some of data would be stored on secondary storage. In this case
system has threshold 90624 records and retrieved 1002960
records. It means, 912336 records would be stored on secondary
storage.

 Furthermore, it can apply the caching mechanism to handle
big data efficiently. As can be seen on ID Q-13, the system can
reduce execution time by approximately 7%. to retrieve big data.
However, anomalies occurred in test cases Q-15 and Q-16. This

is because, when the caching mechanism is not used, the data
retrieved by the SQL interface system is not large, thus
bypassing two stages that contribute to longer execution time:
retrieving big data from the document-based NoSQL database
and inserting data into secondary storage.

 To examined accuracy of the obtained data, the system SQL
interface examined total record obtained. As can be seen on
Table 4, total record obtained when not using caching
mechanism and using caching mechanism is same. It concludes
that accuracy of the obtained data is 100%.

Table 4. Accuracy of the obtained data

ID Not Use Caching Use Caching

Q-01 2 2

Q-02 177 177

Q-03 4 4

Q-04 2 2

Q-05 2 2

Q-06 2 2

Q-07 2 2

Q-08 1 1

Q-09 1 1

Q-10 1 1

Q-11 132 132

Q-12 12 12

Q-13 1002960 1002960

Q-14 1002960 1002960

Q-15 1194 1194

Q-16 1194 1194

CONCLUSION

In this paper, the SQL interface successfully retrieve data

on document-based database using caching mechanism. SQL

interface is result from system developed by Adzkiya [2] with

some modifications as follows.

1. System performance can be improved by implementing
a caching mechanism in the SQL interface. This caching
mechanism is applied using Redis as cache storage. The
caching mechanism is also capable of handling big data
retrieval by storing some data in Redis and the
remaining data in temporary tables in the PostgreSQL
database.

2. Handling big data can be achieved by using batch
processing during data retrieval from the document-
based NoSQL database. The use of temporary tables in
the PostgreSQL database is also employed to address
the limitation of the maximum number of characters that
can be executed by PostgreSQL.

REFERENCES

[1] D. C. Pradipta, “Pemanfaatan Fungsi Spasial pada PostgreSQL

dengan Ekstensi PostGIS untuk Mengolah Data Spasial yang

Tersimpan di MongoDB,” Jun. 2020.

[2] M. H. Adzkiya, “Penggunaan Ekstensi PostGIS untuk Pengolahan

Data Spasial Pada Basis Data Berorientasi Dokumen,” Bandung,

Jun. 2021.

[3] A. Alastair, Beginning Spatial with SQL Server. 2009.

[4] Z. Andrew, “Spatial Data,”

https://www.techtarget.com/searchdatamanagement/definition/spati

al-data, 2021.

[5] S .Tiwari, Proffesional NoSQL. Indianapolis: John Wiley, 2011.

[6] D. Guo and E. Onstein, “State-of-the-art geospatial information

processing in NoSQL databases,” ISPRS International Journal of

Geo-Information, vol. 9, no. 5. MDPI AG, May 01, 2020. doi:

10.3390/ijgi9050331.

[7] W. Fu, “Pengembangan SQL Interface Untuk Pengambilan Data

Spasial Pada Basis Data Berorientasi Kolom Cassandra,” Bandung,

Jun. 2022.

[8] IBM, “What is geospatial data?,” https://www.ibm.com/id-

en/topics/geospatial-data, 2020.

[9] J.-G. Lee and M. Kang, “Geospatial Big Data: Challenges and

Opportunities,” Big Data Research, vol. 2, no. 2, pp. 74–81, Jun.

2015, doi: 10.1016/j.bdr.2015.01.003.

[10] J.-K. Chen and W.-Z. Lee, “An Introduction of NoSQL Databases

Based on Their Categories and Application Industries,” Algorithms,

vol. 12, no. 5, p. 106, May 2019, doi: 10.3390/a12050106.

[11] D. Karger et al., “Web caching with consistent hashing,” Computer

Networks, vol. 31, no. 11–16, pp. 1203–1213, May 1999, doi:

10.1016/S1389-1286(99)00055-9.

[12] Microsoft, “SQL Server technical documentation,”

https://learn.microsoft.com/, 2022.

